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ABSTRACT

Fault isolation problem for sensor and actuator in
nonlinear dynamic systems is studied. Parame-
ter interval based fault isolation method has fast
isolation speed and fits many kinds of nonlinear
dynamic systems. This method is extended to the
isolation of sensor fault and actuator fault. The
example shows good performance.

1 INTRODUCTION
Fault detection and isolation (FDI) problem for non-
linear dynamic systems has received more and more
attentions recently. The significant results mainly be-
long to three kinds of methods: The method based on
nonlinear geometrical theory (1; 2; 3), based on parity
space theory (4; 5) and based on adaptive observers (6;
7). The application of the first one is limited because
there is not always suitable framework of decoupling
for a general nonlinear dynamic system. The method
based on parity space theory has only been studied
for some special systems. The speed of adaptive ob-
servers based method is not ideal due the parameter
identification which lasts a long time. In our previous
work, we have put forward a parameter interval based
method for nonlinear dynamic systems with respect
to the faults of the dynamic part of the system (8; 9;
10). This method fits many kinds of nonlinear dynamic
systems, its isolation speed is fast. In this paper, this
method is extended to sensor and actuator fault iso-
lation problems for nonlinear dynamic systems. The
example shows good performance of this method for
sensor and actuator fault isolations for nonlinear dy-
namic systems.

2 PARAMETER INTERVAL BASED FAULT
ISOLATION METHOD

In the parameter interval based method, the practical
range of each parameter is divided into a certain num-
ber of intervals. After occurrence of a fault, the value
of the faulty parameter must be in one of the parame-
ter intervals. After checking each interval whether or
not it contains the faulty parameter value, the faulty

parameter value is found, the fault is therefore iso-
lated. In this section, we recall quickly the main
points of the parameter interval based fault isolation
method, for more details, the reader is referred to (8;
9; 10).

2.1 Nonlinear Dynamic System and Fault
In the original version of the method, the considered
nonlinear dynamic system is as follows:

ẋ = f(x, �, u)

y = cx (1)

where: x ∈ Rn is the system state vector. � ∈ Rp is
the system parameter vector, its nominal value is de-
noted by �0. u ∈ Rm is the system input vector and
y ∈ Rl the system output vector. c ∈ Rl×n is the sys-
tem output coefficient matrix. f(x, �, u) and its first
partial derivatives on x and � are continuous, bounded
in x and �.
Definition 1 There is a fault in the dynamic system
(1), if the dynamic difference

Δf(x, �, �0, u) = f(x, �, u)− f(x, �0, u) (2)

between the system (1) and its nominal model ẋ =
f(x, �0, u) caused by the difference of parameter vec-
tors Δ� = � − �0 is great. ∙
The system without fault is called fault-free system, its
parameter vector will be close to �0 and is regarded as
�0 for convenience. While a system with fault is called
post-fault system, its parameter vector is denoted by
�f . � represents �0 or �f according to context. One
notes the time of fault occurrence as tf .

2.2 Fault Isolation
After the fault occurrence, the fault isolation task is
triggered by the fault detection procedure. For fault
detection, an existing method (6) is used. We assume
that the fault detection is very fast, the time of the fault
occurrence and the time when it is detected are consid-
ered as the same which is noted as tf .
We assume that the considered faults are caused by the
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change of single parameter.
For p parameters �1, �2, . . . , �j , . . . , �p of the sys-
tem parameter vector one partitions the possible do-
main of each parameter into a certain number of
intervals. For example, the parameter �j is parti-
tioned as w intervals, their bounds are denoted by
�
(0)
j , �

(1)
j , . . . , �

(i)
j , . . . , �

(w)
j . The bounds of ith inter-

val are �(i−1)
j and �(i)j , are also noted as �b(ij)j (t) and

�
a(ij)
j (t). After fault occurrence, the faulty parameter

value must be in one of the parameter intervals.
To verify if an interval contains the faulty parameter
value of the post-fault system, a parameter filter is built
for this interval. A parameter filter consists of two iso-
lation observers which correspond to two bounds of
the interval. The parameter filter for ith interval of jth
parameter is given below. The isolation observers are:

˙̂x
a(ij)

= f(x̂a(ij), �oba(ij)(t), u) + k(y − ŷa(ij))
ŷa(ij) = cx̂a(ij)

ea(ij) = x− x̂
a(ij)

, "a(ij) = yℎ − ŷa(ij)ℎ (3)

˙̂x
b(ij)

= f(x̂b(ij), �obb(ij)(t), u) + k(y − ŷb(ij))
ŷb(ij) = cx̂b(ij)

eb(ij) = x− x̂
b(ij)

, "b(ij) = yℎ − ŷb(ij)ℎ (4)

Where: �oba(ij) ∈ Rp, �obb(ij) ∈ Rp are the parameter
vectors of the observers. "a(ij) ∈ R, "b(ij) ∈ R. yℎ is
the ℎth component of y, ŷa(ij)ℎ is the ℎth component of
ŷa(ij) and ŷb(ij)ℎ is the ℎth component of ŷb(ij).
It is assumed that before occurrence of fault, the ob-
servers states x̂a(ij), x̂b(ij) have converged to the sys-
tem state x, so:

ea(ij)(tf ) = 0, eb(ij)(tf ) = 0

"a(ij)(tf ) = 0, "b(ij)(tf ) = 0

At the time tf , the sth system parameter changes due
to the fault occurrence:{

�fs = �0s + Δf

�fl = �0l , l ∕= s
t ≥ tf ,

and the jth parameters of the observers change in order
to isolate the fault:

�
oba(ij)
j (t) =

{
�0j , t < tf

�
a(ij)
j , t ≥ tf

�
oba(ij)
l (t) = �0l ,∀t, l ∕= j

�
obb(ij)
j (t) =

{
�0j , t < tf

�
b(ij)
j , t ≥ tf

�
obb(ij)
l (t) = �0l ,∀t, l ∕= j

The isolation index is:

v(ij)(t) = sgn("a(ij)(t))sgn("b(ij)(t)) (5)

It is assumed that the function f(x, �, u) of the system
satisfies following Assumption 1 and Assumption 2:

Assumption 1 At any point (x, u), the function
f(x, �, u) in the equation (1) satisfies that:
1) any component fi(x, �, u), i ∈ {1, . . . , n} which is
an explicit function of the considered parameter �j is
a monotonous function of parameter �j .
2) yℎ is a monotonous function of the considered pa-
rameter �j . ∙
Assumption 2 If s ∕= j, no matter what value of the
change of the isolation observer parameter is, the dy-
namic difference between the isolation observer and
the post-fault system at point x̂ = x is great. That is to
say:

Δf(x, �f , �ob, u) = f(x, �f , u)− f(x, �ob, u) (6)

is great. ∙
where �ob denotes �oba(ij) or �obb(ij) according to con-
text.
Using Assumption 1, it can be proven that for the case
where s = j, the estimation error "a(ij)(t) of the ob-
server is a monotonous function of the parameter dif-
ference ��

a(ij)
j = �

oba(ij)
j − �fj , and "b(ij)(t) is a

monotonous function of ��b(ij)j = �
obb(ij)
j − �fj , and

no matter s = j or not, the difference of the estimation
error "ab(ij)(t) = "a(ij)(t)− "b(ij)(t) is a monotonous
function of parameter difference �

a(ij)
j − �

b(ij)
j be-

tween the two interval bounds. Using Assumption
2, the monotonicities of "a(ij)(t), of "b(ij)(t) and of
"ab(ij)(t), the following rule of interval verification
can be obtained:
Rule 1 After fault occurrence, if ith interval of jth pa-
rameter contains the faulty parameter value, then we
have: v(ij)(t) = −1,∀t . As soon as v(ij)(t) = 1, then
it can be decided that this interval does not contain the
faulty parameter value, in spite of that v(ij)(t) will be
’-1’ afterward or not. ∙
After fault occurrence, if all the intervals of a parame-
ter are excluded from containing the faulty parameter
value, the fault is excluded from this parameter. If all
the parameters except one are excluded from fault, the
fault is isolated. The parameter which is not excluded
corresponds to fault.
It is proven in (10) that the fault isolation of this ap-
proach is fast.

3 SENSOR AND ACTUATOR FAULT
ISOLATION

3.1 Sensor Fault Isolation
In the nonlinear dynamic system model (1), if we con-
sider sensor fault, the model should be modified as:

ẋ = f(x, �, u)

y = c(x, �c) (7)

where: �c is the parameter vector of the sensor with
proper dimension, �c0 is its nominal value, �cf is used
to denote �c with fault. c(x, �c) is a nonlinear func-
tion of the state vector x and the parameter vector �c,
c(x, �c) and its first partial derivatives on x and �c are
continuous, bounded in x and �c. Similar to the discus-
sion for dynamic fault, for sensor fault isolation each
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component of the parameter vector �c is divided into
certain number of intervals.
Assumption 3 At any considered point x in the
state space, any component ck(x, �c) of the function
c(x, �c) which is an explicit function of the considered
parameter �cj is a monotonous function of the parame-
ter �cj . ∙
For the model (7), the parameter filter with respect to
sensor fault can be built with the correspondent isola-
tion observers:

˙̂x
a(ij)

= f(x̂a(ij), �0(t), u)

+k(y − c(x̂a(ij), �coba(ij))) (8)

˙̂x
b(ij)

= f(x̂b(ij), �0(t), u)

+k(y − c(x̂b(ij), �cobb(ij))) (9)

the observation error are:

"a(ij) = cℎ(x, �cf )− cℎ(x̂a(ij), �coba(ij))

= yℎ − cℎ(x̂a(ij), �coba(ij)) (10)

"b(ij) = cℎ(x, �cf )− cℎ(x̂b(ij), �cobb(ij))

= yℎ − cℎ(x̂b(ij), �cobb(ij)) (11)

Where: �coba(ij), �cobb(ij) are the parameter vectors of
the observers corresponding to sensor parameter vec-
tor, their dimensions are same as the dimension of �c.
"a(ij) ∈ R, "b(ij) ∈ R. cℎ(x, �c) is the ℎth component
of c(x, �c).
We also assume that the fault of the system is caused
by the change of a single parameter in the vector �c, so
the vector � maintains as its nominal value when the
sensor fault occurs.
At the time tf , the sth sensor parameter changes due
to the fault occurrence:{

�cfs = �c0s + Δcf

�cfl = �c0l , l ∕= s
t ≥ tf ,

and the jth parameters of the observers change in order
to isolate the fault:

�
coba(ij)
j (t) =

{
�c0j , t < tf

�
ca(ij)
j , t ≥ tf

�
coba(ij)
l (t) = �c0l ,∀t, l ∕= j

�
cobb(ij)
j (t) =

{
�c0j , t < tf

�
cb(ij)
j , t ≥ tf

�
cobb(ij)
l (t) = �c0l ,∀t, l ∕= j

where: �ca(ij)j and �cb(ij)j are the bounds of the ith in-
terval of j parameter of �c.

s = j
Because c(x, �c) is the monotonous function of single
parameter in �c, according to the equations (8)-(11),
for the case s = j, at the point:

(x, x̂, �, �cf , ��
ca(ij)
j ) = (x, x, �0, �cf , 0)

"a(ij) will be a monotonous function of the single pa-
rameter difference ��

ca(ij)
j = �cfj − �

coba(ij)
j . By

the same way as in (8; 10), it can be proven that in
the neighborhood of this point, "a(ij) is a monotonous
function of the single parameter difference �cfj −
�
coba(ij)
j . Similarly, it can be proven that "b(ij) is a

monotonous function of the single parameter differ-
ence �cfj − �

cobb(ij)
j . Because "a(ij)(t)∣

��
ca(ij)
j

=0
= 0,

"b(ij)(t)∣
��

cb(ij)
j

=0
= 0, according to the monotonici-

ties of "a(ij) and of "b(ij), for the case where the in-
terval contains the faulty parameter value, i.e. �cfj ∈
[�
cb(ij)
j , �

ca(ij)
j ], it will be:

sgn("a(ij)(t)) = −sgn("b(ij)(t))

and for the case were the interval does not contain the
faulty parameter value, it will be:

sgn("a(ij)(t)) = sgn("b(ij)(t))

s ∕= j
Similar to the case of dynamic fault (8; 10), it can be
also proven that, no matter s = j or not, and whatever
the value of the sensor parameter vector change is, the
difference of the estimation error given by:

"ab(ij)(t) = "a(ij)(t)− "b(ij)(t)
is a monotonous function of parameter difference
�
ca(ij)
j −�cb(ij)j between the two interval bounds. Sim-

ilar to Assumption 2, it is assumed:
Assumption 4 If s ∕= j, no matter what value of the
change of the isolation observer parameter �cobj is, the
sensor function difference between the isolation ob-
server and the post-fault system at point x̂ = x is
great. That is to say:

Δc(x, �cf , �cob) = c(x, �cf )− c(x, �cob) (12)

is great. ∙
where �cob denotes �coba(ij) or �cobb(ij) according to
context. Using Assumption 4, along the same way
in (8; 10), it can be proven that, in the case where
s ∕= j, the amplitudes of the estimation errors "a(ij)(t)
and "b(ij)(t) of the observers are great. Therefore two
curves "a(ij)(t) and "b(ij)(t) will be far from the axis
of abscissa at many time. On the other hand, accord-
ing to the monotonicity of "ab(ij), for a small inter-
val, "ab(ij) is small, therefore two curves "a(ij)(t) and
"b(ij)(t) will be very close. So, there must exist a time
te, that:

sgn("a(ij)(te)) = sgn("b(ij)(te))

By combining the case of s = j and the case of s ∕= j,
an interval verification rule can be obtained. The ob-
tained rule is same as Rule 1. Therefore by merging the
sensor parameter vector �c into the system parameter
vector �, the parameter interval based isolation method
in (8; 10) can be used directly for sensor fault isolation.
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3.2 Actuator Fault Isolation
In the nonlinear dynamic system model (1), the param-
eter vector � is associated with the state vector x of the
system dynamic. However, the relation of input vector
u with the system is also parameterized by the com-
ponents of �. Therefore the actuator faults can be de-
scribed by the changes of the parameter vector �, and
the parameter interval based isolation method in (8;
10) can be used directly for actuator fault isolation.

4 SIMULATION
4.1 Plant Model
The single-link robotic arm model (11) is as follows:

Jlq̈1 + Flq̇1 + k(q1 − q2) +mgl sin q1 = 0

Jmq̈2 + Fmq̇2 − k(q1 − q2) = u (13)

where: q1 is the link position angle, q2 the rotor posi-
tion, Jl the link moment of inertia, Jm the moment of
inertia of the motor rotor, k the coefficient of elastic-
ity, m the mass of the link, g the acceleration due to
gravity, l the length of the link, Fl and Fm the viscous
friction coefficients, u the input torque. The parame-
ters of model are: k = 2, Fm = 1, Fl = 0.5, Jm = 1,
Jl = 2, m = 4, g = 9.8, l = 0.5. The input torque
is selected as u = 8 sin(t/3). Let x1 = q1, x2 = q̇1,
x3 = q2 and x4 = q̇2, the model can be rewritten as:⎡⎢⎣ ẋ1

ẋ2
ẋ3
ẋ4

⎤⎥⎦ =

⎡⎢⎢⎣
0 1 0 0
−k
Jl

−Fl

Jl
k
Jl

0
0 0 0 1
k
Jm

0 −k
Jm

−Fm

Jm

⎤⎥⎥⎦
⎡⎢⎣ x1
x2
x3
x4

⎤⎥⎦+

+

⎡⎢⎣
0

a1
−mgl
Jl

sinx1
0

a2
u
Jm

⎤⎥⎦ (14)

y =

[
1 0 0 0
0 0 1 0
0 0 0 1

]⎡⎢⎣ x1
x2
x3
x4

⎤⎥⎦+

[
0
0
a3

]
(15)

where: x1, x3 and x4 are assumed measurable, param-
eters a1, a2 and a3 are used to simulate dynamic fault,
actuator fault and sensor fault respectively. Their nom-
inal values are: a01 = 1, a02 = 1 and a03 = 0, their pos-
sible domain are assumed as: a1 ∈ [0.6, 1], a2 ∈ [0, 1]
and a3 ∈ [0, 0.2]. y3 is selected as yℎ for fault isola-
tion.

4.2 Parameter Filters
For parameter a1, its domain is partitioned into 8 inter-
vals, the values of parameter filters are shown in Table
1.
For parameter a2, its domain is partitioned into 6 inter-
vals, the values of parameter filters are shown in Table
2.
For parameter a3, its domain is partitioned into 3 inter-
vals, the values of parameter filters are shown in Table
3.

Table 1: The values of parameter filters of a1
N 1 2 3 4
ab1 0.60 0.65 0.70 0.75
aa1 0.65 0.70 0.75 0.80
N 5 6 7 8
ab1 0.80 0.85 0.90 0.95
aa1 0.85 0.90 0.95 1.00

Table 2: The values of parameter filters of a2
N 1 2 3 4 5 6
ab2 0.00 0.16 0.32 0.48 0.64 0.80
aa2 0.16 0.32 0.48 0.64 0.80 1.00

4.3 Simulation Results
It is assumed that the fault is caused by a single param-
eter change, and the fault occurs at time t = 10s.

The fault is sensor fault
The fault is caused by the deviation of a3. The value
of a3 changes from 0 to 0.1, while the parameter a1
maintains as its nominal value 1 and a2 maintains as
its nominal value 1.
Figure 1 shows the results of the 2nd parameter filter

of a3, This is the case where s = j and the interval
contains the faulty parameter value. The figure shows
that after tf = 10s, the signals of two observer estima-
tion errors are always different, so this interval cannot
be excluded from ”containing faulty parameter value”,
and the parameter a3 can not be excluded from fault.

Figure 2 shows the results of the first parameter fil-
ter of a3. This is the case where s = j and the interval
does not contain the faulty parameter value. The figure
shows that after tf = 10s, the signals of two observer
estimation errors are the same, it means that this inter-
val does not contain the faulty parameter value.

Figure 3 shows the results of the 2nd parameter fil-
ter of the parameter a2 (actuator parameter). This is
the case where s ∕= j. The figure shows that after
tf = 10s, the signals of two observer estimation errors
are the same, it means that this interval does not con-
tain the faulty parameter value. The figure also shows
that, the case where the signals of two observer estima-
tion errors are the same occurs very close to the time tf
(in this example, it occurs at the time tf .), therefore we
can very quickly deicide that the interval does not con-
tain the faulty parameter value, it guarantees the speed-
iness of the isolation. Similarly, the simulation shows
that all the intervals of the parameter a2 can be very
quickly excluded from containing the faulty parame-
ter value (limited by the length of the paper, the sim-
ulation curves of other intervals are not presented in
the paper.), the parameter a2 is very quickly excluded
from fault.

Figure 4 shows the results of the 3rd parameter fil-
ter of the parameter a1 (dynamic parameter). This is
the case where s ∕= j. The figure shows that after
tf = 10s, the signals of two observer estimation errors
are the same, it means that this interval does not con-
tain the faulty parameter value, the figure also shows

4
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Figure 1:

Figure 2:

Figure 3:

Table 3: The values of parameter filters of a3
N 1 2 3
ab3 0.00 0.05 0.15
aa3 0.05 0.15 0.20

Figure 4:

that this result can be decided very quickly. Similarly,
the simulation shows that all the intervals of a1 do not
contain the faulty parameter value, the parameter a1 is
very quickly excluded from fault.
Because the parameter a1 and the parameter a2 are ex-
cluded from fault, while the parameter a3 cannot, so
the fault is in a3. Because the exclusions of a1 and a2
are very quick, therefore the isolation is very quick.

The fault is actuator fault
The fault is caused by the deviation of a2. The value
of a2 changes from 1 to 0.1, while the parameter a1
maintains as its nominal value 1 and a3 maintains as
its nominal value 0.
Figure 5 shows the results of the first parameter filter

of a2. This is the case where s = j and the interval
contains the faulty parameter value. The figure shows
that after tf = 10s, the signals of two observer estima-
tion errors are always different, so this interval cannot
be excluded from ”containing faulty parameter value”,
and the parameter a2 can not be excluded from fault.

Figure 6 shows the results of the 2nd parameter fil-
ter of the parameter a3 (sensor parameter). This is
the case where s ∕= j. The figure shows that after
tf = 10s, the signals of two observer estimation errors
are the same, it means that this interval does not con-
tain the faulty parameter value, the figure also shows
that this result can be decided very quickly. Similarly,
the simulation shows that all the intervals of a3 do not
contain the faulty parameter value, the parameter a3 is
very quickly excluded from fault.
Figure 7 shows the results of the 4th parameter filter of

the parameter a1 (dynamic parameter). This is the case
where s ∕= j. The figure shows that after tf = 10s,
two curves of the two observer estimations almost su-
perimpose together, the signals of two observer esti-
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Figure 5:

Figure 6:

Figure 7:

Figure 8:

mation errors are the same, it means that this interval
does not contain the faulty parameter value. Similarly,
the simulation shows that all the intervals of a1 do not
contain the faulty parameter value, the parameter a1 is
very quickly excluded from fault.
As a1 and a3 are very quickly excluded from the fault,
so the fault is very quickly located at the parameter a2.

The fault is dynamic fault
The fault is caused by the deviation of a1. The value
of a1 changes from 1 to 0.73, while the parameters a2
and a3 maintains as their nominal value 1 and 0.
For the case in the parameter filters of a1, the simula-
tion shows that a1 cannot be excluded from fault, this
case has been discussed in the articles of our previous
work (8; 10).
Figure 8 shows the results of the 4th parameter filter of

the parameter a2 (actuator parameter). This is the case
where s ∕= j. The figure shows that after tf = 10s, the
signals of two observer estimation errors are the same,
it means that this interval does not contain the faulty
parameter value. Similarly, the simulation shows that
all the intervals of a2 do not contain the faulty param-
eter value, the parameter a2 is very quickly excluded
from fault.
For the parameter filters of a3 (sensor parameter), the
simulation also shows that all the intervals of a3 do not
contain the faulty parameter value, the parameter a3 is
very quickly excluded from fault.
As a2 and a3 are very quickly excluded from the fault,
so the fault is very quickly located at the parameter a1.

5 CONCLUSION

In this paper, the parameter interval based fault iso-
lation method is extended to sensor fault and actu-
ator fault isolation problems for nonlinear dynamic
systems. The parameter interval based fault isolation
method can be used directly for sensor fault and ac-
tuator fault without need of any modifications. The
example shows good performance of this method for
sensor and actuator fault isolations.
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