
A Framework for Integrating Requirements-Based Design
and Diagnosis

Gregory Provan
Department of Computer Science, University College Cork, Cork, Ireland g.provan@cs.ucc.ie

ABSTRACT

Two key impediments for the commercial suc-
cess of model-based diagnosis (MBD) include
(a) a failure to integrate diagnostics modeling
within the requirements and design phase, and
(b) a high degree of diagnostic ambiguity dur-
ing run-time. This article addresses both of these
impediments by providing a formal framework
that integrates requirements-based design with
MBD modeling. The proposed framework ex-
tends the consistency-based theory of MBD with
a requirements-based design theory based on con-
tracts.

1 INTRODUCTION
While the field of Model-Based Diagnosis (MBD) has
made significant progress in formalizing the process
of diagnosis and developing algorithms to diagnose
a range of systems, these technologies have not been
readily adopted in many real-world applications. Two
key impediments are a failure to integrate diagnostics
modeling within the requirements and design phase,
and issues with diagnostic ambiguity during run-time.

One impediment, the failure to integrate the devel-
opment of embedded MBD code within the require-
ments and design process, is often due to a lack of
(design-phase) component libraries for cheaply and ef-
ficiently building MBD models. Leveraging design
information in the development of MBD component
libraries can reduce the modeling burden. A second
impediment, diagnostic ambiguity, arises when a di-
agnosis algorithm given an observation α and a di-
agnosis model ΨD, returns a disjunction of possible
faults, e.g., component X , or component Y , or both,
are faulty. It may turn out that only component X is
faulty, as deduced given an additional observation.

This article addresses both of these impedi-
ments by providing a formal framework that inte-
grates component-based design with MBD model-
ing. We present a formal framework that extends the
consistency-based theory of MBD (Reiter, 1987) with
a component-based requirements/design theory based

on contracts (Martin and Lamport, 1993). This as-
sume/guarantee theory defines a system Φ in terms
of an inter-connected collection of “rich” components
(Benveniste et al., 2008), each of which must fulfill a
contract (e.g., based on design requirements) given as-
sumptions in which the component operates. Given a
contract-based specification for Φ, one can prove prop-
erties about fulfillment of the design requirements.
Contracts have been used for hardware design opti-
mization (Sun et al., 2009), and also for software anal-
ysis during run-time (Meyer et al., 2009). Moreover,
based on observations and the possibility of stochas-
tic (or non-deterministic faults), one can then diagnose
the reasons for the contracts violated during operation
of Φ (Slâtten, 2010; Zulkernine and Seviora, 2005).

This approach offers a formal methodology not only
to integrate requirements specification within diagnos-
tics models, but also to significantly reduce the in-
cidence of two challenging classes of ambiguous or
“spurious” fault, commonly known as No-Fault-Found
(NFF) and cascaded fault-report. During run-time,
many ambiguous diagnoses can arise due to inabil-
ity to define models that adequately distinguish “lo-
cal” faults from exogenous influences. For example,
the No-Fault-Found is a common diagnosis that causes
problems in many domains, particularly avionics: it
is a fault that is isolated during device operation, but
when the “faulty” component is replaced, the fault can-
not be duplicated during testing of the component. In
many cases, this fault occurs when the component is
operated outside of its design intent. For example,
fighter jets have many actuator faults that occur when
the jets are operated outside of design specifications.

Cascaded faults are another difficult situation that
arise in typical FDD situations: in avionics, for ex-
ample, an upstream module will compute some faulty
data, and then all downstream modules that process
this faulty data will issue (erroneous) fault reports,
when in fact downstream modules do not have hard-
ware faults, but issue fault reports due to the incoming
corrupted data. In this case, the failure to identify ex-
ogenous anomalies properly leads to many ambiguous
diagnoses.

Assume-guarantee reasoning considers components

1

21st International Workshop on Principles of Diagnosis

not in isolation, but in conjunction with assumptions
about their context. Hence, the assume/guarantee
(A/G) approach focuses on reasoning about a compo-
nent in terms of the assumptions about its environment,
and by proving that these assumptions are satisfied by
the environment, establishing a set of system obliga-
tions, the contract. This approach has been use for (a)
validating the requirements of a design (and thereby
reducing the design-space that must be searched dur-
ing design optimization (Sun et al., 2009)), and (b)
during run-time for system-level verification (Giese et
al., 2010).

In our approach, we specify two main fault classes:
hard and soft. Hard faults denote failures that occur
when components are operated inside design speci-
fications; soft faults denote failures that occur when
components are operated outside design specifications.
This classification has two important outcomes. First,
it will probably significantly reduce NFF incidence,
since most of these will be classified as soft faults (and
hence treated differently than hard faults). Second, it
will close the feedback loop between design and oper-
ation of a device; if many soft faults occur, this indi-
cates that the actual operation of a device differs from
the design, and hence the design must be changed, or
the fault isolation code changed to align to the actual
usage of the device.

The contributions of the article are as follows:
• We generalize the consistency-based theory of

MBD to a contract-based theory that enables de-
sign models, with their environment-based re-
quirements, to be integrated with an MBD model.
• We show how we can use the existing MBD

inference to compute not only faults, but also
operating-condition violations, and thereby rule
out faults based on incorrect component inputs.

2 RUNNING EXAMPLE: TO/GA SYSTEM
2.1 Example
This section introduces a simple example that we
use throughout the article. The Take-off/Go Around
(TO/GA) system is an autopilot sub-system that ac-
tivates take-off or go-around thrust. During take-off,
pressing the TO/GA switch causes the engines to in-
crease their RPM to their computed take off power,
as computed from parameters such as runway length,
wind speed, temperature, and the weight of the aircraft.
The go-around mode is engaged on approach to land,
and switches the plane from autopilot approach mode
by engaging the thrust levers until they reach the posi-
tion go-around thrust.

Most commercial aircraft use some form of hard-
ware/software redundancy to ensure high reliability of
autopilot systems. For example, this may be a dual-
redundant or a triply-redundant approach, as in the
Boeing 777 aircraft’s TO/GA architecture. In this ar-
ticle we study a TO/GA System with a dual-dual re-
dundant approach, as shown in Figure 1. In such sys-
tems, the TO/GA commands are replicated and sent to
two autopilot flight director control (AFDC) comput-
ers, which compute thrust levels in each of the AFDC
computers. The AFDC outputs are sent to the engines,
and any anomalies are sent to fault-report monitors.

Each TO/GA signal is tagged with a time stamp, to
ensure that the signals being compared are closely-
spaced temporally and thus represent the same com-
putation done in different downstream components.

TOGA

B1p

B1s

Vp

B2p

B2s

Vp

AFDC

I2

I1

I2

I1

I2

I1

secondary

primary

Op

Os

FRp

FRs

Figure 1: Dual-dual autopilot TOGA sub-system, with
TO/GA signals I1, I2 sent to primary and secondary
AFDC computers.

The AFDC has primary and secondary computers;
the primary AFDC is engaged as long as no possible
data corruption is detected. If a signal mis-compare
occurs, the primary AFDC issues a fault report and
the secondary AFDC is also engaged. If the secondary
AFDC does not detect a mis-compare, it is now used
as the primary unit. If the secondary AFDC also de-
tects a mis-compare, it also issues a fault report and
a pilot-warning, which notifies the cockpit of TO/GA
problems, with a recommendation to switch to manual
TO/GA procedures.

Environment-Based Requirements Specification
This section defines three TOGA system signal re-
quirements as propositions (R1, R2, R3), in order to
fit in with the MBD language. The requirements for
the AFDC are that it must test signal equality for two
asynchronous signals (R1), which must be generated
within a time difference µ no greater than a fixed con-
stant δ (R2), such that the comparison test must be car-
ried out with reliability > 0.9999 (R3). In this article
we focus on environmental requirements R1 and R2,
which we encode as assumptions on the inputs for the
AFDC. In future work we will extend this framework
to cover stochastic properties of requirements within
an assume/guarantee framework, e.g., R3. We for-
malise the first two requirements as follows:
R1 the time-difference between the AFDC input sig-

nals I1 and I2 must be such that |τI1 − τI2 | < δ,
when µ = t; else µ = f ;

R2 if the TOGA outputs are both t, set the input flag
I = t; else I = f . This is given by (I1∩I2)⇔ I .

Hence, for this sub-system, we can define the require-
ments specification asR = µ ∧ I . We assume that the
requirements are consistent.

We can identify a few key states for this system,
which we list in Table 1. A typical “run” of this system
will consist of a sequence of states. For example, con-
sider a state sequence S = {σ1, σ2, σ3, σ3, σ3, σ4}, as
shown in Table 1. We can classify states as satisfying

2

21st International Workshop on Principles of Diagnosis

TO/GA output µ Op Os
σ0 (t,-) - - -
σ1 (t,f) f f f
σ2 (f,t) f f f
σ3 (t,t) f f f
σ4 (t,t) t t t
σ5 (t,t) t f t
σ6 (t,t) t f f
σ7 (f,f) t t t

Table 1: Set of states for dual-dual comparator, with
inputs, time-difference µ for inputs, and outputs Op
and Os

the requirements or not. For example, if we examine
the input-equality and timing requirements for S, we
see that σ4 through σ7 satisfy these requirements, and
the other states do not.

3 PRELIMINARIES AND NOTATION
This section introduces our notation for components,
and for diagnosis and assume/guarantee models.

3.1 Component-Based Modeling
A component is a hierarchical entity that represents a
unit of design. We measure the dynamic behaviours
of components in terms of a trace, which is defined
over states, or assignments to component variables, as
follows.
Definition 1 Given an initial state σ0, a behavior
(trace) γ of a component φ is a sequence of states
{σ1, σ2, ..., σm}.
Γ ⊆ Σ∗ denotes the set of all traces possible given a
set Σ of events.

A component is formalized as follows:
Definition 2 A component φ is defined over the tuple
(Vφ, Pφ,Ψφ,Γφ), where
• Vφ is the set of variables defined in φ, where V is

comprised of inputs U , outputs Y , internal vari-
ables Vint, failure-mode variables COMPS and
assumption-violation variables Z;
• Pφ is the set of ports, where P = U ∪ Y;
• Ψφ is the behavioural model for φ, such that y =

Ψφ(u, Vint, COMPS) for y ∈ Y and u ∈ U;
and
• Γφ is the set of traces over the input and output

ports of φ.
Components are connected together to form a sys-

tem by connecting output ports of one component to
input ports of another component, equating the values
of the corresponding ports and variables.

3.2 Model-Based Diagnosis Notation
We represent a diagnosis model for an artifact as a
propositional formula over a set V of variables (Re-
iter, 1987).
Definition 3 (Diagnostic System) A diag-
nostic system Φ is defined as the triple
Φ = 〈Ψ, COMPS,OBS〉, where Ψ is a

propositional theory over a set of variables V ,
COMPS ⊆ V , OBS ⊆ V , COMPS is the set of
component failure-mode variables, and OBS is the
set of observable variables.
Throughout this paper we will assume that Ψ 6|=⊥.
The traditional query in MBD computes terms of
failure-mode variables which are explanations for the
system description and an observation. We represent a
diagnosis in terms of a health assignment.
Definition 4 (Health Assignment) Given a diagnos-
tic system Φ = 〈Ψ, COMPS,OBS〉, an assignment
H to all variables in COMPS is defined as a health
assignment.
A health assignment H can be viewed logically as a
conjunction of propositional literals. A diagnosis is
defined as follows.
Definition 5 (Diagnosis) Given a diagnostic system
Φ = 〈Ψ, COMPS,OBS〉, an observation α over
some variables in OBS, and a health assignment ω,
ω is a diagnosis iff Ψ ∧ α ∧ ω 6|=⊥.
Models in this MBD framework have the general struc-
ture of H ⇔ ξi; in other words, behavior models ξi ∈
ξ are contingent on a health assignment. A Weak-Fault
Model (de Kleer et al., 1992) defines all failure-mode
variables with the values {OK, bad}, i.e., it only speci-
fies nominal behaviours. A Strong-Fault Model (Struss
and Dressler, 1989) defines non-nominal failure-mode
values, together with faulty behaviours.

Diagnostic inference is necessary if an anomalous
observation is recorded, and diagnoses are isolated ac-
cording to Definition 5. In the theory of diagnosis of
(Reiter, 1987), systems and observations are assumed
to be atemporal.

3.3 Contract-Based Design Notation
The A/G model is general enough to address a tar-
get system defined as a set of asynchronous finite
state machines (FSMs) (Benveniste et al., 2008) or hy-
brid automata (Giese et al., 2010). Using this frame-
work, the run-time model for a component is defined
in terms of the behavior of that component, which in
turn is represented by a FSM plus a set of incom-
ing and outgoing ports. A FSM may contain vari-
ables storing the addresses (i.e., port IDs) of incom-
ing and outgoing messages. This model is compatible
with the Tagged-Signal model (Lee and Sangiovanni-
Vincentelli, 1998), which can express behaviors for a
wide range of models of computation.

The environment of each component specified in a
FSM is assumed to be the other components and the
system environment. The A/G approach of verifica-
tion and/or diagnosis separates assumptions and guar-
antees in the component FSM specifications, and then
discharges the assumptions based on the guarantees of
the other components or of the system environment.

The notion of contracts is typically defined for sys-
tems with dynamics. Here, a run-time characterization
of a component φ consists of a set of behaviors defined
over the ports of φ.
Definition 6 An implementationM is an instantiation
of a component φ, and consists of a set Pφ of ports, Vφ
of variables, and of a set M of behaviors, or runs,
which assign a history of “values” to ports.

3

21st International Workshop on Principles of Diagnosis

A component may include both implementations
and contracts. An assertion E = (V,ΓE) is a prop-
erty that may or may not be satisfied by a behavior.

An assume/guarantee specification is derived from
the given state information of the component instead
of the predicates on the state of a component. Asser-
tions are different from specification preconditions and
post–conditions, as defined in areas like AI planning or
program analysis. Pre-/post-conditions typically con-
strain the state space of a program at a particular point.
Instead, assertions consist of properties of entire be-
haviors, and therefore include the dynamics of a com-
ponent φ. We can define a relation between assertions
and pre-/post-conditions by abstracting a finite trace
executing a particular sequence of transitions using a
pre-condition predicate p or q. In the MBD framework
we adopt here, we need a static abstraction closer to
a predicate. In contrast, the theory of contracts uses a
dynamic notion of assertion satisfaction, as follows:
Definition 7 An implementationM satisfies an asser-
tion E whenever they are defined over the same set of
ports and all the behaviors ofM satisfy the assertion,
i.e., whenM⊆ E.

The assume/guarantee paradigm separates the sys-
tem specification into two parts, G = (V,ΓG) and
A = (V,ΓA): G defines the guaranteed behavior of a
component, andA defines the assumed behavior of the
environment of the component or system. This implies
conditional specification for a component φj , usually
written as {Aj}φj{Gj}. If Aj is satisfied by the en-
vironment then φj will satisfy Gj . By combining the
set of assume/guarantee behavior pairs (Aj , Gj) in an
appropriate manner for all φj , it is possible to prove
the correctness of the whole system (Benveniste et al.,
2008).

We now formally define the notion of a contract for
a component as a pair of assertions, which express its
assumptions and guarantees.
Definition 8 A contract C is denoted as a tuple
(V,A,G), where V is the variable set, A is the as-
sumption, and G is the guarantee, an assertion on the
behaviors of a component subject to A.
Definition 9 An implementation of a component satis-
fies a contract whenever it satisfies its guarantee, sub-
ject to the assumption. Formally,M∩ A ⊆ G, where
M and C have the same ports. We write M |= C
whenM satisfies a contract C.

We can check satisfaction of A/G models using the
following equivalent formulas, where ¬A denotes the
set of all runs that are not runs of A:

M |= C ⇔ M⊆ G∪¬A ⇔ M∩ (A∩¬G) = ∅.
The transition or execution of a system can be repre-

sented by a sequence of global states and port contents,
where each global state consists of the current states of
all the components. For a system consists of N com-
municating components: {φ1, φ2, · · · , φN} , a (stable)
global state (R) is an N-tuple (σ1;σ2; ...;σN), and σj
(symbolic state name) is a state of φj .

We define a component contract using a tuple of the
following form (σj(i−1), A,G, σji), where A and G
are the assumptions and guarantees of the component

φj based on its interaction with the other components
or the system environment between σj(i−1) and σji,
where σj(i−1) and σji represent two successive states,
the ith and (i+ 1)th, of φj , respectively.

3.4 Example (Continued)
We now show how the dual-dual comparator example
will be formulated as an MBD and A/G model.

Model-Based Diagnosis Model
A typical MBD model focuses on defining a model
of the system and seeing if the input/output observa-
tions are consistent with a nominal system state. The
full set of variables is VMBD, for which we will as-
sign observable variables as {I1, I2, Op, Os}, unob-
servable variables for the outputs of the two buffers in
each primary and secondary comparators, and failure–
mode variables for each buffer and voter. The sys-
tem description, SD, then consists of a set of equations
specifying the relations over VMBD. Because observa-
tions are assumed to be atemporal, i.e., the observable
set is {(I1, I2), (Os, Op)}, we must map the state se-
quence {σ1, σ2, σ3, σ3, σ3, σ4} into a sequence of ob-
servations such as that shown in Table 1.

In the following, we define two different models
that correspond to two different types of fault report-
ing found in practice. The first model (which is imple-
mented in a real aircraft), Ψ1, assumes that presence
of inputs (I = t) means that the output must be t.
Hence, it will issue a fault report whenever a signal
mismatch is identified, as long as non-null inputs are
available. We model this comparator (either primary
or secondary) as follows:

(Mi = OK)⇔ [(I1 ∨ I2)⇒ Oi], i = p, s.

The second model, Ψ2, captures more detail, in that
it specifies the input values, returning an output of t
only if the inputs match:

(Mi = OK)⇔ [(I1 = I2)⇔ (Oi)], i = p, s.

We can compute diagnoses for these observations,
which we list in Table 2. We denote the diagnoses for
model 1 using the pair (ω1

p, ω
1
s), which corresponds to

a diagnosis based on the primary and secondary com-
parators. Similarly, the diagnoses for model 2 use the
pair (ω2

p, ω
2
s). In each case, we denote the presence of

a diagnosis using a check-mark, X. In all cases, the
diagnosis indicates an ambiguity group involving the
relevant processors and voter. Hence, for model 1, the
primary comparator diagnosis isB1p∨B2p∨Vp, using
the component notation from Figure 1. Table 2 shows
that Ψ1 declares diagnoses for inputs corresponding to
all states except σ4; of these, the diagnoses for σ1, σ2
and σ3 are not really due to component failures in this
module, but rather due to the model identifying diag-
noses given abnormal inputs. This corresponds to an
example of the “cascaded faults” issue discussed ear-
lier.

Assume/Guarantee Model
The A/G model needs to define the assumed and guar-
anteed behaviors in terms of observations. This model

4

21st International Workshop on Principles of Diagnosis

(I1, I2) µ Op Os (ω1
p, ω

1
s) (ω2

p, ω
2
s)

σ1 (t,f) f f f (X,X) (-,-)
σ2 (f,t) f f f (X,X) (-,-)
σ3 (t,t) f f f (X,X) (X,X)
σ4 (t,t) t t t (-,-) (-,-)
σ5 (t,t) t f t (X,−) (X,-)
σ6 (t,t) t f f (X,X) (X,X)
σ7 (f,f) t t t (X,X) (-,-)

Table 2: Set of states for TO/GA system, with corre-
sponding diagnoses ω1 and ω2 for primary and sec-
ondary AFDCs, using MBD approach.

can specify a wide range of temporal modelling frame-
works, but our example only entails time-tag compar-
ison: the assumed behavior requires that the time-tag
requirements µ∧ I hold; if not then the assumption re-
quirements fail and no guarantees can be ensured. In
this case the inference process is referred to upstream
components, to identify the reasons for the time-tag
comparison failing.

We need to define the implementation M, the as-
sumption A, and the guarantee G, all of which need
to be specified as temporal observations. We record
each observed variable as a (value,time) pair, but for
simplicity here we represent only the value. The set of
observed variables is {I1, I2, µ,Op, Os}.

If the assumption A holds, then the guarantee is that
both Op, Os are t (in our first model Φ1), or have
the same value (in our second model Φ1). Table 3
shows the A and G values for both models. Consider

A G

Φ1 {σ4, σ5, σ6} {σ4}
Φ2 {σ4, σ5, σ6, σ7} {σ4, σ7}

Table 3: Assumptions and guarantees for dual-
comparator example

three examples of state-sequences: Γ1 = {σ0, σ1};
Γ2 = {σ0, σ4}; Γ3 = {σ0, σ5}; Γ4 = {σ0, σ7}. In
the contract-based framework, the assumption is sat-
isfied if M ∩ A 6= ∅, and the contract is satisfied if
M∩A ⊆ G.

Table 4 shows the outcomes of examining the four
state sequences within the A/G framework for both
models. We see that:

Γi Γi ∩ λ1 Φ1-out Γi ∩ λ2 Φ2-out
{σ0, σ1} ∅ λ1 ∅ λ2

{σ0, σ4} σ4 - σ4 -
{σ0, σ5} σ5 × σ5 ×
{σ0, σ7} ∅ λ1 σ7 -

Table 4: Outcomes of four state sequences within the
A/G framework for two models, Φ1 and Φ2. Φi-out
denotes the outcome: λi means that assumption i is
violated, - denotes contract satisfied, × denotes con-
tract is not satisfied (a fault occurred).

• Γ1 violates the assumption for both models;

• Γ2 satisfies the assumption and contract for both
models;
• Γ3 satisfies the assumption and violates the con-

tract G for both models;
• Γ4 violates the assumption for Φ1, but satisfies

the assumption and contract for Φ2.

Differences Between Approaches
In contrast to the A/G approach, which requires ob-
servations for the implementationM, the assumption
A, and the guarantee G, MBD uses a single observa-
tion O that instantiates the observable variables in the
model. This model is focused on isolating faults given
O. Typical MBD models are indifferent to notions of
required inputs or outputs but specify the outputs gen-
erated by the inputs; for this model there is a require-
ment on both the inputs and the outputs, but the model
will just compute the consistency of the outputs given
the inputs.

The A/G approach requires additional inputs, but it
can also identify more information than can the MBD
model. This extra information includes:
• satisfaction of requirements on the module, such

as input and output requirements,
• analysis of temporal interactions, and
• verification of model properties, such as forbid-

den states, etc.

4 ASSUME-GUARANTEE DIAGNOSTICS
FRAMEWORK

This section extends the consistency-based diagnosis
framework to incorporate Assume-Guarantee notions.
We show that we can specify requirementsR such that
they can be used to strengthen a diagnosis model ΨD,
i.e., to create ΨAG = R∪ΨD.

Many MBD models implicitly model the influence
of the environment (inputs) on a component; here,
we explicitly distinguish exogenous influences from
component-specific behaviors, defining Ψ conditional
on “correct” environmental conditions. The extension
covers specifications for nominal operating-condition
specifications (the assumption A), and component-
function given A (the guarantee G). For A, we could
define a set of constraints, or as a simpler abstraction,
we could specify a set of variables (predicates) denot-
ing the satisfaction of those constraints. In this article
we choose the latter approach.‘

We can use multiple approaches to integrate the A/G
approach into an MBD model, of which we describe
two approaches below. The first approach, which
we call an Extended-Behaviour approach, defines a
strong-fault diagnostic model that adds an assumption
value representing violated input-assumption require-
ments, together with appropriate behaviours for such
violations. The second approach appends each compo-
nent behaviour specification, Ψφ with a constraint set
Rφ specifying valid inputs and assumption-violation
mode-variables, i.e., we obtain ΨAG = Ψφ ∪Rφ.

4.1 Extended-Behaviour Approach
We assume that we start either with a Weak-Fault
Model or a Strong-Fault Model. In either case, we de-
fine a violation of an input-assumption to be a failure-

5

21st International Workshop on Principles of Diagnosis

mode variable with the value A. and obtain a Strong-
Fault Model in which failure-mode variables include
the value λ.

We use the strong fault model created by introduc-
ing A/G behavior equations to classify two fault types:
(a) soft faults, which correspond to violations of input
assumptions and occur when a health assignment takes
on an λ-value, and (b) hard, or local component faults,
which correspond to faults explaining anomalous out-
puts in terms of faults in local components, as opposed
to anomalous outputs caused by anomalous input val-
ues. Clearly, we want to be able to distinguish these
two fault types, and effectively exclude the soft faults,
which do not correspond to true faults in the local com-
ponent.

For example, in the first model, Ψ1, each compara-
tor assumes that the presence of input data entails t as
the output. Using this approach, we will now intro-
duce violations of input assumptions to this model, for
comparators labeled i = 1, 2.

(Mi = λi) ⇔ [(I1 6= I2)⇒ (Oi = f)]
(Mi = λi) ⇔ [(I1 = f) ∧ (I2 = f)⇒ (Oi = t)]

Table 5 shows the A/G diagnoses for the comparator
system for model Ψ1. The table shows that the obser-

TO/GA output µ Op Os ωAG
σ0 (t,-) - - - (−,−)
σ1 (t,f) f f f (λp, λs)
σ2 (f,t) f f f (λp, λs)
σ3 (t,t) f f f (λp, λs)
σ4 (t,t) t t t (−,−)
σ5 (t,t) t f t (X,−)
σ6 (t,t) t f f (X,X)
σ7 (f,f) f t t (λp, λs)

Table 5: Faults computed for TO/GA system

vations corresponding to σ0, σ1, σ2, σ3, and σ7 denote
violations of the assumed input conditions, and hence
only soft faults ((λp, λs)) are generated, corresponding
to primary and secondary outputs. σ1 violates the in-
put timing condition, and σ2 and σ3 violate the inputs
having the same value. Notice that for these observa-
tions we do not generate local component faults, as in
the standard models 1 and 2. Failure to receive {t, t} or
{f, f} is due to upstream “problems”. When dealing
with larger models this approach enables us to prune
the fault space and eliminate cascaded faults. Obser-
vations σ4 through σ6 satisfy the assumed input con-
ditions, and hence we compute local component faults
for the two cases where hard faults are actually indi-
cated, i.e., σ5 and σ6.

4.2 Extended-Constraint Approach
In this approach, we define the guarantee to be the
traditional system description: G ≡ [H ⇔ ξi]. We
then introduce a set of assumption-violation mode-
variables, λi: if the assumed operation conditions
for component i are satisfied, then λi = t, and
λii = f otherwise. Given this set of variables, we

can now have a component operation-condition as-
signment, which is analogous to a health assignment:
Λ = {λ1, , λm}.

An Assume-Guarantee Diagnostics Model extends
the traditional diagnosis model ΨD with equations of
the form λi ⇔ Ri for each component i in the model.
We now can define hard and soft faults for component
i:
Definition 10 (Hard Fault) ωi is a hard fault for
component i given observation α if Ψ∪α∪λ∪ω 6|= ⊥,
and if ω is a health assignment with at least one neg-
ative literal, such that for every negative assignment
ωi ∈ ω the corresponding operation-condition assign-
ment λii ∈ λ is negative.
A hard fault indicates an isolated fault when the system
is operating within assumed (designed) conditions.
Definition 11 (Soft Fault) ωi is a soft fault for com-
ponent i given observation α if Ψ ∪ α ∪ λ ∪ ω 6|= ⊥,
and both ωi and λii are negative.
A soft fault indicates an isolated “fault” in component i
when the system is operating with assumed (designed)
conditions violated in that component.

We can identify the A/G diagnoses for the compara-
tor system, which we list in Table 5, in the case of
hard and soft faults. Note that these faults are identi-
cal to those of the extended-behaviour approach. The
table shows that the observations corresponding to σ0
through σ3 denote violations of the assumed input con-
ditions, and hence only soft faults ((λp, λs)) are gen-
erated. σ1 violates the input timing condition, and σ2
and σ3 violate the inputs having the same value. No-
tice that for these observations we do not generate hard
faults, as in the standard models 1 and 2. Observations
σ4 through σ6 satisfy the assumed input conditions,
and hence we compute hard faults for the two cases
where hard faults are actually indicated, i.e., σ5 and
σ6.

5 PROPERTIES OF EXTENDED MODEL
5.1 Diagnostic Soundness/Completeness
We can show that this strong fault model ΨAG can pre-
serve all local component faults while excluding faults
that the weak fault model ΨM identifies.
Theorem 1 Given a weak fault model ΨM , a cor-
responding A/G model ΨAG, and an observation α,
ΨAG is sound and complete with respect to the local
component faults of ΨM .

Proof:
Sound: Since we are using a monotonic proposi-

tional logic, adding extra clauses to any formula F will
reduce the number of logical models (diagnoses) of F .
If Ω(ΨM , α) and Ω(ΨAG, α) denote the set of diag-
noses given the weak-fault and strong-fault models,
respectively, then Ω(ΨM , α) ⊇ Ω(ΨAG, α). Hence
for a local component diagnosis ω, there is no ω ∈
Ω(ΨAG, α) such that ω 6∈ Ω(ΨM , α).

Complete: Let Ω̃(ΨAG, α) as the local component
diagnoses, i.e., diagnoses with value bad. If ∃ω ∈
Ω̃(ΨAG, α) such that ω 6∈ Ω̃(ΨM , α), then we must
have Ω(ΨM , α) 6⊇ Ω(ΨAG, α), which is a contradic-
tion. Hence we must have completeness of the local
component faults of ΨAG with respect to ΨM . �

6

21st International Workshop on Principles of Diagnosis

We can prove an analogous theorem for our second
modeling approach:
Theorem 2 Given a diagnosis model ΨM , a corre-
sponding A/G model ΨAG, and an observation α,
ΨAG is sound and complete with respect to the hard
faults of ΨM .

5.2 Ambiguity Reduction
We now show that, by using ΨAG, we can reduce the
number of ambiguous faults that arise during the fault
isolation process without losing any true faults.

A complete test vector ~α = {α1, · · ·αm} for a fault
ω and model ΨD is a sequence of observations such
that ΨD∪~α∪ω 6|=⊥ and there is no other fault ω′ 6= ω
such that ΨD ∪ ~α ∪ ω′ 6|=⊥.

We now define the notion of fault ambiguity. Given
a complete test ~α = {α1, · · ·αm}, a “true” fault ω∗ is
such that ΨD ∪ ~α ∪ ω∗ 6|=⊥. An ambiguous fault is
some ω 6= ω∗ such that ω is entailed by some observa-
tion α ∈ ~α, i.e., ΨD∪α∪ω 6|=⊥, but not for a superset
test of α, i.e., ∃~α′ ⊃ α such that ΨD ∪ ~α′ ∪ ω |=⊥.

Given these definitions, we now prove that the
strengthened model does not exclude any true faults.
Lemma 1 Given an MBD model ΨD and any obser-
vation vector ~α, 6 ∃ωR such that (R∪ΨD)∪~α∪ωR 6|=⊥
unless ΨD ∪ ~α ∪ ωR 6|=⊥.

Proof: We perform a proof by contradiction. As-
sume that there exists some ωR such that (R∪ΨD) ∪
~α∪ωR |=⊥ and ΨD∪~α∪ωR 6|=⊥. In this case it must
be that R |=⊥, i.e., the requirements are inconsistent,
which is a contradiction.�

5.3 System Composition
Given a set of components (Vi, Pi,Ψi), for
i = 1, ...,m, the composite system is given by
(
⋃
i Vi,

⋃
i Pi,

⋂
i Ψi).

The key issue is what happens to the system-level
diagnosis given a sequence of observations α =
{α1, α2, ..., αl}: the resulting diagnosis is ωl(Ψ, α) =⋂
i ω(Ψ, αi).
Since we are dealing with atemporal diagnosis mod-

els, this principle of composition works when we have
MBD models extended with A/G constructs, and cor-
responds to the notion of contract conjunction (Ben-
veniste et al., 2008). However, for temporal models,
this approach will not work, and we will need to adopt
parallel composition techniques for system composi-
tion (Benveniste et al., 2008). In this case, it must fol-
low the definition below:
Definition 12 Let Ci = (Vi, λi, Gi) with i = 1, 2 be
two contracts. We define the parallel composition be-
tween C1 and C2, denoted C1 ‖ C2, to be the contract
(V1 ∪ V2, A1 ∩A2 ∪ ¬(G1 ∩G2), G1 ∩G2).

6 RELATED WORK
Assume/guarantee (or contract-based) analysis has
been formalised for a long time in computer science,
e.g., see (Hoare, 1969; Martin and Lamport, 1993;
Abadi and Lamport, 1989). Contract-based model-
ing has been applied to many domains, most notably
object-oriented software engineering, but also to hard-
ware design (Sun et al., 2009), component-based de-
sign (Bozzano et al., 2009) and hybrid systems (Giese

et al., 2010). As an example of its use in object-
oriented programming, contract-based modeling en-
ables the analysis of the services provided by a class
as a contract between the class and its caller. A con-
tract is specified using two aspects: requirements made
by the class upon its caller, and promises made by the
class to its caller.

The area of contract-based modeling closest to this
work is its use in software debugging and in safety
analysis. While most work on contracts in software has
focused on the verification of properties, some work
on diagnosing run-time faults has been published, e.g.,
(Zulkernine and Seviora, 2005). A second applica-
tion of contract-based modeling in software analy-
sis is runtime verification, (Leucker and Schallhart,
2009), a software verification technique that can be
viewed as a lightweight version of verification tech-
niques such as model checking and testing. Runtime
verification deals only with observed executions gen-
erated by the real system, and uses a black box (model-
free) approach, as opposed to a system model. In con-
trast, MBD uses a full system model, and corresponds
to a “heavy” verification approach like model check-
ing. Runtime verification has examined notions of
“environmental” versus “internal” properties (Schae-
fer and Poetzsch-Heffter, 2009), in a manner similar
to that proposed here, but focusing on precise defini-
tions of environments in which code executes using
lightweight monitors.

Several model-based approaches have been pro-
posed for safety analysis. We can classify these ap-
proaches into two main frameworks: (a) adaptations of
formal methods and verification techniques for support
safety analysis (Bozzano et al., 2009; Joshi and Heim-
dahl, 2007; Grunske et al., 2007); and (b) semi-formal
(or ad hoc compositional safety analysis techniques
(Joshi and Heimdahl, 2007; Zulkernine and Seviora,
2005). In contrast to the verification methods, MBD
has a long history of developing diagnosis-specific al-
gorithms, whereas the verification approach just ap-
plies existing tools, the performance of which does not
scale well. In contrast to the semi-formal approaches,
our extended MBD model has a clear semantics and
formal basis.

On of the closest approaches, HiP-HOPS (Wolforth
et al., 2010), performs model-based synthesis and
analysis of fault trees and FMEA. It introduces a gen-
eralized failure logic (GFL) for specifying the failure
behavior of components using a mixture of Boolean
logic and references to component ports and failure
classes. Component behavior models consist of log-
ical expressions of the form: Output Deviation = Inter-
nal Failures AND/OR Input Deviations. This approach
lacks the theoretical underpinning of MBD, however.
(Schneider and Trapp, 2010) introduces a similar no-
tion of conditional safety certificates, where compo-
nent safety is specified in terms of the component’s en-
vironment, and the safety certificate is bound to these
preconditions.

7 SUMMARY AND CONCLUSIONS
We have proposed a technique for extending MBD
models with assume/guarantee contracts. This more
general framework enables requirements-based design

7

21st International Workshop on Principles of Diagnosis

properties to be integrated with an MBD model. The
notion of assumptions provides extra constraints on
an MBD model, thereby enabling us to distinguish
operating-condition violations from internal compo-
nent faults, and to rule out fault reports based on incor-
rect component inputs. Identified operating-condition
violations can then be used to provide feedback on the
system design.

In future work we plan to extend this framework fur-
ther, and also to show how assume/guarantee contracts
result in more precise diagnostics on real-world sys-
tems. In addition, we plan to use the extended MBD
models to provide design feedback. A diagnosability
analysis can identify assumption violations, which im-
ply that particular components are operating outside
of design conditions. In this case, one can then tar-
get the re-design process as indicated by the violated
assumptions. Unlike standard diagnosability, which
only reveals faults, this analysis reveals both faults and
operating-condition violations.

ACKNOWLEDGMENTS
This work was funded by SFI contract 06-SRC-I1091.

REFERENCES
(Abadi and Lamport, 1989) M. Abadi and L. Lam-

port. Composing specifications. In Stepwise Refine-
ment of Distributed Systems Models, Formalisms,
Correctness, pages 1–41. Springer, 1989.

(Benveniste et al., 2008) A. Benveniste, B. Caillaud,
A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis. Multiple viewpoint contract-based
specification and design. In Intl. Symp on Formal
Methods for Components and Objects, pages 200–
225, 2008.

(Bozzano et al., 2009) M. Bozzano, A. Cimatti,
M. Roveri, J.P. Katoen, V.Y. Nguyen, and T. Noll.
Codesign of dependable systems: a component-
based modeling language. In Proceedings of the
7th IEEE/ACM international conference on Formal
Methods and Models for Codesign, pages 121–130.
IEEE Press, 2009.

(de Kleer et al., 1992) Johan de Kleer, Alan Mack-
worth, and Raymond Reiter. Characterizing diag-
noses and systems. Artificial Intelligence, 56(2-
3):197–222, 1992.

(Giese et al., 2010) H. Giese, S. Henkler, and
M. Hirsch. A multi-paradigm approach supporting
the modular execution of reconfigurable hybrid sys-
tems. In Transactions of the Society for Modeling
and Simulation International, 2010.

(Grunske et al., 2007) L. Grunske, R. Colvin, and
K. Winter. Probabilistic model-checking support
for FMEA. In Quantitative Evaluation of Systems
(QEST 2007), pages 119–128, 2007.

(Hoare, 1969) CAR Hoare. An axiomatic basis for
computer programming. Communications of the
ACM, 12(10):576–580, 1969.

(Joshi and Heimdahl, 2007) A. Joshi and M.P.E.
Heimdahl. Behavioral fault modeling for model-
based safety analysis. In 10th IEEE High Assurance
Systems Engineering Symp.,, pages 199–208, 2007.

(Lee and Sangiovanni-Vincentelli, 1998) E.A. Lee
and A. Sangiovanni-Vincentelli. A framework for
comparing models of computation. IEEE Trans-
actions on computer-aided design of integrated
circuits and systems, 17(12):1217–1229, 1998.

(Leucker and Schallhart, 2009) M. Leucker and
C. Schallhart. A brief account of runtime verifica-
tion. Journal of Logic and Algebraic Programming,
78(5):293–303, 2009.

(Martin and Lamport, 1993) A. Martin and L. Lam-
port. Composing specifications. ACM Trans. Pro-
gram. Lang. Syst, 15:73–132, 1993.

(Meyer et al., 2009) B. Meyer, A. Fiva, I. Ciupa,
A. Leitner, Y. Wei, and E. Stapf. Programs that test
themselves. Computer, 42(9):46–55, 2009.

(Reiter, 1987) Raymond Reiter. A theory of diag-
nosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

(Schaefer and Poetzsch-Heffter, 2009) I. Schaefer
and A. Poetzsch-Heffter. Model-based Verification
of Adaptive Embedded Systems under Environ-
ment Constraints. In 2nd Workshop on Adaptive
and Reconfigurable Embedded Systems, 2009.

(Schneider and Trapp, 2010) D. Schneider and
M. Trapp. Conditional safety certificates in open
systems. In Proceedings of the 1st Workshop on
Critical Automotive applications: Robustness &
Safety, pages 57–60. ACM, 2010.

(Slâtten, 2010) V. Slâtten. Model-Driven Engineering
of Dependable Systems. In 2010 Third Interna-
tional Conference on Software Testing, Verification
and Validation, pages 359–362. IEEE, 2010.

(Struss and Dressler, 1989) Peter Struss and Oskar
Dressler. Physical negation: Integrating fault mod-
els into the general diagnosis engine. In Proc. IJ-
CAI’89, pages 1318–1323, 1989.

(Sun et al., 2009) X. Sun, P. Nuzzo, C.C. Wu,
and A. Sangiovanni-Vincentelli. Contract-based
system-level composition of analog circuits. In
Proceedings of the 46th Annual Design Automation
Conference, pages 605–610. ACM, 2009.

(Wolforth et al., 2010) I. Wolforth, M. Walker,
L. Grunske, and Y. Papadopoulos. Generalizable
safety annotations for specification of failure
patterns. Software: Practice and Experience, to
appear, 2010.

(Zulkernine and Seviora, 2005) Mohammad Zulker-
nine and Rudolph Seviora. Towards automatic mon-
itoring of component-based software systems. J.
Syst. Softw., 74(1):15–24, 2005.

8

