
MBD Techniques for Internet Delay Diagnosis

Roni Stern, Meir Kalech 1

1 Department of Information Systems Engineering,
Ben Gurion University, Beer-Sheva, Israel
roni.stern@gmail.com, kalech@bgu.ac.il

ABSTRACT

Internet service providers (ISP) and adminis-
trators of Local Area Networks (LAN) aim to
provide a certain level of service to end-users.
However, network elements such as routers and
switches may malfunction, resulting in abnormal
communication delays. When such delays are
observed, network administrators try to diagnose
which network elements cause the abnormal de-
lays. While most common techniques use ad-
ditional measurements to identify the faulty de-
vice, we propose a non-intrusive model-based ap-
proach. The first approach translates classical
MBD terms to this problem and shows a com-
plete and sound solution. The second approach
uses linear programming to produce a single min-
imum cardinality diagnosis in polynomial time.
Both approaches are analyzed and evaluated em-
pirically using the standard NS2 network simula-
tor, and are able to find diagnoses or the minimal
cardinality diagnosis in less than half a second for
network models with up to 1,000 nodes.

1 INTRODUCTION
With the rise of the Internet and Local Area Networks
(LAN), computer networks are growing in size and
complexity. As a result, much effort is exerted in
maintaining the quality of service provided by the net-
work. This is performed by Internet Service Providers
(ISP) in the Internet, and by network administrators in
LANs. As a result, much academic and commercial
work has been done on diagnosis of abnormal compo-
nents in computer networks (Kandula et al., 2009).

Network quality of service can be measured by
many attributes, such as bandwidth, latency and sta-
bility. One of the most important attributes is the de-
lay experienced by the network end-users. This is the
time required for data to pass from the source com-
puter to the destination computer. In modern computer
networks, data sent from a computer will usually pass
via a sequence of network components (e.g. routers)
until reaching the destination computer. The compo-
nents through which data is passed are called the route

of the data. The delay experience by end-users is af-
fected by several attributes of the components in the
route. One of these attributes is the bandwidth of the
routers on the route. For example, 200 bytes passing
through a router with a bandwidth of 106 bits per sec-
onds will be delayed for 200×8

106 =1.6 milliseconds.
There is much literature on how to infer a net-

work model from measurements (Spring et al., 2002;
Shavitt and Shir, 2005; Wei et al., 2003). The result
of this inference is a model of the network, including
nodes and edges as well as the delays incurred by each
edge and node. However, events may occur that dis-
rupt the inferred model, causing unexpected changes
in the network behavior. For example, a router may
become congested or slightly damaged, resulting in
increased delay in all network routes passing through
this router.

In this work, we discuss how to diagnose abnormal
delays experienced by several end-users. The goal is
to identify the set of network components that causes
the abnormal delays. Finding these nodes is important
to ISPs and LAN administrators, in order to maintain
the quality of service to the customers. In addition,
such abnormal delays may suggest man-in-the-middle
attacks, where the abnormal delay is caused by the pro-
cessing done by the man-in-the-middle.

The most common technique for detecting which
nodes have abnormal delays in a network is to actively
measure nodes on delayed routes (Spring et al., 2002;
Shavitt and Shir, 2005). Such measurements can be
done using network control protocols such as ICMP
(ping, traceroute). While this technique is very ef-
fective, it has two shortcomings. First, it requires ac-
tive measurements of the network nodes, adding to the
network load. Second, not all of the network compo-
nents respond to active measurement. For example, it
is known that some routers do not respond to ICMP
request and other control protocols. In addition, layer
2 network nodes (e.g. ATM switches) usually cannot
be measured directly by higher level protocols. Thus
in this paper we address the problem of diagnosing de-
lays without intrusive network measurements.

A model-based diagnosis system has been previ-
ously proposed for discovering network faults (San-

1

21st International Workshop on Principles of Diagnosis

dro T. Fontanini and Maragon, 2002). The diagnosis
engine that was proposed queries the network nodes
along the path to a network node that returned abnor-
mal behavior, and assumes that there is only a sin-
gle faulty node in the system. We propose a non-
intrusive approach which discovers the diagnosis with-
out actively querying the network nodes. Our approach
is orthogonal to active measurement algorithms, and
thus could be viewed as a complementing approach.
Other work related to model-based diagnosis in net-
works (Bahl et al., 2007; Kandula et al., 2009) assume
knowledge of the network components and try to learn
the relationship between them (i.e. which components
are affected by every component). In this paper we
assume that a model of the network and the connec-
tions between its components is given (possibly by a
network discovery system), and research how to di-
agnose network behavior that is inconsistent with this
model. In this paper we propose a linear programming
based approach to MBD. This is similar to previous
work that formulated and MBD problem as an inte-
ger programming problem (Fijany and Vatan, 2005).
A linear program was even used to bound the search
for the solution of the integer programming problem.
For the problem described in this paper, we show that
a linear programming approach can be used. This is
significant as the complexity of solving a linear pro-
gram is polynomial, while solving an integer program
has an exponential complexity.

The contribution of this paper is as follows. First,
we show how this problem can be solved by adjusting
classical MBD terms and using a corresponding diag-
nosis engine. Second, we propose a diagnosis algo-
rithm that uses the normal observation to prune candi-
date network nodes, resulting in substantial speedup in
runtime. Then we propose a second solution that uses
a linear programming solver to produce the minimal
cardinality diagnosis. Finally, we analyze these solu-
tions theoretically and empirically, suggesting that the
presented approaches are applicable. Empirical eval-
uations were run using a standard network simulator
NS2 (McCanne et al., 2001) on networks with up to
1,000 nodes. Results show that using our algorithms a
diagnosis can be found in less than a second.

2 PROBLEM DESCRIPTION
We consider a high-level model of a packet-switching
computer network, consisting of computers that are
connected via a graph of switching components (e.g.
routers, switches). We use the term computers to de-
note the start and end points of the data transfer in the
network. This includes end-user computers as well as
application and web servers. Computers and switch-
ing devices are connected by links, which correspond
to communication channels such as fiber optic wires or
satellite channels.

A natural way to describe this model is by a graph
G = (V,E). The computers and switching compo-
nents are the nodes of the graph, and the links are the
edges. The nodes of the graph are divided into three
sets: Vs, Vi and Vr. Vs are the nodes that send informa-
tion and Vr are the nodes that receive the information
(these two sets of nodes correspond to the computers
in the network). Vi is the set of intermediate nodes

R1

A1

A4

A3

A5
R4

R2

R3

R5

A2

R6

R7

Figure 1: An example of a model of a simple network

through which the information passes (corresponding
to the switching devices). We call the transfer of data
from a node in Vs to a node in Vr a flow.

Definition 1 [Flow and route] A flow F is described
by the tuple F = 〈s, r, R, b〉 where s ∈ Vs, r ∈ Vr,
R = (v1, ..vk) ∈ V ki is a vector of switching devices
connecting s to r, and b ∈ R is the number of bytes
that are transfered. R is denoted as the route of F .

Figure 1 displays a simple network for example. The
circles are the switching devices and the lines are
the links. The dashed line represents a possible flow
from node A1 ∈ Vs to A5 ∈ Vr via route R =

{R1, R2, R3, R4} ∈ V |R|i .
Every link in E has various attributes that affect the

expected time required to pass b bytes through it. This
expected time is called the delay of the link. For ex-
ample, the delay of a link is affected by the physical
length of a communication channel, due to the time re-
quired to propagate the data through it. Similarly, ev-
ery switching device has an expected delay of passing
b bytes through it. This delay corresponds to the time
required to process the data and transfer it to the next
link in the route. For example, switching devices have
bandwidth, i.e. the number of bytes it can process in
a time unit (usually a second). The delay of passing b
bytes via a device with bandwidth w will incur a delay
of w × b.1

Definition 2 [Expected delay] The expected delay of a
node is a function δ(v, b)→ R that corresponds to the
expected time in seconds that is required for passing b
bytes via node v.

In this paper, we focus on the delays caused by the
nodes and not by the links, as they are more probable
to be abnormal.2 Therefore we will omit the delays
caused by the links from all the following definitions
and calculations, although it should be added as a con-
stant delay for every link in practice. Consequently,
we define the expected delay of flow F = 〈s, r, R, b〉

1The delay may even be larger than w × b due to queues
that may form in a switching device.

2Link delays are mostly caused by the physical propa-
gation of data in the channel. Thus changes in delay may
be caused by changes in the physical infrastructure or strong
electromagnetic influence, both of which are seldom.

2

21st International Workshop on Principles of Diagnosis

as the sum of the expected delays of the components
in its route: δ(F) =

∑
v∈R δ(vi, b). Notice that the

expected delay of a node is function of its bandwidth
as well as the expected traffic load on that node. As
a result, a node may abnormal if its bandwidth has re-
duced due to some malfunction or if it is experiencing
an unexpected increased traffic load.
Definition 3 [Network model] The network model
M = (G, δ) is composed of the network graph G and
an expected delay function δ, enabling the calculation
of expected delay for all the possible flows over G.

During the runtime of the network we are able to ob-
serve and measure the actual time it takes data to pass
through a flow.
Definition 4 [Observation] An observation is a pair
〈F, obs〉, corresponding to an observed flow F and its
observed delay obs ∈ R. This is the actual time in
seconds it took b bytes to path through R.
Each observed delay is the average delay measured
over several flows between the same pair of comput-
ers passing the same amount of bytes. We define the
difference between an observed delay and an expected
delay as the abnormal delay of a flow:
Definition 5 [Abnormal delay] The abnormal delay
of an observation 〈F, obs〉, is a function γ(〈F, obs〉) =
obs− δ(F).
For brevity, we use γ(o) to denote the abnormal delay
in observation o and R(o) to denote the route of the
observed flow. Given a network model M = (G, δ)
and a set of observations OBS, a diagnosis problem
arises when the observed delays are not equal to the
expected delays. This means that there exists at least
a single observation o ∈ OBS such that γ(o) > 0.
Since the delay of a flow is the sum of the delays of
the nodes on its route, then γ(o) > 0 implies that there
is at least a single node in the route that added more
than its expected delay (as calculated by δ).
Definition 6 [Abnormal node] A node v is called ab-
normal if there exists a flow of b bytes such that the
actual delay added by v to this flow is greater than the
expected delay δ(v, b). The difference between the ex-
pected delay the actual delay added by v, is called the
abnormal delay of v, denoted by γ(v).

It is clear that for any observation o, γ(o) =∑
v∈R(o) γ(v). We call the problem of finding the

set of abnormal nodes, the Network Delay Diagnosis
Problem (NDDP). A valid diagnosis is a set of abnor-
mal nodes that will explain the observed delays.

In this paper we add several assumptions. First, we
assume that the abnormal delay is non-negative, i.e.
∀v γ(v) ≥ 0, in order to focus on the case where
the end-users are experiencing degraded performance.
Second, in order to simplify the problem we assume
that every abnormal node adds the same delay. In other
words, we limit the abnormal delay function γ to be
γ : Vi → {0, C} for some constant C. Later we show
how this assumption can be relaxed, producing diag-
noses for scenarios where γ : Vi → R. Without loss of
generality we will assume C = 1 hereinafter. We also
assume a static world, i.e. observing identical flows
(same source, destination and number of bytes) will

R1

A1

A5

A3

R8

R2 R3

R4
A2

R7

R6

A4

A7

A8

R5

γ(F5,8)=1

γ(F1,6)=2

γ(F2,7)=2

γ(F2,4)=0
γ(F3,6)=1

γ(F2,8)=1

R9
A6



Figure 2: Example of MBD-based network diagnosis

Flow Route γ(Fi,j)
F1,6 R1, R2, R5, R8, R9 2
F2,8 R4, R5, R2, R3 1
F2,7 R4, R5, R6 0
F2,4 R4, R7 0
F3,6 R7, R8, R9 1
F5,8 R9, R6, R3 1

Table 1: Routes of observed flows in Figure 2

yield the same observed delay, and will pass through
the same route. Thus we assume that there will not be
more than a single observation per any pair of com-
puters.3 We leave dynamic routing (e.g. due to load
balancing) to future work.

3 MBD APPROACH
Using a classical model-based diagnosis ap-
proach, NDDP can be described by the tuple
〈SD,COMP,OBS〉. The system description SD is
the network model, i.e. M = (G, δ) (Definition 3).
The components COMP are the switching devices
Vi. The observations OBS are the set of observed
flows as defined above (Definition 4). A conflict
is a set of nodes S ⊆ Vi such that there exists an
observation o ∈ OBS that has an observed delay
that cannot be explained if all the nodes in S are not
abnormal. For every observation o with γ(o) > 0,
every subset of R(o) of size |R(o)| − γ(o) + 1 is a
minimal conflict.

For example consider the graph displayed in Fig-
ure 2. A1, .., A8 are the computers, R1, ..R9 are the
switching devices and Fi,j is the flow from computer
Ai to computer Aj . The route of each flow is marked
by gray arrows, ending with the abnormal delay of the
flow (γ). Table 1 lists the six observations displayed in
Figure 2, and Table 2 lists the minimal conflicts for ev-
ery observed flow. For example, the minimal conflicts

3As explained above, the observations will be the average
delay over several delay measurements.

3

21st International Workshop on Principles of Diagnosis

Flow Minimal conflicts γ(Fi,j)
F1,6 (R1, R2, R5, R8), 2

(R1, R2, R5, R9),
(R1, R2, R8, R9),
(R1, R5, R8, R9),
(R2, R5, R8, R9)

F2,8 (R4, R5, R2, R3) 1
F2,7 ∅ 0
F2,4 ∅ 0
F3,6 (R7, R8, R9) 1
F5,8 (R9, R6, R3) 1

Table 2: Minimal conflict set in Figure 2

of flow F1,6 is all
(
5
4

)
possibilities to choose 4 nodes

out of the 5 nodes in the route {R1, R2, R5, R8, R9}.
Notice that generating minimal conflicts in NDDP

is very straightforward, and does not require any com-
plex diagnosis engine. Next we present an algorithm
for NDDP that exploits this and finds all valid diag-
noses.

3.1 NDDE
Under the assumption that γ(v) = {0, 1}, it is easy
to see that any observation o has exactly γ(o) abnor-
mal nodes in R(o). Thus a diagnosis is consistent with
the observations if and only if for every observation o
it selects from R(o) exactly γ(o) nodes as abnormal.
We refer to this selection of γ(o) nodes from R(o) as
satisfying the observation. Therefore, a set of nodes is
a diagnosis if the assumption that they are abnormal
satisfies all the observations. This leads to the follow-
ing greedy algorithm for finding all the diagnoses, that
we call NDDE (Network Delay Diagnosis Engine).

The complete pseudo code of NDDE is presented
in Algorithm 1. CND is the set of candidate nodes
which may be abnormal. ABS is the set of nodes
that are assumed to be abnormal. In the first itera-
tion, CND is initialized with all the nodes in COMP
while ABS is an empty set. In every iteration, an ob-
servation o is selected and removed from OBS (line
1). Then the procedure FIND ABS returns all the
possible subsets of R(o) that satisfies o (line 2). If all
observations has been satisfied thenABS is a valid di-
agnosis (lines 6-7). Otherwise try to satisfy the next
observation, updating CND′ and ABS′ as necessary
(lines 4-5 and 9).

Note that the procedure FIND ABS receives as
input ABS, CND and o. This is because the sat-
isfying sets of nodes returned by FIND ABS must
also be consistent with the observations that have been
previously satisfied. This means that nodes in ABS
that are also in R(o) are assumed to be abnormal.
In addition, only nodes from CND can be selected
to satisfy o. This verifies that observations that have
been previously satisfied (by assuming that the nodes
in ABS are abnormal) remain satisfied. For example,
if |ABS ∩ R(o)| is already larger than γ(o) then with
the current choice of abnormal ABS it is not possible
to be consistent with the observed delay of o. In such
a case FIND ABS will return an empty set.

As an example, consider the model displayed in Fig-

Algorithm 1: NDDE algorithm
Input: SD, the network model
Input: CND, the nodes in the network
Input: OBS, the set of observations
Input: ABS, The set of abnormal nodes
Output: Ω the set of diagnoses

1 Remove observation o from OBS
2 NewAbs← FIND ABS(CND,ABS,o)
3 for abs ∈ NewAbs do
4 ABS′ ← ABS ∪ abs
5 CND′ ← CND \R(o)
6 if OBS is empty then
7 Add ABS′ to Ω
8 else
9 NDDE(SD,CND′,OBS,ABS′,Ω)

10 end
11 end
12 return Ω

ure 2. Initially CND = {R1, .., R9} and ABS = {}.
Let the observation for flow F2,8 be the first observa-
tion chosen (γ(F2,8)=1). The set of satisfying sets for
this observation will be {{R4}, {R5}, {R2}, {R3}}.
Assume that R4 is chosen first as a satisfying set for
this observation (F2,8). Then ABS′ = {R4} and
CND′ = CND \ {R5, R2, R3}. CND’ is updated
because γ(F2,8) = 1, and thus if R4 is abnormal,
then all other nodes in the same route (R5, R2, R3)
must not be abnormal. If the next observation cho-
sen to satisfy is F1,6 (γ(F1,6 = 2)), then the set
of satisfying sets generated for this observation is
only {{R1, R8}, {R1, R9}, {R8, R9}}. Assume that
(R1, R8) was chosen, the ABS′ = {R4, R1, R8} and
CND′ is updated with R9. The process continues
until all consistent diagnoses are found. It is easy to
see that NDDE is sound and complete, i.e. all diag-
noses are consistent with the model (this is how they
are built), and all consistent diagnoses will be returned.

It is clear that the runtime of NDDE is dominated
by the runtime required to generate all the possible
combinations of satisfying sets for all the observations.
Calculating all the satisfying sets of an observation o
requires O(

(|R(o)|
γ(o)

)
) ≈ O(|R(o)|γ(o)). If m is the

longest route in OBS, and k is the largest abnormal
delay measured in an observation, then the total run-
time of generating all the satisfying sets combinations
for all the observations is:∏

o∈OBS
|R(o)|γ(o) = (mk)|OBS| = mk·|OBS|

Since we assume that the abnormal delay of a node
is either one or zero, k corresponds to the number of
abnormal nodes in a route. In non-crisis scenario, the
number of faulty switching devices in a route will be
very low. Additionally, due to the ”‘small world”’ ef-
fect observed in Internet routing topologies (Barabasi
and Albert, 1999), the length of most Internet routes is
very small. Routes with more than 20 nodes are rel-
atively rare. In addition, since most of the networks
nowadays are relatively stable the number of abnor-
mal delays on a single path will usually be very small.

4

21st International Workshop on Principles of Diagnosis

Thus is is expected that even in large network models,
both m and k will remain relatively small, resulting in
the feasibility of this approach for a small number of
observations. The experimental results presented fur-
ther on in this paper support this claim.

3.2 Exploiting normal observations
In the algorithm described above, there is no dif-
ferentiation between normal and abnormal observa-
tions. Each such observation will generate a satisfy-
ing set and update CND and ABS. While this re-
sult is sound and complete, there is a more effective
way to exploit normal observations, as follows. Let
OBSn be the set of all the normal observations, i.e.
∀o ∈ OBSn γ(o) = 0, and OBSa be the set of
abnormal observations. Let Vn be the set of all the
nodes that are on routes of observed normal flows, i.e.
Vn = ∪o∈OBSn

R(o), and let Va be the set of remain-
ing nodes (Va = COMP \ Vn). Since we assume that
there is no negative abnormal delays, we can safely
infer that all the nodes inRn do not have abnormal de-
lays. Therefore, nodes from Vn should never be used
as part of a satisfying set. Thus we propose the follow-
ing preprocessing step to NDDE: Remove from CND
all the nodes in Vn, and remove fromOBS all the nor-
mal observations OBSn. This reduces the size of the
candidate list, resulting in reduction in runtime. We
call this variant of the NDDE algorithm NDDE+.

For example, consider again the model and obser-
vations displayed in Figure 2. The observations of
flows F2,7 and F2,4 are normal. Consequently, Vn =
{R4, R5, R6, R7} should not be in any satisfying set.
As a result, the number of satisfying sets generated for
F1,6 is reduced from

(
5
2

)
to
(
4
2

)
.

For observation o ∈ OBSa, let Ra(o) be the set of
nodes in R(o) that are in Va, i.e. Ra(o)=R(o) ∩ Va.
Clearly |R(o)|≥|Ra(o)|. Thus, in the worst case
there are no normal observations the computational
complexity of NDDE+ remains exactly the same as
that of NDDE. However if there are normal observa-
tions, the described above preprocessing has the fol-
lowing effects on the computational complexity of
NDDE+. First, there are less satisfying sets - instead
of
(|R(o)|
γ(o)

)
satisfying sets for every observation o, we

have
(|Ra(o)|
|γ(0)

)
. Second, there are less observations to

satisfy - instead of iterating over all the observations in
OBS, only the observations in OBSa are considered.
If ma be the longest observed route, ignoring nodes
from Vn, i.e. ma = maxo∈OBSa

Ra(o), then the total
runtime complexity after the preprocessing step is:∏
o∈OBSa

|Ra(o)|γ(o) = (mk
a)
|OBSa| = mk·|OBSa|

a

We therefore achieve a substantial reduction in run-
time in comparison to the analysis in Section 3.1, since
ma ≤ m and |OBSa| < |OBS|. The experimental re-
sults that we have performed (described in Section 5)
also show very large reduction in runtime.

4 LINEAR PROGRAMMING APPROACH
As discussed in the previous section, exploiting the
normal observations significantly reduces the diagno-
sis engine runtime. However, it is still exponential in

the number of components. When all possible diag-
noses cannot be returned, we would like to return the
most probable diagnoses. In the absence of probabilis-
tic knowledge, a common approach is to rank the di-
agnoses with their cardinality. A cardinality of a diag-
nosis is the number of (abnormal) component it con-
tains. Unfortunately, it has been proven that finding
the minimal cardinality diagnosis is NP-Hard (Garey
and Johnson, 1979).

In addition, the previous approach depends on the
assumption that the abnormal delays are binary, i.e. the
abnormal delay of a node is either zero or one (or some
constant C). This allowed relatively simple generation
of satisfying sets for every observation, because for ev-
ery observation o the number of abnormal nodes in the
path is exactly γ(o). However, in real-life this may not
be the case, since nodes can have abnormal delays of
various sizes. For example, the observed delay of flow
F1,6 in Figure 2 is two. This might be caused by two
abnormal nodes, e.g. γ(R1) = 1 and γ(R2) = 1, or a
single abnormal node with an abnormal delay of 2, e.g.
γ(R1) = 2. Furthermore, a network delay is measure
in time, and is therefore even not discrete. For exam-
ple, the observed delay of F1,6 can also be explained
by γ(R1) =

2
3 , γ(R2) =

2
3 , γ(R5) =

2
3 .

When all the abnormal delays are of the same size, a
diagnosis is simply the set of nodes with abnormal de-
lays. However, when various sizes of abnormal delays
are possible, it is also important to know the amount
of abnormal delay added to every abnormal node. For
example, the node with the highest abnormal delay
should probably be repaired or replaced first. There-
fore in such cases we extend a diagnosis in NDDP to
be a mapping of nodes to their abnormal delays.

Fortunately, it is possible to allow various sizes of
abnormal delays and find the minimal cardinality di-
agnosis by formulating this problem as a linear pro-
gram and applying a linear programming solver. We
associate a variable abv for every node v ∈ Va (every
node that may be abnormal). These variables repre-
sent a possible abnormal delay of the nodes in Va. A
constraint is added for every observation o ∈ OBSa
verifying that the observed abnormal delay is the sum
of the abnormal delays of the nodes in Ra(o). Addi-
tional constraints are added for every node v ∈ Ra
to verify that abnormal delays are only positive. The
target function is to minimize the sum of abnormal de-
lays. This results in the following linear program for
an NDDP instance with observation set OBS:

min
∑
v∈Va

abv (1)

subject to:

abv ≥ 0 :∀v ∈ Va∑
v∈Ra(o)

abv = γ(o) :∀o ∈ OBSa
As an example, consider yet again the model and

observations from Figure 2. Table 3 lists the equation
expressing every observation, where variable abi cor-
responds to node Ri. Minimizing the target function
ab1 + ab2 + ab3 + ab8 + ab9 results in the minimal
cardinality diagnosis ab9 = ab2 = 1. Next we prove
that this approach is sound:

5

21st International Workshop on Principles of Diagnosis

Flow Constraint
F1,6 ab1 + ab2 + ab8 + ab9 =2
F2,8 ab2 + ab3 =1
F3,6 ab8 + ab9 =1
F5,8 ab9 + ab3 =1

Table 3: LP constraints for observations in Figure 2

Theorem 1 [Linear programming soundness] A solu-
tion to the linear program is a sound diagnosis, i.e. for
every observation o ∈ OBS, γ(o) =

∑
v∈Ra(o)

abv .

Proof: By definition, all the nodes in Va are not in-
cluded in the route of any normal observation, and
Ra(o) ⊆ Va. Thus for every normal observation
o ∈ On we have

∑
v∈Ra(o)

abv = 0 = γ(o), as re-
quired. For every abnormal observation o ∈ Oa only
the nodes in Ra(o) ⊆ R(o) may cause the abnormal
delay and be consistent with the normal observations
(recall that we assume that there is no negative ab-
normal delay). Therefore satisfying the constraints in
Equation 1 are necessary and sufficient to explain all
the observations.�

Since abnormal nodes can have abnormal delays of
various sizes, we modify the concept of minimal cardi-
nality diagnosis to the diagnosis which minimizes the
sum of abnormal delays (over all abnormal nodes). For
example, if diagnosis A consists of a single node with
a delay of 100 while diagnosisB consists of two nodes
with a delay of 5, the linear program will prefer diag-
nosis B. We believe that this is reasonable when it
is possible to have various abnormal delays in every
node. Note that every diagnosis is a solution to the lin-
ear program. Since the linear program minimizes the
sum of the abnormal delays, the diagnosis produced
by the linear program is that which minimizes the sum
of the abnormal delays, corresponding to our modified
concept of ”‘minimal cardinality”’.4

Unfortunately a linear program returns only a single
diagnosis. Thus it is not complete. For example, while
ab9 = ab2 = 1 is a sound diagnosis for the problem
described in Figure 2, ab3 = ab1 = ab8 = 1 is also a
diagnosis. It is possible to extend the linear program-
ming approach to produce more diagnoses by adding a
custom constraint after every diagnosis, forbidding the
algorithm from returning the previous diagnosis. For
example, if the first diagnosis generated was abv = 1,
abw = 2, then in order to find more diagnoses we will
add the constraint |abv−1|+|abw−2| > 0. By adding
a new constraint that forbids returning to the same di-
agnosis twice, we can create a complete diagnosis al-
gorithm. The algorithm will continue to diagnose and
add constraints until there is no solution that satisfies
all the constraints. However, adding such a constraint
(|abv − 1| + |abw − 2| > 0) causes the program to
be not linear. This requires a more complex solver,
which may not run in polynomial time. In addition
the number of diagnoses itself can be exponential, in
which case the runtime of returning all the diagnoses

4It is possible to define a target function that tries to min-
imize the sum of abnormal delays and the number of abnor-
mal nodes, by penalizing diagnoses with large cardinality.

will also be exponential.

5 EXPERIMENTAL RESULTS
In order to evaluate the applicability of the proposed
approaches, we have run simulations on computer
network models using NS2 (McCanne et al., 2001),
which is a standard well-known network simulator.
Models were generated randomly using the Barabasi-
Albert (Barabasi and Albert, 1999) scale-free random
graph model. This model is often used as a model for
computer networks, Internet router topology and Inter-
net Autonomous Systems topology.

Table 4 presents the average runtime in milliseconds
of running the different diagnosis engines. NDDE+
denotes NDDE with the pruning of normal nodes and
observations that was described in Section 3.2. LP de-
notes the linear programming approach described in
Section 4. While NDDE and NDDE+ results show
the runtime of finding all diagnoses, LP results are for
finding the minimal diagnosis (as described in the pre-
vious section). This comparison is reasonable as we
have found that finding the minimal cardinality diag-
nosis with NDDE and NDDE+ required approximately
the same runtime as finding all the diagnoses.

The table columns represent the number of observa-
tions, and the table rows are the number of nodes in
the network model. Each table cell contains the av-
erage runtime in milliseconds over 25 instances. We
simulated faults in the network by adding a delay of
100ms to 5% of the nodes which were randomly se-
lected. Cells marked with an asteriks (*) denote values
of NDDE that were not significantly different than the
corresponding values with NDDE+ (using t-test with
α = 0.05).

As can clearly be seen, NDDE+ is much more effi-
cient than NDDE. This shows that the pruning of nodes
that are in normal paths is extremely effective in reduc-
ing the diagnosis runtime. For example, with a model
of 1000 nodes and 70 observations, NDDE+ is 200
times faster than NDDE. Surprisingly, NDDE+ is also
faster than LP. This is because running LP requires the
overhead of initializing LP solver and building all the
equations. Since NDDE+ finds all the diagnoses in less
than a second, the LP overhead is significant.

Next we consider the effect of the different problem
parameters. For all the algorithms, as the number of
nodes in the network models grows, the total runtime
increases. This is reasonable, since larger networks
can have longer routes. Longer routes enable more di-
agnoses, and each diagnosis may contain more nodes
(since there may be more abnormals in a single route).
Thus generating the diagnoses requires more time.

Increasing the number of observations has a simi-
lar effect for NDDE. More available observations en-
tail more observations that need to be satisfied. In ad-
dition, more observations increase the number of ob-
served abnormal nodes, resulting in larger diagnoses.
Thus the runtime of NDDE grows with the number
of observations (see Section 3.1 and the results in Ta-
ble 4). However, this is not the case for NDDE+, where
the runtime increases with the number of observations
up to a limit, after which the runtime decreases. For
example, consider the line in Table 4 for a network
with 700 nodes. The runtime increases up to 5.9 for

6

21st International Workshop on Principles of Diagnosis

NDDE NDDE+ LP
Nodes 5 15 50 70 5 15 50 70 5 15 50 70
100 0.2* 0.5 1.6 1.5 0.2 0.3 0.5 0.7 3.7 4.0 4.3 10.6
300 0.4* 3.2 5.8 25.9 0.4 1.6 1.0 1.3 14.5 16.1 16.5 16.9
500 0.8 1.6 40.0 176.9 0.7 0.7 2.0 2.0 75.1 78.1 79.9 80.2
700 0.5* 4.5 132.7 150.3 0.5 2.6 5.9 3.1 182.7 186.4 189.1 188.8
1000 0.4* 3.9 8517.5 2038.9 0.4 2.8 95.2 10.4 398.3 402.4 402.1 383.8

Table 4: Diagnosis engines runtime in milliseconds. 5% abnormal nodes

NDDE+ LP
Nodes 5 15 70 5 15 70
100 0 1 1 3 3 4
300 1 3 11 10 11 14
500 1 25 353 49 50 56
700 1 10 3656 123 124 130
1000 3 142 21203 270 271 281

Table 5: NDDE+ and LP with 20% abnormal nodes

5,15 and 50 observations, after which it decreases to
3.1 for 70 observations. This is because more obser-
vations increase the number of normal observations.
Normal observations increase the pruning of normal
nodes, resulting in a reduction in runtime. Note that
the runtime of LP remains almost unaffected by the
number of observations, since the runtime mostly de-
pends on the number of equations. This number is
mainly affected by the size of the network, as in our
experiments the size of network was much larger than
the number of observations.

Interestingly, the probability that a node will be ab-
normal have a crucial effect on the runtime of the dif-
ferent algorithms. Table 5 presents the effect of in-
creasing the abnormal probability to 20%. Results for
NDDE are omitted as they were much worse than both
NDDE+ and LP. Unlike the results in Table 4 (with 5%
abnormals), here LP is superior to NDDE+ when there
are 70 observations. For example, for a network with
1000 nodes and 70 observations, LP is approximately
75 times faster. Figure 3 emphasizes the runtime dif-
ference of LP and NDDE+ for network models with
20% abnormal probability. Each data point is the aver-
age runtime of 25 instances running on network mod-
els with 1000, 700 and 500 nodes. The y-axis repre-
sents the algorithm runtime. Figure 3(a) and (b) show
the results for 70 and 5 observations respectively. As
can be seen, when there are 20% abnormal nodes, LP
is superior to NDDE+ with many observations, while
NDDE+ is still better when a small number of obser-
vations are given.

The impact of adding abnormal nodes can be ex-
plained as follows. Adding abnormal nodes reduces
the number of normal observation. Since NDDE+ uti-
lizes normal observations to prune nodes, then increas-
ing the probability of a node to be abnormal increases
the runtime of NDDE+. In addition, increasing the
number of abnormal nodes enlarges the size of the cor-
responding diagnoses, as more abnormal nodes are re-
quired to explain larger abnormal delays. This is sup-
ported by the data presented in Figure 4, that shows
the average size of the minimal cardinality diagnosis

1
11

353

3656

21203

4 14

56

130

281

0

50

100

150

200

250

300

350

400

450

500

100 300 500 700 1000

R
u
n
ti
m
e
(m

s)

Nodes

NDDE+

LP

(a) 70 Observations

0 1 1 1 33 10

49

123

270

0

50

100

150

200

250

300

350

400

450

500

100 300 500 700 1000

R
u
n
ti
m
e
(m

s)

Nodes

NDDE+

LP

(b) 5 Observations

Figure 3: LP Vs. NDDE+ with 20% abnormals

0

2

4

6

8

10

12

14

16

18

100 300 500 700 1000

Si
ze

 o
f

m
in

. c
ar

d
in

al
it

y
d

ia
gn

o
si

s

Network size

|OBS|=5 - 5%

|OBS|=5 - 20%

|OBS|=50 - 5%

|OBS|=50 - 20%

Figure 4: Effects of abnormal prob. on min. cardinality

found by NDDE+. As can be seen, increasing the ab-
normal probability to 20% significantly increases the
size of the minimal cardinality diagnosis.

In addition, more abnormal nodes also allow more
possible diagnoses, which also results in longer run-
time for NDDE+. Data supporting this claim is pre-
sented in Figure 5, which shows the average number of
diagnoses found by NDDE+. As can be seen, increas-
ing the abnormal probability to 20% caused NDDE+
to return much more diagnoses. For example, for a

7
12

7 10
15 19

47

82

4 8

31

93

73

515

1021

1623

0

20

40

60

80

100

120

140

300 500 700 1000

#D
ia

gn
o

se
s

Network size

|OBS|=5 - 5%

|OBS|=5 - 20%

|OBS|=50 - 5%

|OBS|=50 - 20%

Figure 5: Effects of abnormal prob. on Num. of diagnoses

7

21st International Workshop on Principles of Diagnosis

network with 1,000 nodes, with 5% abnormals the av-
erage number of diagnoses was 93 and with 20% ab-
normals it was 1,623.

6 DISCUSSION AND FUTURE WORK
We have presented two approaches to diagnose and
find bottlenecks in computer networks, based on a set
of delay observations and prior knowledge of the net-
work model. The first approach builds on classical
model-based diagnosis techniques. In order to remain
consistent with both normal and abnormal observa-
tions, satisfying sets are generated instead of conflict
sets. This results in a complete solution, returning all
possible minimal diagnoses. Based on simulations of
standard network models, we have seen that this ap-
proach is very efficient, although in a worst complex-
ity analysis the runtime is exponential. The second
approach formulates the problem as a linear program,
finding diagnosis with minimum cardinality in polyno-
mial time.

A significant advantage of the first approach is that
it is complete - all consistent diagnoses are returned.
Simulations show that this can be done very quickly
even for network models with 1000 nodes. However,
the first approach is applicable when every node is ei-
ther normal or abnormal, with some constant abnormal
delay. This is reasonable if the network nodes are rela-
tively the same, and there is a common type of abnor-
mality that can be abstracted as a binary abnormality.
For example, if network routers have a common fault
that causes a common delay, this can be modeled as a
binary attribute (normal/abnormal). On the other hand,
when this is not the case (e.g. when node faults may
have a range of values), the LP approach is more ap-
propriate. In addition, if the goal is to find the minimal
cardinality diagnosis, then NDDE requires exponen-
tial time while the linear programming requires only
polynomial time to find the diagnosis.

A major assumption of the linear programming ap-
proach is that the best diagnosis is the one that mini-
mizes the sum of abnormal delays. This is reasonable
when there is no probabilistic model of the faults of
the nodes. However, when a fault model exists, the
target function of the linear program will need to be
changed. Ideally, if a probabilistic fault model ex-
ists then the target function to maximize for finding
the most probable diagnosis will be

∏
i∈COMP

Pr(abi).

Whether this can be formulated as a linear program tar-
get function depends on the prior function (Pr(abn)).
A reasonable assumption is that small abnormal de-
lays are much more common than very large abnormal
delays. An example of a fault model that encapsulate
this is Pr(abn = x) = e−x, or any other model where
the probability of a delay diminishes exponentially fast
with the size of the abnormal delays. For such a fault
model , it is even possible to formulate the target func-
tion to still be a valid linear program target function:
max

∏
n∈COMP

Pr(abn) = max
∏

n∈COMP

e−abn =

max ln(
∏

n∈COMP

e−abn) = min
∑

n∈CMP

abn

Notice that this is exactly the same as the original tar-

get function for the LP approach.
There are many challenges left for future work. Due

to complexity issues of the network simulator (NS2),
we have performed simulation on relatively network
models with up to 1000 nodes. This corresponds to
most Local Area Networks (LAN). However, we be-
lieve that it is possible to use the described approaches
to much larger real-world networks. We therefore
intend to evaluate the proposed approaches on real
networks, using data measured by Internet mapping
projects, e.g. (Spring et al., 2002; Shavitt and Shir,
2005). Using the proposed approaches in real com-
puter networks presents several challenges. Real net-
works may have dynamic routing, incomplete network
models and various types of faults. Dynamic routing
for example, introduces a non-deterministic aspect to
the diagnosis problem. Using active measurements of
the network nodes is another interesting future direc-
tion. This is especially feasible when network control
protocols such as ICMP (e.g. ping) are available.

REFERENCES
(Bahl et al., 2007) Victor Bahl, Ranveer Ch, Albert Green-

berg, Srikanth K, David A. Maltz, and Ming Zhang. To-
wards highly reliable enterprise network services via in-
ference of multi-level dependencies. In In SIGCOMM,
pages 13–24, 2007.

(Barabasi and Albert, 1999) A. L. Barabasi and R. Albert.
Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

(Fijany and Vatan, 2005) A. Fijany and F. Vatan. New high
performance algorithmic solution for diagnosis problem.
In IEEE Aerospace Conference (IEEEAC05), pages 3863
– 3873, 2005.

(Garey and Johnson, 1979) M. R. Garey and D. S. Johnson.
Computers and Intractability : A Guide to the Theory of
NP-Completeness (Series of Books in the Mathematical
Sciences). W. H. Freeman, January 1979.

(Kandula et al., 2009) Srikanth Kandula, Ratul Mahajan,
Patrick Verkaik, Sharad Agarwal, Jitendra Padhye, and
Paramvir Bahl. Detailed diagnosis in enterprise net-
works. SIGCOMM Comput. Commun. Rev., 39(4):243–
254, 2009.

(McCanne et al., 2001) Steven McCanne, Sally Floyd, and
Kevin Fall. ns2 (network simulator 2), 2001.

(Sandro T. Fontanini and Maragon, 2002) Volnys Bernal
Sandro T. Fontanini, Jacques Wainer and Silvio Maragon.
Model based diagnosis in lans. In IEEE Workshop on IP
Operations and Management (IPOM), 2002.

(Shavitt and Shir, 2005) Yuval Shavitt and Eran Shir.
Dimes: let the internet measure itself. Computer
Communication Review, 35(5):71–74, 2005.

(Spring et al., 2002) Neil Spring, Ratul Mahajan, and David
Wetherall. Measuring ISP topologies with rocket-
fuel. SIGCOMM Comput. Commun. Rev., 32(4):133–145,
2002.

(Wei et al., 2003) Wei Wei, Bing Wang, Don Towsley, and
Jim Kurose. Model-based identification of dominant con-
gested links. In Proceedings of ACM Internet Measure-
ment Conference, 2003.

8

