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ABSTRACT 

Data science techniques such as machine learning are rapidly 
becoming available to engineers building models from 
system data, such as aircraft operations data. These 
techniques require validation for use in fielded systems 
providing recommendations to operators or maintainers. The 
methods for validating and testing machine learned 
algorithms generally focus on model performance metrics 
such as accuracy or F1-score. Many aviation datasets are 
highly imbalanced, which can invalidate some underlying 
assumptions of machine learning models. Two simulations 
are performed to show how some common performance 
metrics respond to imbalanced populations. The results show 
that each performance metric responds differently to a sample 
depending on the imbalance ratio between two classes. The 
results indicate that traditional methods for repairing 
underlying imbalance in the sample may not provide the 
rigorous validation necessary in safety critical applications. 
The two simulations indicate that authorities must be cautious 
when mandating metrics for model acceptance criteria 
because they can significantly influence the model 
parameters. 

1. INTRODUCTION 

The United States Army Aviation Engineering Directorate 
(AED) is the Army’s airworthiness certification authority; it 
also provides engineering expertise to the Army’s Program 
Executive Office for Aviation (PEO-AVN).  One portion of 
this service is data analysis and management of Health and 
Usage Monitoring System (HUMS) data collected on all 
Army rotorcraft.  The AED is leading an Aviation and Missile 
Research Development and Engineering Center (AMRDEC) 
Science and Technology effort to investigate the application 
of data science to aviation data, e.g. HUMS and maintenance 
log data. As part of this effort, the AED is defining the 

substantiation required to validate machine-learned 
diagnostics that could replace existing physics-based 
diagnostics. This paper investigates the qualities of metrics 
used to inform the substantiation and qualification of 
diagnostic classifiers; it identifies aviation specific 
requirements for the use of less often reported classification 
metrics (Powers, 2011). 

In particular, many aviation data sets are highly imbalanced, 
i.e. one class (such as healthy or nominal) is 100:1 (or worse) 
more prevalent than other critical classes (such as faulted or 
damaging). This population imbalance has significant 
consequences to the behavior of classifier metrics and the 
resulting decisions. This paper will investigate the typical 
metrics reported over classification problems using a 
hypothetical situation, an oncoming zombie apocalypse, to 
understand the consequences of using them to make 
diagnostic decisions. Before investigating the metrics, the 
paper will discuss how a metric, informedness, was recently 
used to rank models for a rotorcraft health monitoring 
application and select a model for deployment to the PEO-
AVN customer. 

1.1. Definitions 

This paper attempts to use industry standard data science 
nomenclature. In an effort to be absolutely clear, frequently 
used terms are defined in this section. 

True Positive Rate (TPR) is the ratio of correct positive 
identifications to the total number of positive examples in the 
sample. It is the conditional probability that the classifier will 
label an example as positive given that it actually was 
positive. It describes the ability of a classifier to correctly 
identify a positive example. In this paper, it refers to how 
often a model correctly identifies zombies in the sample. The 
sum of the TPR and False Negative Rate (missed detection 
rate) is one. TPR is known in some communities as recall. 
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False Positive Rate (FPR) is the ratio of incorrect positive 
identifications over the total number of negative examples in 
the sample. It is the conditional probability that the classifier 
will label an example as positive given that it actually was 
negative. It describes the ability of a classifier to correctly 
identify a negative example. In this paper it refers to how 
often a model errors by calling a human a zombie. The sum 
of the FPR (false alarm rate) and True Negative Rate is one. 

Zombies and humans are used in this paper as a fictional way 
to understand a real world problem – making critical, discrete 
decisions with noisy, continuous data. The underlying cause 
of the zombie transformation is unknown and there is no 
known treatment available. 

Imbalance in this paper is the ratio of humans to zombies. In 
the case of this paper, it is assumed that initially there are only 
a small number of zombies in the overall population. 
Imbalance progressing from a very small ratio (500:1) 
towards a 1:1 ratio is a surrogate for time and widespread 
prevalence of the condition. From a fictional perspective, it 
is the desire of the health authority to prevent spread of the 
disease.  

Model performance metrics such as: Accuracy, Weighted 
Accuracy, Informedness, and F1-Score are properties of a 
chosen threshold boundary between two (or more) 
distributions. They are often used in support of model 
validation for applications in data science and statistics. They 
are also used as model selection criteria for use in decision 
making. 

Accuracy is the ratio of the correct classifications to the total 
number of samples (scikit-learn, 0.17.1). 

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (1) 

 

Weighted Accuracy corrects for imbalance in a sample. It 
weights the underrepresented class’ error by the imbalance 
ratio. Weighted accuracy is the weighted average of the 
accuracy of the classes (scikit-learn, 0.17.1). 

 

 𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 =
1

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝐶𝐶𝑊𝑊𝑠𝑠𝑊𝑊(𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶)
 

(2) 

 

Informedness quantifies how informed a predictor is for the 
specified condition, and specifies the probability that a 
prediction is informed in relation to the condition (versus 
chance) (Powers, 2011). 

 

 Informedness = TPR – FPR (3) 

Precision is the ratio of True Positives over the sum of True 
Positives and False Positives. It is also known as the positive 
predictive accuracy (scikit-learn, 0.17.1). 

 

 𝑇𝑇𝐴𝐴𝑊𝑊𝐴𝐴𝑊𝑊𝐶𝐶𝑊𝑊𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (4) 

 

F1-Score is the weighted geometric average of precision and 
recall. It can be expressed in terms of number of True 
Positives (TP), False Positives (FP), and False Negatives 
(FN) (scikit-learn, 0.17.1). 

 

 𝐹𝐹1 =
2 ∗ 𝑇𝑇𝑇𝑇

2 ∗ 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

(5) 

 

Error Rate is the sum of the errors divided by the sample size 
(scikit-learn, 0.17.1). 

 

 𝐸𝐸𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴 𝑅𝑅𝐴𝐴𝑡𝑡𝑊𝑊 =
𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇

𝐶𝐶𝑊𝑊𝑠𝑠𝑊𝑊(𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐶𝐶𝑊𝑊)
 (6) 

 

Methods are ways the health or safety authority decides to 
use metrics to set diagnostic thresholds. An example of a 
method would be to choose a diagnostic threshold based on 
maximum F1-score. 

1.2. Prior Applications of Performance Metrics 

The Army recently used machine learning methods to 
investigate and potentially improve vibration based 
diagnostics for rotorcraft gearboxes. As part of this effort, 
tens of thousands of models were learned from the data 
(Wilson, Wade, Albarado, Partain, & Statham, 2016) by a 
cross organizational (government and industry) team of 
engineers and data scientists. The models were primarily 
evaluated using informedness. The Army explored avenues 
for validating and accrediting models using a train-validate-
test data partitioning method with rigid model standards 
(Wade & Wilson, 2017). 

Model selection was broken into two serial procedures 
starting with a best of breed decision (~10,000 models) 
among similar model types followed by a best of show 
decision among the remaining models (15 models). The best 
of show method used threshold and objective requirements 
for TPR and FPR. The details of how the problem was setup 
are described in prior publications by Wade and Wilson 
(2017) and Wilson et al. (2016). The success criteria for this 
problem was to outperform the physics based diagnostic 
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algorithm programmed into the aircraft Health and Usage 
Monitoring System. 

The results of this development applicable to this paper 
showed that informedness was preferred over F1-score and 
accuracy for model selection. This was found anecdotally by 
the engineers prior to accomplishing the simulations shown 
in this paper, as well as supported by a literature search 
(Powers, 2011). The gearbox population statistics for which 
the diagnostic was developed were similar to those used in 
the simulation for this paper. The data was split into train, 
validate, and test partitions with a 1:35 imbalance ratio 
(faulted:healthy). This ratio was based on operation of the 
aircraft over hundreds of flight hours. 

2. SIMULATION PROCEDURES 

Let us suppose that there is an oncoming zombie apocalypse 
for which a diagnostic test is under development to determine 
if a human will soon turn into a zombie. In this hypothetical 
case, only a small number of transitioning zombie test 
subjects are available for diagnostic test threshold 
determination but many humans are available. Let us also say 
that the diagnostic is immature and has unknown behaviors 
that introduce noise into the output such that the two 
populations are only partially separable. The underlying 
diagnostic value (Dv) model for the human population is a 
Rayleigh distribution and for the zombie population is a 
Gaussian distribution. Finally, assume that it is the objective 
of the health authorities to quickly identify zombies inside the 
human population to prevent further spread, and the end of 
humanity. This hypothetical case is not unlike discovering 
mechanical faults (e.g. gear or bearing faults) from noisy 
sensor data (e.g. vibration data) installed on rotorcraft (Wade, 
Tucker, Davis, Knapp, Hasbroucq, Saporiti, Garrington, & 
Rudy, 2017). 

The proposed problem was translated into a simulation using 
Python packages NumPy, and scikit-learn (Anaconda, 4.1.1), 
(Python, 3.5.2), (NumPy, 1.11.1), and (scikit-learn, 0.17.1). 
A zombie diagnostic value (Dvz) is determined by randomly 
choosing from a Gaussian distribution centered at 10.5 
(mean) with a scale of 2.0 (standard deviation). The human 
diagnostic value (Dvh) is determined by randomly choosing 
from a Rayleigh distribution of scale 3.0. When sampled 
without imbalance (1:1), the two populations have 
histograms as shown in Figure 1.  

The types of distributions and their setup are chosen so that 
the problem is interesting to study. The diagnostic is designed 
to be noisy with occasional outliers reaching the mean of the 
other population’s distribution. The human diagnostic value 
is based on a Rayleigh distribution so that it has values greater 
than zero and is skewed toward the zombie population. This 
distribution is similar to the distribution of aircraft health data 
collected by HUMS. 

 
Figure 1. Histogram examples of a single simulation at 

the 1:1 imbalance ratio. 

The simulation follows this procedure: 

1. Define the initial imbalance ratio, RI, humans to 
zombies, e.g. 250:1. 

2. Define the fixed sample size, Ns, the number of total 
subjects in a sample. 

3. Define an imbalance change function to iterate over, e.g. 
RIn = RIn-2 + RIn-1. 

4. Determine which model validation metrics should be 
computed, e.g. informedness and weighted accuracy. 

5. Call a simulation function that can be iterated. 
6. Pull subjects into the sample with random diagnostic 

values (Dvz and Dvh) such that the number of zombies 
(Nz) and humans (Nh) summed equals the sample size 
(Ns). 

7. Find each threshold value that maximizes each of the 
metrics. 

8. Save the threshold and confusion matrix for each of the 
metrics. 

9. Repeat the process 1,000 times for the same imbalance 
ratio (Step 4). 

10. Increment the imbalance ratio (Step 3) until the 
imbalance ratio goes to 1:1. 

11. Plot mean TPR, FPR, Error Rate, and Threshold Value 
as a function of imbalance. 

Results for this simulation are shown in Figures 2-5 and in 
Appendix A, Figures A1-A4. The x-axis is shown on a log 
scale for readability at low imbalance ratios. The x-axis is the 
number of zombies in the sample normalized by Ns/2. Some 
results are shown as mean simulation output with a ±1 
standard deviation cloud to show variance across simulations. 

A second simulation, to understand the influence of sample 
size, was also accomplished. It uses the same procedure 
above with changes to steps 1, 2, 3, 9, 10, and 11 shown 
underlined for clarity. 
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1. Define the initial sample size, Ns. 
2. Define the fixed imbalance ratio, RI. 
3. Define a sample size increase function to iterate over. 
4. Determine which model validation metrics should be 

computed. 
5. Call a simulation function that can be iterated. 
6. Pull subjects into the sample with random diagnostic 

values such that Nz + Nh = Ns. 
7. Find each threshold value that maximizes each of the 

metrics. 
8. Save the threshold and confusion matrix for each of the 

metrics. 
9. Repeat the process 1,000 times for the same sample size 

(Step 4). 
10. Increment the sample size (Step 3) up to 72,000. 
11. Plot mean TPR, FPR, Error Rate, and Threshold Value 

as a function of sample size. 
Results for the simulations are presented below, starting with 
the first, sample imbalance study, then moving on to the 
second, sample size study. Discussions specific to each study 
are presented sequentially with the results. A final discussion 
section regarding how the simulation results are related to the 
development of a rotorcraft diagnostic for gearbox health is 
then offered. The code that produces these simulations is 
provided for the reader and heavily commented; it is available 
on github at the following address: 

https://github.com/DanielRWade/AMRDEC-aviation-data-
science.  

3. VARIABLE IMBALANCE RATIO RESULTS 

The normalized threshold chosen by the four methods is 
shown in Figure 2. The threshold is normalized by the mean 
Zombie Diagnostic Value (10.5), thus some threshold values 
will be greater than 1. Note that the threshold values generally 
converge at the 1:1 imbalance ratio but they approach this 
threshold in very different ways. The threshold at the 1:1 
imbalance ratio for the weighted accuracy and informedness 
methods is achieved at very low imbalance ratios. The 
accuracy method produces the widest range of threshold 
values and never achieves steady state. The F1-score method 
moderates between the others but has more similarities to the 
accuracy method in that it never truly settles on a threshold 
value. Note that the standard deviation range of all the 
methods is similar as a function of imbalance ratio.  

The uncertainty in the methods never goes to zero, even when 
the imbalance ratio is 1:1 due to the overlapped distributions. 
If the plot was continued beyond the 1:1 ratio, indicating that 
the zombies outnumbered the humans, the methods would 
not be perfect mirror images due the use of the Rayleigh 
distribution. 

 
Figure 2. Mean (line) and one standard deviation (cloud) 

normalized thresholds chosen by each of the four methods 
after one full simulation run from 499:1 to 1:1 imbalance 

ratio. 

The error rate of each threshold method is shown in Figure 3. 
For the sake of simplicity and legibility, only the mean error 
rate is shown. The error rate generally follows the behavior 
of the threshold plot, except that it shows the error rates 
specific to the way the problem is setup. Note that the 
methods converge to an error rate of 0.05, with the exception 
of the informedness method which has slightly lower error, 
0.049, at the 1:1 ratio. The plot of the error rate shows how 
the different methods, which are choosing slightly different 
thresholds (Figure 1) at the 1:1 ratio, still result in the same 
amount of error, thus making a trade-off that can only be seen 
by plotting the associated TPRs and FPRs. 

 
Figure 3. Mean Error rate for each of the four methods after 
one full simulation run from 499:1 to 1:1 imbalance ratio. 

Figures 4 and 5 plot the TPRs and FPRs of each method 
respectively. The standard deviation is included in these 
plots. Figure 4 is possibly the most interesting plot shown yet 
because it is the first plot that demonstrates a difference 
between all of the methods for choosing a threshold value. 
The TPR varies significantly, from as low as 0.3 to 1.0, at low 
imbalance ratios but then converges to nearly the same value 
at the 1:1 ratio (0.96). The standard deviation of the methods 

https://github.com/DanielRWade/AMRDEC-aviation-data-science
https://github.com/DanielRWade/AMRDEC-aviation-data-science
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is also quite different with the smallest deviation in the 
informedness method, followed by the weighted accuracy 
method, the F1 method, and finally the largest deviations in 
the accuracy method. Notice that the TPR for the 
informedness method is mostly steady for all imbalance 
ratios and that the weighted accuracy method quickly 
converges with the informedness TPR. Conversely, F1 and 
accuracy have similar behavior but significantly different 
values for low imbalance ratios; over the range of imbalance 
ratios, they converge at the 1:1 ratio. 

 
Figure 4. Mean TPR (line) and one standard deviation 

(cloud) for each of the four methods after one full 
simulation run from 499:1 to 1:1 imbalance ratio. 

 
Figure 5. Mean FPR (line) and one standard deviation 

(cloud) for each of the four methods after one full 
simulation run from 499:1 to 1:1 imbalance ratio. 

The plot of FPRs in Figure 5 shows how the informedness 
and weighted accuracy methods perform equally from an 
FPR perspective at all imbalance ratios. This should 
immediately be cross referenced against the TPR plot 
however, where there are significant differences in the 
methods for low imbalance ratios. The very slight threshold 
differences at low imbalance (Figure 2) result in significant 
difference in overall performance of the metric to maximize 
overall performance. As has been seen in previous plots, the 
F1 and accuracy methods have similar behavior except at low 

imbalance ratios where accuracy has a nearly zero FPR, while 
the F1 method starts at a value similar to the weighted 
accuracy and informedness methods. 

3.1. Variable Imbalance Ratio Discussion 

When reviewed as a full set, the four figures tell an important 
story. It can be seen that the accuracy method, as expected, 
reduces overall error, which results in an overwhelming 
preference for reduction of error by assuming all subjects are 
humans. For a health official that is interested in discovering 
the zombies quickly and possibly preventing the introduction 
of a disease into the healthy population, accuracy fails. 

Accuracy provides an excellent baseline for comparison of 
the three other methods. The weighted accuracy and 
informedness methods should be considered together because 
they have so much in common. In general, when maximized, 
they result in nearly the same threshold value, with 
informedness choosing a threshold slightly closer to the 
healthy population. This slight difference between the two 
thresholds results in a barely perceptible difference in overall 
error (Figure 3), but results in a dramatic difference between 
the two methods when the imbalance between the 
populations is maximum (low imbalance). This is quite 
evident in Figures 4 and 5. This appears to support a 
conclusion that using both of them, especially in situations 
when the practitioner knows that imbalance exists but does 
not know the extent to which it occurs in the overall 
population, is necessary. While they result in very similar 
models being chosen, they are still different enough that they 
provide unique information to the practitioner trying to make 
the best choice and inform other decision makers about model 
performance. 

The F1 method chooses thresholds in a hybrid fashion. At the 
lowest imbalance values, it settles on the same threshold as 
weighted accuracy, but quickly diverts away, focusing on 
moving the threshold toward the zombie population. This 
results in excellent control of the FPR for the majority of 
imbalance values, but this is of course at the cost of allowing 
TPR to fall quite significantly. The F1 method does not result 
in models that have even reasonable discriminatory power 
(TPR above 0.9) until the imbalance ratio is greater than 5:4 
(humans:zombies). 

In machine learning, metrics are not often used to drive model 
behavior, cost functions are used; the performance of a set of 
models is shown on validation and test data and represented 
by any number of metrics. The model builders utilize these 
metrics to understand which models are best. The metrics 
used to rank and choose models will influence the outcome 
and how a metric is biased by the underlying population 
characteristics is influencing the chosen model. This must be 
well understood by the safety or health authority. 

Often times, in cases where there is a known imbalance 
between populations, minority oversampling (or majority 
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decimation) is used to prevent bias in the metrics and decision 
making. For the purposes of validation and model selection, 
this is equivalent to using the weighted accuracy. The plots 
shown in this paper show that none of the metrics is immune 
to sample size imbalance, including weighted accuracy. The 
metrics offer a trade space which is not trivial in applications 
where models are used to determine which patients should 
receive treatment or which aircraft is fit to fly a mission. 

Based on the evidence presented, it can be stated that there is 
actually a correct threshold for the diagnostic that is shown in 
Figure 2, at the 1:1 imbalance ratio. There is convergence of 
the methods on a threshold zone represented by the standard 
deviation clouds. All of the methods do not start at the 
optimal threshold when imbalance is significant. All of the 
methods exhibit a reduction in uncertainty as imbalance ratio 
approaches 1:1. One additional point can be made, the 
weighted accuracy and informedness methods achieve the 
optimal threshold for lower imbalance ratios than F1-score 
and accuracy. 

4. VARIABLE SAMPLE SIZE RESULTS 

This study offers an understanding of the influence sample 
size has on the metrics. Fewer plots are shown here than in 
the previous section for the sake of brevity. The plots show 
mean values with a cloud representing the standard deviation 
across the simulations. 

Figure 6 shows how the chosen threshold changes as a 
function of the sample size. Using the maximum accuracy 
method for setting a threshold results in the least mean 
variance for the sample sizes shown here which vary from 
1000 subjects, up to 72,000 subjects. The other three methods 
choose thresholds that are nearly all the same, and then 
diverge towards a final value determined by the underlying 
population distributions. In the case of informedness and 
weighted accuracy, the thresholds converge and have the 
same value for very large, but still imbalanced samples. This 
simulation uses the initial imbalance (499:1) from the 
previous simulation for consistency.  

Figures 7 and 8 show the associated underlying TPR and 
FPR, respectively, as a function of sample size. All of the 
methods are influenced by the sample size with initial values 
being either optimistic (informedness, F1-score, and 
accuracy), or pessimistic (weighted accuracy). Informedness 
has an initial TPR at 1.0 which eventually settles to 0.96 for, 
unrealistically, large sample sizes. Weighted accuracy and 
F1-score start at 0.59; weighted accuracy then rapidly moves 
toward the informedness TPR ending at 0.96. F1-Score 
settles on its own final TPR at 0.42. Accuracy behaves 
similarly to F1-score, but with lower TPR values, initially 
0.32, settling to 0.17. 

 

 
Figure 6. Mean (line) and one standard deviation (cloud) 

normalized thresholds chosen by each of the four methods 
as sample size increases. 

 
Figure 7. Mean TPR (line) and one standard deviation 

(cloud) for each of the four methods as sample size 
increases. 

 
Figure 8. Mean FPR (line) and one standard deviation 

(cloud) for each of the four methods as sample size 
increases. 

Expectedly, FPRs for the metrics trend in the opposing 
directions. Informedness and weighted accuracy show almost 
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identical FPRs over all sample sizes, ending near 0.06. F1-
Score starts at the same value as the informedness and 
weighted accuracy (0.02) and ending at 0.001 which is only 
non-zero due to the unrealistic sample size. Accuracy 
maintains the same FPR for all possible samples at nearly 
zero. This is caused by a small number of the simulations 
occasionally choosing thresholds with non-zero FPR. 

4.1. Variable Sample Size Discussion 

The plots that show how the metrics respond as the sample 
increases but maintain the proportion of zombies are 
significant. As the sample size increases, the standard 
deviation around each method generally decreases showing 
that the methods are more confident in the choice. The F1, 
informedness and weighted accuracy methods change the 
threshold decision to some degree based on the sample size.  
Accuracy, meanders slightly but never changes significantly. 
As happened in the imbalance study, in these plots, it is seen 
that the methods do not converge on the same threshold; 
three distinct final thresholds are reached. 

5. GENERAL DISCUSSION 

The results from both studies say something very significant 
about the four methods, none of them are immune to the class 
imbalance and underlying distributions. Oversampling the 
minority population, represented by using the weighted 
accuracy, is not immune to this effect. This is especially 
pronounced when sample sizes are between 1,000 and 
10,000.  

Based on the information from the two simulations, the 
Aviation Engineering Directorate has come to the conclusion 
that for diagnostics that drive aviation maintenance, 
especially for safety critical components, metrics such as 
weighted accuracy and informedness are superior to F1-score 
and accuracy. One particularly important fact is that often, it 
is unknown what the true imbalance ratio is between two 
populations. Thus choosing metrics that are less sensitive to 
the imbalance for decision making, such as model validation 
and selection for fielding to the aircraft, are preferred. 
Furthermore, metrics that are known to have conservative 
behavior, such as informedness, are preferred. 

Thinking back on the prior work discussed in the 
introduction, what is now better understood by the authors is 
that all of the metrics are influenced by the underlying 
imbalance in the populations. Oversampling of the faulted 
population would not result in alleviating the bias. Based on 
the results of the simulation shown in this paper, 
informedness was a good choice for evaluating overall model 
performance, especially considering the sensitivity to 
detecting faults in aviation systems, i.e. maintaining a high 
TPR. 

Additional work to determine how these metrics, including 
many others not studied, could be evaluated using the same 

codes to determine the effects on multi-class problems, and 
different underlying distributions. For example, the multi-
class problem is being actively investigated as it relates to 
propagating labels into the HUMS data from the aircraft 
maintenance logbook. The authors plan to move forward with 
investigating when Markedness, positive predictive value 
(precision), and negative predictive value could be used.  

6. CONCLUSIONS 

This paper presented two simulations that demonstrate how 
underlying population imbalance influences metrics used for 
validation of diagnostic models. The simulations show that 
accuracy, weighted accuracy, F1-score, and informedness are 
affected by class imbalance. Informedness and weighted 
accuracy are less biased by imbalance and are also more 
applicable to diagnostic models used in safety critical 
applications. Informedness has slightly better performance 
than weighted accuracy for significantly imbalanced classes. 

The authors of this paper spot checked other ways to mix the 
underlying models, i.e. changing the mean and standard 
deviation. The rates of convergence shown in the figures as a 
function of imbalance ratio do change based on the overlap 
of the two populations. It is recommended that these 
additional simulation parameters be added to another study. 
Furthermore, there are more metrics that could be studied, 
e.g. Markedness, as relates to the topic of sample imbalance. 
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APPENDIX A: ADDITIONAL IMBALANCE RATIO STUDY 
RESULTS 

It is also interesting to review how the metrics respond to 
each method. Each of the following figures shows an 
individual metric across each of the methods. The y-axes of 
the plots are kept the same for comparison purposes, from 0.1 
to 1.05, and the x-axes are maintained from the previous 
figures, ratio of zombies plotted on a log scale. 

Figure A1 shows the accuracy as a function of imbalance for 
each of the methods. Note in this figure that the accuracy 
plots for maximum informedness and weighted accuracy, 
which are not numerically equivalent, are nearly 
indistinguishable and that maximizing F1 Score only differs 
from maximizing accuracy for very small imbalance ratios. 
All accuracy scores eventually settle on nearly the same 
value, 0.95. It should be noted that this figure is the inverse 
of Figure 3, which is the overall absolute error. 

 
Figure A1. This plot shows the accuracy metric evaluated 

for each of the four methods to choose a threshold. 

Figure A2 shows the weighted accuracy as a function of 
imbalance for each of the methods. Maximizing weighted 
accuracy and informedness has the same result on weighted 
accuracy. Maximizing F1-score results in initially the same 
weighted accuracy. Finally, maximizing accuracy results in 
low weighted accuracy until the convergence at the 1:1 ratio. 

Figure A3 shows the F1-score as a function of imbalance for 
each of the methods. In this case, similar shape functions 

exist between the maximum F1-score and accuracy methods. 
F1-Score values for all methods are low and continuously 
approach the same value (0.95) at the 1:1 ratio. The F1-score 
for the maximum informedness and weighted accuracy 
methods are nearly identical, except at very low imbalance 
ratios. 

 
Figure A2. This plot shows the weighted accuracy metric 

evaluated for each of the four methods to choose a 
threshold. 

 
Figure A3.This plot shows the F1-score metric evaluated for 

each of the four methods to choose a threshold. 

Figure A4 shows the informedness as a function of imbalance 
for each of the methods. Comparing the methods at very low 
imbalance results in a pronounced difference, with maximum 
accuracy near 0.3 and maximum informedness at 0.98. The 
maximum weighted accuracy method is the first to join up 
with the maximum informedness which started at the same 
value as the maximum F1-score method.
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Figure A4. This plot shows the informedness metric 
evaluated for each of the four methods to choose a 

threshold. 
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