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ABSTRACT 

The increasing sophistication of electronics in 

vehicular systems is providing the necessary 

information to perform data-driven 

diagnostics. Specifically, the advances in 

automobiles enable periodic acquisition of 

data from telematics services and the 

associated dealer diagnostic data from 

vehicles; this requires a data-driven 

framework that can detect component 

degradations and isolate the root causes of 

failures. The event-driven data consists of 

diagnostic trouble codes (DTCs) and the 

concomitant parameter identifiers (PIDs) 

collected from various sensors, customer 

complaints (CCs), and labor codes (LCs) 

associated with the repair.  In this paper, we 

discuss a systematic data-driven diagnostic 

framework featuring data pre-processing, data 

visualization, clustering, classification, and 

fusion techniques and apply it to field failure 

datasets. The results demonstrated that the 

support vector machine (SVM) classifier with 

DTCs and customer complaints as features 

provides the best accuracy (74.3%) compared 

to any other classifier and that a tree-

structured classifier with SVM as the base 

classifier at each node achieves approximately 

75.2% diagnostic accuracy.  

1 INTRODUCTION 

The relentless competition among automotive OEMs, 

increased demands from customers for dynamically-

controlled safety systems and growing dependence on 

electronics are creating the need for a continuous 

monitoring system that tracks and identifies the trends 

and sources of component degradations prior to failure. 

Automotive OEMs collect a variety of on-board vehicle 

health data via telematics and off-board data via dealer 

diagnostics services.  These data sources acquire 

different types of vehicle data at different sampling 

rates.  For example, dealer diagnostic data is collected 

when a vehicle comes for repair at a dealer shop;  the 

warranty data, collected infrequently, includes the 

diagnostic trouble codes (DTCs), freeze frame data 

(engineering variables/PIDs), repairs/replacement 

actions, and structured/unstructured text in the form of 

customer verbatim.  The fleet data is collected at a 

much higher sampling frequency (e.g., every few 

ignition cycles) for overall health of vehicle 

subsystems, such as the engine and/or transmission 

system, emission system, airbag system, anti-lock brake 

system, tire pressure; this data is gathered even when 

the vehicle is functioning normally.  However, what is 

needed is an early warning capability that continuously 

monitors the data, detects, isolates and estimates the 

severity of faults (viz., fault detection and diagnosis) 

based on models that includes cross-subsystem fault 

propagation effects, and relates the detected 

degradations in vehicles to accurate remaining life-time 

predictions (viz., prognosis) of replaceable 

components. 

 Methods for fault diagnosis can be classified as 

being associated with one or more of the following 

three approaches: model-based, knowledge-based, or 

data-driven. What if a mathematical model (for model-

based diagnosis) or cause-effect graph model of system 

failures and their manifestations (for knowledge-based 

approach to diagnosis) is not available? The Data- 

driven approach to fault diagnosis is an alternative, 

provided that system monitoring data is available. A 

data-driven approach to fault diagnosis has close 

relationship with pattern recognition, wherein one 

learns classification rules directly from the data, rather 

than using mathematical models or a knowledge-based 

approach. Due to its simplicity and adaptability, 
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Fig.  1.  Diagnostic Process Overview 

customization of a data-driven approach does not 

require an in-depth knowledge of the system. However, 

data-driven techniques provide no information on 

unobserved faults, even though they may be anticipated 

(Sankavaram et. al., 2009). 

 In this paper, we propose a systematic data-driven 

diagnostic framework for fault diagnosis. The key 

features of the proposed framework include data pre-

processing, visualization, clustering, classification, and 

fusion algorithms to detect and isolate faults and to 

reduce no-trouble found rates and warranty costs.  

Often, the data acquired via onboard diagnostic systems 

(telematics), dealer diagnostics etc., require data pre-

processing techniques in order to process the DTCs, 

engineering variables and the vehicle information. 

Hence, the data-preprocessing technique plays a crucial 

role in fault diagnosis. Furthermore, in order to 

diagnose the faults of interest, a number of classifier 

techniques are employed, viz., support vector machines 

(SVM), probabilistic neural network (PNN), Gaussian 

mixture models (GMM), k-nearest neighbor (KNN) 

classifier and so on (Bishop, 2006; Duda et al., 2001). 

The diagnostic process also exploits clustering 

techniques, such as Principal Component Analysis 

(PCA), Partial Least Squares (PLS) and Linear Vector 

Quantization (LVQ) especially to cluster/ group the 

ambiguous faults in order to improve the classification 

accuracy. Furthermore, by examining the confusion 

matrices, we suggest a tree-structured classifier, where 

the ambiguous labor codes (LCs) are grouped together 

and a classifier is applied on the subset of LCs. We also 

illustrate a major limitation of data-driven approaches, 

viz., its inability to diagnose anticipated, but 

unobserved faults.  We recommend that a recursive 

classifier should be developed that can incrementally 

adapt with the observed cases for unanticipated faults. 

The proposed diagnostic process is generic; it can be 

applied to a wide range of subsystems across vehicle 

types and models.  We demonstrate the process on two 

datasets (dataset 1 and dataset 2) gleaned from field 

failure databases.   

 The paper is organized as follows: In Section 2, we 

describe our data-driven diagnostic framework. In 

Section 3, we describe the characteristics of the 

datasets, demonstrate our proposed framework and 

discuss the classification results. Finally, the paper 

concludes with a summary in Section 4. 

2 DATA-DRIVEN DIAGNOSTIC 

FRAMEWORK 

Our data-driven diagnostic framework, shown in Fig. 1, 

consists of visualization, feature selection, clustering, 

classification, and fusion techniques. Each process is 

explained in detail in the following subsections.  

2.1 Graphical Visualization of Data  

Data visualization helps in assessing the level of 

difficulty of classification problem and also helps in 

selecting data pre-processing techniques for better 

diagnosis (e.g., grouping or subdividing labor codes, 

etc.). We employed a variety of data visualization 

techniques viz., Self Organizing Map (SOM), PCA, 
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Fig. 2. Histograms of Top PID, DTCs and Customer Complaints

PLS, histograms, etc., as part of our diagnostic process. 

For instance, Fig. 2 shows the histograms of the top 

PID and DTCs conditioned on the LCs. We could 

observe that the DTCs (also CCs) may provide better 

isolation of labor codes when compared to the top PID 

alone (according to information gain criterion) because 

there is no significant overlap of labor codes with 

DTCs and CCs. This is borne out by our classification 

analysis later.  

2.2 Bi-partite Fault models  

Fault model is a probabilistic dependency matrix which 

depicts the cause-effect relationships between the 

failure modes (LCs) and the tests (DTCs, CCs).  We 

have derived the fault models between (i) LCs and 

DTCs, (ii) LCs and CCs, and (iii) LCs and DTC-CC 

combinations via maximum likelihood estimation of 

probabilities given by,   

( , )
ˆˆ ( / )

( )

ij j i

ij j i

i i

n n O LC
p P O LC

n n LC
           (1) 

where Oj is DTCj or CCj or (DTC,CC)j, nij is the number 

of times Oj is associated with LCi and ni is the total 

number of observed cases with LCi. In order to avoid 

the problem with ML estimate i.e., the possibility of 

having a zero probability because of an unseen 

combination of (Oj, LCj) in the training data, we use 

Laplacian smoothing (Metzler et al., 2004) given by, 

( , ) 1
ˆ( / )

( ) | |
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where |LC| is the number of labor codes. The 

dependency matrix can be either binary (0 or 1 (hard)) 

or probabilistic (soft). These fault models provide an 

alternative method for inferring the LCs from the 

classified DTCs or CCs (see Fig1).  

2.3 Feature Selection  

The main idea of feature selection is to choose a subset 

of PIDs by eliminating those with little or no predictive 

information. We rank ordered PIDs via mutual 

information gain algorithm and selected the minimum 

number of PIDs required for classification based on the 

diagnostic accuracy on test case data. The mutual 

information (MI) (Cover et. al., 1991) between a 

feature, F and a class, C is given by, 

( | )
( , ) ( )[ ( | ) log ]

( )
C F

p F C
MI F C P C p F C dF

p F
          (3) 

Histograms of relevant probability density functions 

from data are used to compute (3).  We seek minimum 

number of PIDs to decrease the implementation 

complexity of classification approaches. 

2.4 Classification 

Our framework features a number of statistical 
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classifiers, exemplified by SVM, decision trees, 

PNN,KNN, PCA, PLS, and GMM. A brief explanation 

of these techniques is given in the following 

subsections. 

2.4.1 Support Vector Machine 
Support vector machines transform the data to a higher 

dimensional feature space and find an optimal 

hyperplane that maximizes the margin between the 

classes (Burges, 1998). SVM has two distinct features. 

One is that it is often associated with the physical 

meaning of data, so that it is easy to interpret, and the 

other one is that it requires only a small amount of 

training data. A kernel function is used for fitting non- 

linear models by transforming the data into a higher 

dimension before finding the optimal hyperplane.  

2.4.2 Decision Trees 

Decision tree classifier predicts the class (LC, DTC, 

CC) based on selected features.  The interior nodes of 

the tree correspond to one of the feature variables, 

while the edges correspond to the discrete outcomes of 

the feature variable. Each leaf represents a class given 

the values of the feature variables represented by the 

path from the root to the leaf. The decision tree is 

constructed using a variety of techniques, including 

AND/OR graphs, information gain, and information 

gain coupled with rollout (Tu et al., 2003). 

2.4.3 Probabilistic Neural Network 

The PNN is a supervised method that computes the 

likelihood of an input vector belonging to a specific 

class based on the learned probability distributions of 

each class. The learned patterns can also be weighted 

with a priori probability (relative frequency) of each 

category and misclassification costs to determine the 

most likely class for a given input vector. If the relative 

frequency of the categories is unknown, then all the 

categories can be assumed to be equally likely and the 

determination of category is solely based on the 

closeness of the input feature vector to the distribution 

function of a class (Duda et. al., 2001).  

2.4.4 k-Nearest Neighbor  

The KNN classifier is a simple non-parametric method  

for classification (Duda et. al., 2001). The KNN 

classifier calculates the distance of the input vector 

using k-nearest points from the training data and the 

class with the maximum a posteriori probability from 

those points is declared as the most-likely class.  

Normally, k is chosen as an odd number to avoid ties. 

Mathematically this can be viewed as computing the a 

posteriori class probabilities P(ci|xnew) as, 

   | i
i inew

k
P c x p c

k
                       (4) 

where ki is the number of vectors belonging to class ci  

within the k-nearest points. A new input vector xnew is 

assigned to the class ci with the highest a posteriori 

class probability P(ci|xnew).  

2.4.5 Principal Component Analysis 

PCA is a multivariate statistical procedure that 

transforms the training data into a lower-dimensional 

space by transforming a number of correlated variables 

into a smaller number of uncorrelated new variables 

called principal components. These components 

represent the selection of a new coordinate system 

obtained by rotating the original variables and 

projecting them onto the reduced space defined by the 

first few principal components, where the first one 

describes the largest amount of variation in the data, the 

second one the second largest amount of variation in 

the data and so on.  Each principal component is 

represented as a linear combination of the columns (J), 

and has a specific numerical value for each of the rows 

(I).  In matrix form, the PCA model is:                                     

 
1

,     
L

T

s f f
f

X i j t p E


                   (5) 

Here L is the number of principal components. The 

loading vectors (pf) are orthonormal and provide the 

directions with maximum variability. The score vectors 

(tf) from the different principal components are the 

coordinates for the objects in the reduced space. A 

classification of a new test pattern is done by obtaining 

its predicted scores and residuals. If the test pattern is 

similar to a specific class in the training network, the 

scores will be located near the origin of the reduced 

space, and the residual should be small.  The distance 

of test data from the origin of the reduced space can be 

measured by Hotelling statistic (Nomikos, 1996; Wold 

et. al., 1987).   

2.4.6 Partial Least Squares 

PLS is similar to principal component analysis (PCA). 

In PCA, the scores are calculated to give an optimal 

summary of input X, while in PLS the optimality is 

relaxed to make scores better predictors of the 

dependent (response) matrix Y. The PLS algorithm 

reduces the dimensionality of the input and output 

spaces to find highly correlated latent variables (score 

vectors), i.e., those that not only explain the variation in 

the input data X, but their variations that are most 

predictive of the output data Y. Once the latent 

variables are extracted, a least squares regression is 

performed to estimate the fault class. The scores are 

determined using nonlinear iterative partial least 

squares (NIPALS) algorithm. (Geladi, et al., 1986)  
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2.4.7 Gaussian Mixture Models 

GMM is a multimodal distribution resulting from a 

number of component Gaussian functions (Duda et. al. 

2001). It is characterized by a vector  of mean µ, 

variance 2 and weights of its components C given by, 

1

( | ) ( ; , )
C

k k k

k

p x w N x  


               (6) 

where            

2

2

( )

2
1

( ; , )
2

x

N x e


 
 




                (7) 

and             
1 1 1{ , , ,.... , , }C C Cw w     .                 (8) 

GMM constructs a probability density function of data 

for each class, and the mixture parameters for each 

class are learned via expectation-maximization (EM) 

algorithm. In deployment phase, an input test vector 

(xnew) is categorized as class ci if the maximum 

posterior probability P(ci|xnew) is attained by  ci.  

2.5 Clustering 

Clustering techniques can be used to perform 3 tasks, 

viz., visualization, classification, and grouping of data. 

Here, we use clustering to group data for each LC, 

thereby generating finer labor codes (failure modes) for 

classification. This division or decomposition of LCs 

into failure modes may improve classification accuracy 

in some cases. We employed k-means, GMM, and LVQ 

techniques to decompose labor codes.  The k-means 

algorithm divides the data into ‘k’ clusters based on the 

minimum distance criterion, i.e., a data point is 

assigned to a cluster ‘i’ if its distance to the centroid of 

cluster i is minimum. LVQ is a supervised clustering 

algorithm that determines weight vectors (codebook) 

representing each output category and a data pattern is 

assigned to a cluster ‘i’ if it is close to the weight 

vectors corresponding to cluster ‘i’ (Kohonen, 1995).            

2.6 Fusion Process 

Another approach to increase the classification 

accuracy is to employ fusion of different classifiers. 

The labor code inferences generated from a PIDs-based 

classifier, a DTC-CC based classifier, and combined 

PIDs-DTC-CC classifier are fused with the estimated 

labor codes from the classification of DTCs and CCs 

based on the PIDs data (via the fault model). The LC 

which was classified majority times is declared as the 

final fused labor code. Thus, our framework facilitates 

the fusion of labor code estimates obtained from 

different classifiers to improve the classification 

accuracy. 

3 EXPERIMENTAL RESULTS OF DATA-

DRIVEN FRAMEWORK ON TWO 

DATASETS 

We implemented a MATLAB data-driven toolbox to  

implement the diagnostic process and the experimental 

results are described in the following subsections.   

3.1 Data Preparation 

As mentioned earlier, the two datasets (dataset 1 and 

dataset 2) considered for the experimental validation of 

our diagnostic process had two types of data: the repair 

data and the DTC data
*
. Hence, for each of the datasets, 

the two types of data are matched and integrated into a 

single dataset via an automated database query 

program; our analysis has mainly focused on the 

“combined dataset”. We also analyzed dataset 1 and 

compared the results of dataset 1 with that of the 

combined dataset (i.e., dataset 1 + dataset 2). 

 The major task here is to convert the PIDs data of 

the DTCs into a matrix, where each column 

corresponds to a PID and each row corresponds to an 

observed DTC. Each of these cases were matched with 

the corresponding claim (or labor code) data. 

3.2 Data Characteristics 

The combined data has 469 distinct PIDs associated 

with the observed DTCs.  However, not all the PIDs are 

associated with every DTC.  In some cases, for the 

same DTC, all the PIDs pertaining to that DTC are not 

recorded.  This results in a “missing value” problem for 

classification. There are two approaches to address the 

missing value problem: ignore missing valued PIDs 

(i.e., consider only those PIDs that are recorded for 

every DTC) or employ classification techniques (e.g., 

SVM) that handles missing valued PIDs. We 

experimented with both of these approaches and found 

that ignoring the missing valued PIDs was the better 

approach for the datasets provided (more details on this 

provided under classification analysis). 

 The histograms of LCs are shown in Fig. 3; these 

plots provide insights into the most frequent labor 

codes.  In both datasets, LC5 is the most frequently 

replaced component (63% of claims in dataset 1 and 

75% of claims in dataset 2).  Unfortunately, this 

component also has the highest replacement cost. 

Consequently, the manufacturer of this component 

should take corrective measures to reduce its frequency 

of failures (i.e., improve its reliability).   Also, the most 

frequent DTCs are different in the two datasets; and 

although the number of customer complaint types has 

increased from 3 to 7, they are consistent across the two 

datasets.  For example, CC2 and CC3 are major 

complaints in both the datasets. This also illustrates a 

major problem with data-driven approaches, viz., their 

inability to diagnose anticipated, but unobserved faults. 

This is because the number of DTCs fired, the number 

                                                           
* We cannot identify the subsystem for proprietary and 

competitive reasons.  
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Fig. 3. Histograms of Labor Codes for datasets 1 

and  2 

 

Fig. 4. Details of the Datasets 
of PIDs, the number of customer complaint types, and  

the number of labor codes is different in the two 

datasets.  For example, dataset 1 has 367 PIDs, 8 LCs, 

9 DTCs and 3 CCs where as dataset 2 has 469 PIDs, 6 

LCs, 14 DTCs and 7 CCs (see Fig. 4.).  A way out of 

this problem is to create a recursive classifier that can 

adapt to unanticipated faults with the observed cases. 

3.3 Classification and Clustering Analysis 

We experimented with a variety of classifiers and with  

different feature sets.  Typical setup includes either a 

subset of top-ranked PIDs alone or PIDs combined with 

DTCs and customer complaints or DTCs and customer 

complaints alone as the features (see Table I). Our 

extensive experimentation revealed that only the top 

PID is adequate for the combined dataset.  

 As shown in Table I, for the combined dataset, the 

SVM classifier with DTCs and customer complaints as 

features provided the best accuracy (74.3%) compared 

to any other classifier we experimented with.  As 

already stated, PIDs data has missing values, which can 

be handled by SVM implicitly. PIDs with missing 

values could increase the diagnostic accuracy by 2% 

(69.7% → 71.6%); it classifies every case as LC5, 

except that 2 cases of LC5 are classified as LC4 and 

one case as LC1. Since 67% of the total claims are 

associated with the labor code LC5, this is not 

surprising. However, since all the other labor codes are 

classified as LC5, diagnostic precision is severely 

impacted.  Also, note that applying clustering 

TABLE I. Comparison of (SVM) classifiers for the 

combined dataset and the dataset 1 alone  

Approaches: 

Features 

[Targets] 

Average classification rate (%) 

Dataset 1 Combined Dataset 

Raw Clustered Raw Clustered Raw 

PIDs 

[Labor 
codes] 

58.6 

(9 
PIDs) 

74.2 

(16 
PIDs) 

69.7 

(1PID) 

71.2 

(1 PID) 

71.6 

(all 
PIDs) 

PIDs 

+DTC+CC 
[Labor 

codes] 

58.6 

(9 

PIDs) 

74.2 

(16 

PIDs) 

73.4 
(1PID) 

71.2 
(1 PID) 

71.6 

(all 

PIDs) 

DTC+CC 

[Labor 
codes] 

20.7 56.1 74.3 69.7 N/A 

 

Fig 5. PCA clustering plot of dataset 1 

TABLE II. Comparison of different classifier 

performances for the combined raw dataset 

Approaches:  
Features  
[Targets]  

Average classification rate (%)  
KNN  

RBF 

Network  

Naïve 

Bayes  

Random  

Forest  

PIDs  
[Labor codes]  

69.7 
(1PID)  

60.5  
(1 PID)  

69.7  
(1 PID)  

61.5 
(1 PID)  

PIDs 

+DTC+CC  
[Labor codes]  

73.4  
(1 

PID)  
66  

(1 PID)  
72.5  

(1 PID)  
72.5  

(1 PID)  
DTC+CC  

[Labor codes]  68.8 71.6  73.4  70.6  

techniques to decompose the labor codes increases the 

diagnostic accuracy from 69.7% to 71.2% when the top 

PID is used.  In all the other experimental runs, there 

was no advantage gained by clustering.   

 In Table I, we also included the results obtained by 

the analysis on dataset 1.  Using dataset 1 alone, we 

obtained the best diagnostic accuracy of 74.2% by 

employing clustering on each labor code and 

performing classification using 16 top-ranked PIDs. 

Fig. 5 shows the PCA plot of the three principal 

components and the associated labor code clusters. It 

can be easily seen that the cases corresponding to LC5 
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cluster (i.e., LC5-1) are well separated from other cases 

suggesting that these can be classified easily. However, 

the DTCs and customer complaints did not improve 

accuracy in this case. 

 We also validated the classification model on 

dataset 2, i.e., trained the model on dataset 1 and tested 

it on dataset 2 using 9 top-ranked PIDs and by ignoring 

the missing values. The classification accuracy was 

only about 58%. This again points to the need to 

recursive classifiers that can adapt to unanticipated 

faults with the observed cases. 

 In Table II, we have also included the performance 

of different classifiers on the combined dataset. It 

shows that SVM classifier (see Table I) consistently 

performs well compared to any other classifier. 

3.4 Rules for Classification Analysis 

By examining the confusion matrices of various 

experimental runs (e.g., Table III), we developed a tree- 

structured classifier, where the internal nodes of the 

tree correspond to an SVM classifier on subsets of LCs. 

Here, the ambiguous labor codes are grouped into a 

single LC and the rest into another group. Then, a 

binary classifier is employed to classify the two sets of 

grouped LCs.  For example, as shown in Fig. 6, at the 

root node C1, labor codes (LC3, LC4, LC6, LC7, LC8) 

are grouped together, while the other group consists of 

(LC1, LC5, and LC2).  After classification is performed 

at the C1 node, further classification is carried out 

within each group until each labor code is classified at 

the leaf nodes. The tree-structured classifier increased 

the diagnostic accuracy from 74.3% to 75.2%.  

 If the leaf node is diagnosed incorrectly, a 

sequential replacement strategy is employed to isolate 

the labor code based on increasing order of the ratio of 

cost of each component to its prior probability.  Fig. 7 

shows the tree- structured classifier with the sequential 

replacement strategy. For example, if the classifier at 

node C
’
2 categorizes a case as LC2, we replace LC2 

and then test whether the problem is solved or not.  If 

the problem is not solved, then we replace the next 

component in the list, LC5. 

 Assuming that the components are ordered in 

increasing order of (ci /pi), the expected cost of the tree-

structured classifier is calculated via: 

1 1 1

m i m m

i j j i

i j j i j

p c c p
   

                       (9) 

where pi is the probability of labor code i and cj is the 

cost of replacing component j (see Table IV).  

Raghavan et al., 1999 prove the optimality of the ratio 

strategy for sequential replacement.  

 In order to evaluate the benefits of employing the 

tree-structured classifier, we compare the expected cost 

of the tree-structured classifier with that of a 

knowledge management (KM) system that rank-orders 

component replacement decisions based on (ci /pi) only. 

This tree (shown in Fig. 8) depends only on the prior  

TABLE III. Confusion matrix of tree structured 

classification analysis 

 LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 

LC1 7 0 0 0 0 0 0 0 

LC2 0 3 0 0 7 0 0 0 

LC3 2 0 2 0 0 0 0 0 

LC4 2 0 0 0 4 0 0 0 

LC5 3 2 0 0 70 0 0 0 

LC6 1 0 0 0 2 0 0 0 

LC7 0 0 0 0 1 0 0 0 

LC8 0 0 0 0 3 0 0 0 

 

Fig. 6. Tree-structured classifier 

 

Fig. 7. Repair strategy developed from the tree-

structured classification analysis 
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probability and cost information and does not perform 

classification.  The results showed that average savings 

of 15.67% are possible with the tree-structured 

classifier (details are not shown here). 

4 CONCLUSIONS 

In this paper, we briefly discussed a systematic data-

driven diagnostic framework to improve the first time 

fix rate, enhance vehicle availability and reduce 

warranty costs.  We applied our framework on two 

datasets from a field failure database. The monitored 

data on DTCs and the associated PIDs, together with 

CCs, enable the application of sophisticated classifier 

and fusion techniques to isolate LCs. We have shown 

that DTCs and CCs provide better classification of LCs 

(74.3%) over a PIDs-based classifier (69.7%). Besides, 

we employed a tree-structured classifier with an SVM 

at each node to sequentially test the related components 

for the failure cause and to improve diagnostic 

accuracy (75.2%). Major advantage of these 

classification-based diagnosis over a KM system that 

considers priors only accrues when the entropy of 

probability mass function of labor codes is large (i.e., it 

is not a skewed distribution).  

 We have also observed the limitations of data-

driven approach in handling unobserved LCs and 

DTCs. We recommend that a recursive classifier be 

created at the outset and adapt this classifier 

incrementally for unanticipated faults with the observed 

cases. The development of incremental data-driven 

learning techniques is an area of our ongoing research. 
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