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ABSTRACT 

Machine remaining useful life (RUL) prediction is a 

key part of Condition-Based Maintenance (CBM), 

which provides the time evolution of the fault indicator 

so that maintenance can be performed to avoid 

catastrophic failures. This paper proposes a new RUL 

prediction method based on adaptive neuro-fuzzy 

inference systems (ANFIS) and high-order particle 

filtering, which predicts the time evolution of the fault 

indicator and computes the probability density function 

(pdf) of RUL. The ANFIS is trained and integrated in a 

high-order particle filter to describe the fault 

propagation process; the high-order particle filter uses 

real-time data to update the current state estimates so as 

to improve the prediction accuracy. The performance of 

the proposed method is evaluated via the real-world 

data from a seeded fault test for a UH-60 helicopter 

planetary gear plate. The results show that it 

outperforms the conventional ANFIS predictor. 

1. INTRODUCTION 

In machinery Condition-Based Maintenance (CBM), 

machine prognosis is an important component that 

possesses the ability to predict accurately and precisely 

the future condition and remaining useful life (RUL) of 

a failing component or subsystem (Vachtsevanos et al., 

2006). Machine prognosis is considered as the 

Achilles’ heel of CBM and presents major challenges 

to the CBM system designers primarily because it 

projects the 
*
current condition of the fault indicator in 

the absence of future observations and necessarily 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited.  

entails large-grain uncertainty. Recently, numerous 

efforts have been reported in the machinery prognosis 

community (Gebraeel et al., 2004; Tse and Atherton, 

1999; Zhao et al., 2009; Wang et al., 2004; Liu et al., 

2009; Wang and Vachtsevanos, 2001; Samanta and 

Nataraj, 2008; Tran et al., 2009; Wang, 2007).   

    Machine prognostic methods can roughly be 

categorized into two major classes: model-based (or 

physics-based) and data-driven methods (Jardine et al., 

2006). Model-based methods use mathematical models 

to predict the fault growth trend. Given a proper model 

for a specific system, model-based methods can 

provide accurate prediction estimates. However, it is 

usually difficult to develop accurate fault growth 

models in most real-world applications, especially 

when the process of fault propagation is complex 

and/or is not fully understood. Data-driven methods, on 

the other hand, employ the collected condition data to 

derive the fault propagation models.  

    In data-driven methods, the integration of neural 

networks and fuzzy systems, such as ANFIS, has been 

employed successfully in the prediction of machine 

condition degradation, where the prediction is carried 

out via a fuzzy system while its parameters are 

optimized through an artificial neural network (Zhao, 

2009; Wang et al., 2004; Liu et al., 2009; Samanta and 

Nataraj, 2008; Tran et al., 2009; Wang, 2007). The 

superior forecasting performance of these predictors 

has been exhibited as compared to conventional neural-

network-based predictors, i.e. radial-basis-function and 

recurrent-neural-network based models (Zhao, 2009; 

Wang et al., 2004). These studies also claimed that the 

ANFIS is a reliable and robust condition predictor that 

can capture the system’s new dynamics quickly and 

accurately. However, all of these works only focused 

on the short-term condition prediction and the RUL 

prediction study is missed.  
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    Recently, particle-filtering-based prognostic 

approaches have been successfully employed in real-

world applications (Orchard, 2009). In these 

applications, mathematical models have been 

established to describe the fault propagation process. 

However, the derivations of these models are complex 

and require expert knowledge about the degradation 

process (such as a detailed Finite Element Analysis 

model) to estimate the values of the parameters of the 

fault growth model. Moreover, note that the fault 

propagation model adopted in these works is a first-

order hidden Markov model, where the system’s 

current state depends only on the previous state. In 

many applications, however, the assumption of a first-

order Markov model requires to augment considerably 

the dimension of the state vector to properly describe 

the trend of the fault growth. In that case, it is more 

appropriate to consider a higher-order model where the 

current state not only depends on the previous state but 

also on multiple p-step-before states; i.e., 4,3,2=p . 

To overcome these limitations, in this work, machine 

RUL prediction is carried out via a high-order particle 

filter, where a combination of the ANFIS and the 

process noise, as a high-order hidden Markov model, is 

employed to represent the fault growth process.   

    This paper provides a new approach for machine 

RUL prediction via the combination of the ANFIS and 

high-order particle filtering, which integrates the data-

driven method (ANFIS) in the state-estimation 

framework (Particle filtering). Note that real-time data 

is utilized in the high-order particle filter to update the 

pdf of RUL, which improves the prediction accuracy. 

    The remainder of this paper is organized as follows: 

in the next section, the ANFIS is introduced to perform 

machine RUL prediction. Section 3 presents the 

proposed prediction approach. Bayesian estimation is 

introduced first, a high-order hidden Markov model and 

its posterior pdf are presented, and the integration of 

the ANFIS in a high-order particle filter is 

demonstrated. Then, the overall prediction algorithm is 

illustrated in detail. Section 4 presents the experimental 

results of the proposed approach and the performance 

comparison with the ANFIS predictor is given. Section 

5 provides some concluding remarks. 

2. THE ANFIS PREDICTOR 

    Recently, the ANFIS has been applied widely in the 

field of machinery condition prognosis, since it is able 

not only to learn highly nonlinear dynamics of 

machines without the necessity of deriving complex 

mathematical models but also to adapt itself to 

machines’ new dynamics and capture machines’ new 

dynamical behaviors quickly and accurately. For this 

predictor, the input variables, { }
trtrtrtnrt

xxxxx
−−−− 23

L , 

and the output/forecasting variable, rtx + , are 

“monitoring indices” that characterize the machine 

health condition, where r denotes the prediction step, 

i.e. when r=1, 
rt

x
+

means a one-step-ahead prediction 

value, and n defines the number of previous time steps, 

i.e. when n=3, the values of three previous time steps 

and the current value are used to carry out the 

prediction. For example, when r=1 and n=3, the input 

variables are { }
tttt

xxxx
123 −−−

 and the output is
1+t

x . 

    In general, there are two methods to model the 

ANFIS predictor. One is direct prediction and the other 

is recursive prediction. For short-term prediction, direct 

prediction method is always used, i.e. when r=5 and 

n=3, the input variables are { }tttt xxxx 51015 −−−  and the 

output is 5+tx ; for RUL prediction, recursive prediction 

method is always utilized since we don not know how 

many step-ahead predicted values can reach the health 

condition threshold value (or failure indicator) at every 

prediction time instant. The detailed illustration of 

recursive prediction method is given below: 

 

( )ntttt xxxfx −−+ = ,,,ˆ
11 K                          (1) 

 

where t denotes current time instant, 1
ˆ

+tx is the 

predicted value at next time instant t+1, f represents the 

ANFIS predictor.  

To predict the value at time instant t+2, we use 

 

( )112 ,,,ˆˆ
+−++ = ntttt xxxfx K                          (2) 

 

where the previous predicted value 1
ˆ

+tx  instead of the 

real value 1+tx  is used to carry out the prediction for 

time instant t+2. 

Similarly, long-term prediction can be performed in 

this way until the predicted value reaches a predefined 

failure threshold, like 

 

Tlt xx ≥+
ˆ                                    (3) 

 

where Tx  denotes the monitoring condition threshold 

value that indicates machine failures. 

    Therefore, according to Eqs. (1)-(3), the machine 

RUL at current time instant t can be obtained that 

equals to l.  

    Here, a hybrid learning algorithm that combines the 

gradient descent method and the least squares method 

is utilized to train the ANFIS. The training process is 

terminated when the number of training iterations has 

reached a predefined value or the desired training error 
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has been achieved.  

    The ANFIS predictor is a fuzzy Sugeno model, 

whose parameters are optimized via neural network 

training and structure is determined by expert 

knowledge (Jang et al., 1997). Like many ANFIS 

applications in machinery prognosis (Zhao et al., 2009; 

Wang et al., 2004; Samanta and Nataraj, 2008; Tran et 

al., 2009), four input variables { }
trtrtrt

xxxx
−−− 23

 are 

chosen and each variable is assigned with two 

Membership Functions (MFs), namely small and large. 

Therefore, sixteen fuzzy IF-THEN rules are generated 

to perform the prediction, as shown below: 

Rule j:  

IF ( )j

rt Aisx 13−  AND ( )j

rt Aisx 22−  AND ( )j

rt Aisx 3−  

AND ( )j

t
Aisx

4
,  

THEN j
t

j
rt

j
rt

j
rt

jj cxcxcxcxcy 5432231 ++++= −−− ;  

.16,,2,1 K=j  

where jy  is the prediction result according to the jth 

fuzzy rule, j

i
A is the fuzzy set associated with the ith 

input variable in the jth fuzzy rule, and j

k
c  is the 

parameter that is determined by the learning process, 

here, 4,,2,1 K=i  and .5,,2,1 K=k  

    

    The ANFIS predictor consists of five layers. Its 

architecture is schematically shown in Fig. 1. The 

signal propagation is illustrated as follows: 

    In the following description, )(k

i
x  defines the ith node 

input in the kth layer, and )(k

i
y  denotes the ith node 

output in the kth layer, 

    Layer 1: The input signals transmit directly to the 

next layer without any computation. The outputs of this 

layer can be expressed by 

 

.4,,2,1,)1()1(
K== ixy ii                      (4) 

 

    Layer 2: Each node in this layer performs the 

calculation of a MF, small or large. Sigmoid MFs are 

used here, as shown below: 

 

( )
( )( ) .16,,2,1

,4,,2,1
,

exp1

1
)2()1()2(

)1()2(

K

K

=

=

−−+
=

j

i

mxb
xu

ijiij

ij
iA      (5)  

                             

where 
)2(

j
iA

u is the output signal with respective to the ith 

input variable )1(

i
x in the jth fuzzy rule, )2(

ijb and 
)2(

ij
m  are 

the parameters of the sigmoid function and referred to 

as premise parameters.  

    Layer 3: An AND operator is chosen as a fuzzy T-

norm operation in this layer, which is described as  

 

( ) .16,,2,1,4,,2,1,)1()2()3(
KK ==∏= jixuy iAi

j j
i

      (6)  

                                         

where the output )3(

jy  represents the firing strength of 

the jth fuzzy rule.  

    Layer 4: This layer performs the normalization 

operation for all the rule firing strengths. The resulting 

output is given by  

 

.16,,2,1,
)3(

)3(

)4(
K==

∑
j

y

y
y

j

j

j

j                  (7) 

                                                      

    Layer 5: After a linear combination of the input 

signals, the output of the ANFIS is calculated by:  

 

.16,,2,1,)( 5432231
)4(

K=++++=∑ −−−

+

jcxcxcxcxcy

x

j

j
t

j
rt

j
rt

j
rt

j
j

rt

   

(8) 

 

where },,,,{ 54321

jjjjj ccccc are a set of unknown 

parameters called consequent parameters. 

    In order to improve the training efficiency and avoid 

local minima, a hybrid learning algorithm that 

combines the gradient descent method and the least 

squares method is used to tune optimally the 

parameters of the ANFIS. The consequent parameters 

},,,,{ 54321

jjjjj ccccc  are optimized by using the least 

square method, whereas the premise parameters, 
)2(

ijb and )2(

ijm , are updated via the gradient descent 

method. 

3. PROPOSED PREDICTION ALGORITHM  

The proposed prediction approach is discussed in this 

section. The Bayesian estimation technique using an 

m
th

-order hidden Markov model is presented first. 

Then, the ANFIS predictor described above with the 

 

 
 

Figure 1:   Architecture of the ANFIS predictor; S is a sigmoid 

function; O is an operator defined in Eq. (8). 
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process noise, as the fault growth model, is integrated 

with a high-order particle filter. Lastly, a thorough 

description of the algorithm steps is presented.   

3.1 Bayesian Estimation Using m
th

-Order Markov 

Models  

Through the use of noisy observation data, a Bayesian 

estimation technique is intended to estimate a state 

vector governed by a dynamic nonlinear state-space 

model (or a hidden Markov model). Since the 

streaming measurement data for prognosis is available 

at discrete times via digital devices, the present study is 

focused only on discrete-time systems.     

    The evolution of the machine condition can be given 

by a hidden Markov model. In general, a first-order 

Markov model is used to describe the fault growth 

process. Here, instead of using a first-order model, an 

m
th

-order Markov model is employed since the 

condition evolution may depend not only on the 

previous state but also on several p-step-before states. 

The following presents the m
th

-order model    

 ( )121 ,,,, −−−−= kmkkkkk xxxfx ωK                    (9)  

where kx  is the model state at time k, mkx −  is the state 

at time k-m, 1−kω  is an i.i.d. process noise at time k-1, 

and kf  is a possibly nonlinear function.  

    The measurement model is expressed by 

 

( )kkkk vxhy ,=                                 (10) 

                                                                      

where ky is the measurement, kv  is an i.i.d. 

measurement noise, and kh  is a possibly nonlinear 

function that denotes the non-linear mapping 

relationship between the model states and the noisy 

measurements. 

    The state estimation is achieved recursively in two 

steps: prediction and update. The prediction step aims 

to obtain the prior pdf of the state for the next time 

instant k by using the following equation: 

 

( ) ( ) ( ) 1:01:11:01:1:1:0 −−−−−− ∫= kkkkmkkkk dxyxpxxpyxp  (11)  

                                      

where the probabilistic process model ( )1: −− kmkk xxp  is 

defined via Eq. (9), and ( )1:11:0 −− kk yxp  represents the 

state pdf at time k-1. Note that in Eq. (11), the fact that 

( ) ( )1:1:11:0 , −−−− = kmkkkkk xxpyxxp  is used according to 

the Markov properties on the moral graph of the m
th

-

order hidden Markov model (Whittaker, 1990).  

    When a new measurement becomes available, the 

update step is carried out. By considering the new 

measurement, the prior state pdf, the likelihood 

function ( )kk xyp , and Bayes’ rule, the posterior state 

pdf can be calculated by  

 

( )
( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )1:11:01:

1:1

1:11:01:

1:1

1:1:0

:1:0

−−−−

−

−−−−

−

−

∝

=

=

kkkmkkkk

kk

kkkmkkkk

kk

ykkk

kk

yxpxxpxyp

yyp

yxpxxpxyp

yyp

yxpxyp
yxp

    (12) 

                                             

where the normalizing constant is 

 

( ) ( ) ( ) kkkkkkk dxyxpxypyyp 1:11:1 −− ∫=  

 

and the likelihood function ( )kk xyp  is defined by the 

measurement model (10). 

3.2 Integration of ANFIS in High-Order Particle 

Filtering  

    The recursive computation of the posterior state pdf 

( )kk yxp :1:0  is more conceptual than practical, since the 

integrals in Eqs. (11) and (12) do not have an analytical 

solution in most cases. Therefore, many estimation 

methods have been developed to solve this problem 

(Arulampalam et al., 2002). In this paper, a high-order 

particle filter is employed to approximate the optimal 

Bayesian solution.    

    In general, particle filtering is a Monte Carlo method 

that employs a Sequential Importance Sampling 

algorithm. The posterior pdf can be approximated by a 

set of random samples (or particles) with associated 

weights, as shown below (Arulampalam et al., 2002) 

( ) ( )i

kk

N

i

i

kkk xxwyxp :0:0

1

:1:0 −≈∑
=

δ                (13)                                                          

where N is the total number of particles, 

{ }kjxx jk ,,1,0,:0 K==  is the set of all states up to time 

k, { }Nixi

k ,2,1,:0 K=  is a set of particles with associated 

weights { }Niwi

k ,,2,1, K= , and ( )•δ  is the Dirac delta 

measure.  

    Based on the importance sampling principle, if the 

particles i

kx :0 are drawn from an importance 

density ( )kk zxq :1:0 , the normalized weights are updated 

as (Arulampalam et al., 2002) 
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( )
( )k

i

k

k

i

ki

k
yxq

yxp
w

:1:0

:1:0
∝                        (14)                                                                      

    Moreover, if the importance density is chosen to 

factorize such that 

 

( ) ( ) ( )
( ) ( )1:11:01:

1:11:0:11:0:1:0

,

,

−−−−

−−−

=

=

kkkkmkk

kkkkkkk

yxqyxxq

yxqyxxqyxq
           (15) 

                                         

By substituting Eqs. (12) and (15) into (14), we obtain 

 

( ) ( )
( )k

i

kmk

i

k

i

kmk

i

k

i

kki

k

i

k
yxxq

xxpxyp
ww

,1:

1:

1

−−

−−

−∝                   (16) 

                                                         

If we simply choose  

 

( ) ( )i

kmk

i

kk

i

kmk

i

k xxpyxxq 1:1: , −−−− =                  (17) 

                                                             

and substitute Eq. (17) into (16), then yields 

 

 ( )i

kk

i

k

i

k xypww 1−∝                              (18) 

                                                               

    In order to integrate the ANFIS predictor in the 

particle filtering framework, we set m=4, that is, a 4
th

-

order particle filter is used since the ANFIS, defined by 

Eqs. (4)-(8), has four previous state values as the 

inputs. Therefore, the 4
th

-order hidden Markov model 

that presents the fault growth process is described as 

follows:  

 

     1
ˆ

−+= kkk xx ω                                 (19) 

                                                                  

( )4321 ,,,ˆ
−−−−= kkkkkk xxxxgx                       (20)  

                                                       

where ( )4321 ,,, −−−− kkkkk xxxxg  is a nonlinear function 

denoted by the ANFIS. 

The current and three previous states of the hidden 

Markov model, i.e., 4321 ,,, −−−− kkkk xxxx  in Eq. (20), are 

the four inputs of the ANFIS. Accordingly, the output 

of the ANFIS kx̂ plus its process noise 1−kω is the state of 

hidden Markov model at the next time, as shown in Eq. 

(19). 

3.3 Algorithm Steps  

The detailed algorithm steps for RUL prediction are 

stated as: 

    Step 1: The ANFIS is trained via condition data pairs 

to model the fault propagation process. 

    Step 2: The fault growth model (19), represented by 

the ANFIS and the process noise, is 

employed with a 4
th

-order particle filter to 

draw a set of particles. According to the 

values of the particles and current weights, 

one-step-ahead condition prediction can be 

carried out via: 

 

i

k

N

i

i

kk xwx ∑ =
−=

1
1

~                   (21) 

 

                 The long-term (p-step-ahead) condition 

prediction also can be computed by 

successively taking the expectation of the 

model update Eq. (19) for every future time 

instant, considering the calculated condition 

value associated to each particle as initial 

condition value for the next step prediction, 

as shown in: 

 

  [ ] .ˆ,~
1−+++++ +== pk

i

pk

i

pk

i

pkpk xxxEx ω      (22) 

                                                               
                 When all of the predicted values associated 

with each particle reach the predefined 

condition threshold, the expected value of 

RUL can be obtained from the RUL pdf, as 

shown below: 

 

 

Figure 2: Sequential Importance Sampling and Resampling 

algorithm, where Tk ,,3,2,1 K=  
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i

k

N

i

iwlRUL 1

1

−

=

∑=               (23) 

                 where N is the total number of particles, il  is 

the RUL of the ith particle, and i

kw 1−  is the 

weight of the ith particle at time instant k-1,   

                  When a new measurement becomes 

available, the weights can be calculated 

according to Eq. (18). If severe degeneracy 

does exist, resampling is performed. 

    Step 3: Repeat Step2 until machine RUL prediction 

is complete. 

    Here, step 2 can be considered as the execution of a 

Sequential Importance Sampling and Resampling 

algorithm that is summarized in Fig. 2. The flowchart 

of the proposed algorithm is shown in Fig. 3. 

4. EXPERIMENTAL STUDIES  

The proposed prediction algorithm is validated via 

vibration data from a seeded fault test for a UH-60 

helicopter planetary gear plate.   

    In order to evaluate the prediction performance, the 

average prediction error e employed in (Tian et al., 

2009) is used: 

 

∑
=

−=
n

k

kk yy
n

e
1

ˆ
1

                           (24) 

                                                          

where n is the total number of the time instants at that 

RUL prediction is carried out, ky  and kŷ are the actual 

and predicted RUL values at time instant k, respectively 

    The smaller value of e indicates higher prediction 

accuracy. 

4.1 System Condition Monitoring  

The main transmission of UH-60 “Black Hawk” 

employs a five-planet epicyclic gear system. Recently, 

a crack in the planetary carrier plate was discovered 

during regular maintenance, as shown in Fig. 4. It 

apparently endangers the pilot’s life with a possible 

loss of the aircraft, and thus a condition prognosis 

scheme is needed to carry out accurate prediction of the 

asset’s RUL in a real-time manner so that timely 

maintenance can be implemented before catastrophic 

events occur. 

    In order to derive an appropriate condition 

monitoring index (or feature), the gearbox is mounted 

on a test cell with a seeded crack fault on the planetary 

gear carrier. An accelerometer is mounted at a fixed 

point at position 0=θ  on the gearbox to collect the 

vibration signals, as shown schematically in Fig. 5. 

 
 

Figure 3: Flowchart of proposed algorithm for machine RUL prediction 

 

  

       
     

Figure 4: Crack of planetary gear carrier plate  
 

     

             

                   

  Figure 5: Configuration of an epicyclic gear system 
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Surrounding the sun gear, the planet gears ride on the 

planetary carrier and also rotate inside the outer ring 

gear (or annulus gear). Due to the complex operational 

environment and the large number of noise sources in 

the system, a blind deconvolution de-noising algorithm 

has been developed to improve the signal-to-noise 

ratio. The sideband ratio is set as the condition 

monitoring index, which is calculated by the ratio 

between the energy of the NonRMC and all sidebands 

(Zhang et al., 2008): 

( )
( )∑ ∑

∑ ∑

= −=

= −=

+
=

m

k

X

Xg

m

k

X

Xg

RMCNonRMC

NonRMC
XSBR

1

1
   (25) 

 

where RMC is the Regular Meshing Components or 

apparent sidebands, and NonRMC represents the Non 

Regular Meshing  Components. 

4.2 Performance Evaluation  

The initial length of the seeded crack on the carrier 

plate is 1.344 inches and it grows with the evolving 

operation of the gearbox. The gearbox operates for a 

period of 1000 Ground-Air-Ground (GAG) cycles, and 

each cycle lasts about 3 minutes at three different 

torque levels: 20%, 40% and around 100%. Every two 

GAG cycles, the vibration feature (or monitoring 

index) at 100% torque level is extracted and used for 

training and testing the ANFIS. Here, failure is defined 

when the crack reaches 6.21 inches (or at the 714
th

 

GAG cycle), i.e., the crack reaches the edge of the 

carrier plate. Accordingly, the failure threshold values 

for monitoring indices at different torque levels are 

obtained. The RUL predictions are carried out from the 

366
th

 GAG cycle, using the current estimate for the 

state pdf as initial condition. The predictions are 

terminated at the 714
th

 GAG cycle when a failure 

occurs.      

    Fig. 6 shows the prognosis results of the proposed 

algorithm at the 366
th

 GAG cycle. The above subfigure 

indicates each plausible long-term prediction trajectory 

associated to every particle with a different color. The 

horizontal blue line defines the failure threshold value, 

i.e., 3.46 at 100% torque level. When each predicted 

trajectory reaches this threshold, the resulting time 

instants form a Time To Failure (TTF) pdf, as shown in 

the below subfigure. The vertical black line denotes the 

TTF expectation. In this example, the expected RUL is 

336 GAG cycles that is very close to the real RUL 348 

GAG cycles.     

    Fig. 7 shows the RUL prediction results for the 

ANFIS and proposed algorithm using the features at 

100% torque level. Both methods provide satisfactory 

prediction results. But the proposed algorithm 

apparently outperforms the ANFIS. The average RUL 

prediction error e  for the proposed predictor is 

20.3448; the error for the ANFIS is 26.3218.  

    When the high-order particle filter in the proposed 

predictor is replaced by a conventional one, that is, the  

fault growth model becomes a first-order Markov 

model (note that this model is also trained via the  

ANFIS), the RUL prediction results using the features 

at 100% torque level are shown in Fig. 8.  As can be           

seen, its prediction accuracy is much lower than that of 

the proposed predictor (Fig 7(a)), which means that the 

High-Order Particle Filters: Non-Linear System State Prediction 

                                                                            
    Time (x2 GAG) 

 
  

Normalized Probability Density Function of TTF 

   
Number of GAG cycles (x2 GAG)         

 

Figure 6: Prognosis results at the 366th GAG cycle using proposed 

algorithm, TTF means time to failure. 

M
o

n
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o
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n
g
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n

d
ex
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trained first-order model can not accurately capture the 

long-term prediction dynamics of the fault. 

5. CONCLUSION 

    This paper proposes a novel machine remaining 

useful life (RUL) prediction approach using adaptive 

neuro-fuzzy inference systems (ANFIS) and high-order 

particle filtering. Due to the inherent characteristics of 

capturing new dynamics of machines quickly, the 

ANFIS is used to model the fault propagation trend. A 

high-order particle filter is developed to integrate the 

ANFIS, as an m
th

-order hidden Markov model, to carry 

out the predictions. Experimental data from the main 

gearbox of a UH-60 helicopter subjected to a seeded 

carrier plate crack fault is used to evaluate the 

prediction performance of the proposed approach. The 

results demonstrate that its prediction accuracy is 

higher than that of the ANFIS predictor and the 

particle-filter-based predictor where the fault growth 

model is a first-order model that is trained via the 

ANFIS. 
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