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ABSTRACT 

Accurate characterization and prediction of 
loading, while properly accounting for 
uncertainty, are essential for probabilistic 
fatigue damage prognosis. Three different 
techniques, including rainflow counting, the 
Markov chain method, and autoregressive 
moving average (ARMA) method, are 
reviewed for stochastic characterization and 
reconstruction of the fatigue load spectrum for 
prognosis. The ARMA method is extended by 
introducing random coefficients and 
probabilistic weights, to account for the 
uncertainty in the selection of models, inherent 
variability of loading, and uncertainty due to 
sparse data. A continuous model updating 
framework based on usage monitoring data is 
developed and applied to all the three 
techniques mentioned above. The relation 
between prediction accuracy and updating 
period is evaluated quantitatively. A 
quantitative model validation metric is 
proposed for assessing the accuracy of load 
prediction.* 

1 INTRODUCTION 

The fatigue process of mechanical components under 
service loading is stochastic in nature. Therefore, 
sampling based methodologies for uncertainty 
quantification and propagation in fatigue analysis have 
been developed (Doebling & Hemez, 2001; Farrar & 
Lieven, 2007; Gupta & Ray, 2007; Pierce, Worden, & 
                                                           
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

Bezazi, 2008; Sankararaman, Ling, Shantz, & 
Mahadevan, 2009), to address probabilistic crack 
growth and life prediction. Three types of uncertainty 
sources, including natural variability, data uncertainty, 
and model uncertainty, have been considered. Among 
the various sources of uncertainty, past experimental 
studies have suggested that the variability and the 
uncertainty from load spectrum have significant 
influence on crack growth behavior and fatigue life 
(Moreno, Zapatero, & Dominguez, 2003; Zapatero, 
Moreno, Gonzalezherrera, & Dominguez, 2005; Wei, 
Delosrios, & James, 2002). In addition to the extensive 
efforts that have been devoted to generate deterministic 
load spectra (Heuler & Klatschke, 2005; Xiong & 
Shenoi, 2008), it is desirable to characterize the 
uncertainty in the load spectrum based on usage 
monitoring data, and provide future load prediction for 
damage prognosis. 
 Two types of methods have been developed to 
model the fatigue load spectrum, namely cycle 
counting methods and random process methods. The 
cycle counting methods employ counting algorithms on 
load amplitude data based on certain definitions of 
cycles, and then extract counting matrices containing 
the information on the number of cycles, the mean 
value and the range of each cycle (ASTM, 2005). 
Among various cycle counting methods, the rainflow 
counting method has been considered as the most 
efficient and accurate (Dowling, 1972). Further, 
following certain rules, load history can be regenerated 
from the counting matrices (Khosrovaneh & Dowling, 
1990). The cycle counting methods are simple to 
implement and can be directly used to estimate fatigue 
damage due to the applied loading, by using an S-N 
curve-based fatigue damage cumulative law, such as 
the Palmgren-Miner linear rule (Miner, 1945). It should 
be noted that the counting matrices contain no 
information on the correlation between load cycles and 
hence the corresponding reconstruction is simply a 
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procedure of randomly rearranging cycles with exactly 
the same numbers as the original load spectrum data.  
 The random process methods characterize fatigue 
load spectrum as a stochastic process. The Markov 
chain method treats loading as a discrete time Markov 
chain with stationary transition probability (Krenk & 
Gluver, 1989; Rychlik, 1996). The advantage of the 
Markov chain method is that it retains the correlation 
between adjacent turning points (load extrema), and 
simulations of load spectrum are fast once the transition 
probability matrix has been established. Note that load 
amplitudes are discretized into different levels in the 
Markov chain method, as well as the cycle counting 
method, and hence a relatively large transition matrix is 
required if the variation of loading amplitude is high. 
Further, it is assumed that the next turning point 
depends only on the previous turning point. This 
assumption may not be valid if strong autocorrelations 
exist in the load spectrum. 
 Frequency domain-based methods and time domain-
based methods have been investigated to model the 
load spectrum as a random process with continuous 
state space (i.e., load extrema are not discrete) and 
more flexible autocorrelation assumption. Frequency 
domain-based methods characterize loading with power 
spectral density, spectral moments and bandwidth 
parameters, and these characteristics are related directly 
to fatigue damage estimation (Tovo, 2002; Benasciutti 
& Tovo, 2005; Benasciutti & Tovo, 2007). The 
application of frequency domain-based methods to 
fatigue damage prognosis is not straightforward since 
prognosis-related issues, such as risk assessment and 
management, inspection and maintenance scheduling, 
operational decision-making, etc., are mainly defined in 
the time domain. The autoregressive moving average 
(ARMA) method is based on time series analysis and 
characterizes the fatigue load spectrum in the time 
domain. Available studies identify the order of ARMA 
models based on some criteria, and then estimate the 
value of the unknown parameters of models using time 
series data. The parameters are assumed to be 
deterministic and the variability and the uncertainty of 
loading are represented by a random noise term (Leser, 
Thangjitham, & Dowling, 1994; Leser, Juneja, 
Thangjitham, & Dowling, 1998). Several important 
issues remain unsolved. (1) It is unclear what order of 
model should be selected when several model orders 
have similar performance under identification criteria, 
and sometimes it is desired to incorporate multiple 
competing models. (2) The variability in loading comes 
from various environmental factors and the 
mechanisms underlying the load spectrum can be 
complicated, and hence it may not be appropriate to 
lump all the variability into one single noise term. (3) 
The data used to estimate the ARMA model 
coefficients may not be sufficient and cause additional 

uncertainty. (4) Rigorous model validation is desired 
before the ARMA method is applied to prognosis. 
 It should be noted that all of the three 
aforementioned methods are applicable for stationary 
load spectra, i.e., the statistics of loading are assumed 
to be constant with respect to time. In practice, the 
loading condition may be non-stationary. Leser et al. 
(Leser, Thangjitham, & Dowling, 1994; Leser, Juneja, 
Thangjitham, & Dowling, 1998) used a truncated 
Fourier series to account for the non-stationary part of 
the loading history and model the stationary part with 
ARMA models. The Fourier series fitted from a time 
series data is periodic with the length of the data as 
period, but the real load history may not be periodic. 
Therefore, a more general modeling framework that 
accounts for the non-stationary load spectrum is 
desired. 
 The first part of this paper provides a brief review of 
stochastic characterization and reconstruction of fatigue 
load history using the aforementioned methods, i.e., 
rainflow counting, the Markov chain method, and the 
ARMA method. Further, a probabilistic weighting 
method is applied to the ARMA model to incorporate 
multiple competing models. The coefficients of ARMA 
models are assumed to be random variables with 
unknown probability distributions to represent the 
variability of loading and the uncertainty from sparse 
data. Combining the probabilistic weights and the 
random coefficients, the ARMA model of fatigue load 
history is formulated. 
 In the second part of this paper, a continuous model 
updating framework based on usage monitoring data of 
load amplitudes is proposed to account for the time-
variant features of the load history. Direct updating of 
the characteristic matrices is applied to the rainflow 
counting method and the Markov chain method. A 
Bayesian approach is used to update the probabilistic 
weights and the coefficients of ARMA model. The 
relation between updating period and the accuracy of 
model predictions is evaluated quantitatively. Further, a 
quantitative model validation metric, namely the Bayes 
factor, is proposed to assess the validity of ARMA 
model predictions with respect to usage monitoring 
data. The proposed techniques are illustrated using 
numerical examples. 

2 STOCHASTIC CHARACTERIZATION OF 
FATIGUE LOAD SPECTRUM 

Section 2 presents three different methods to 
characterize fatigue load spectrum based on available 
load amplitude data. Based on the models constructed, 
random samples of the anticipated load spectrum can 
be generated and used in stochastic fatigue damage 
prognosis.  
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2.1 Rainflow counting method and stochastic 
reconstruction 

Of the well established counting methods, the two-
parameter rainflow counting method has the greatest 
significance for fatigue crack growth analysis (Heuler 
& Klatschke, 2005) as it fully captures the basic 
damaging content (number, amplitude, and mean 
values) contained within the load history, and can be 
used for uncertainty quantification of the variable 
amplitude load spectrum.   
      Following a certain set of rules (ASTM, 2005), the 
rainflow counting method extracts and counts cycles of 
various amplitudes and mean values, leaving only a 
residue behind. These load cycles are considered to be 
the basic elements of a load sequence. The final 
counting result is contained in a matrix A of size k * k, 
in which the element aij gives the number of counted 
cycles from load level i to load level j, and k is a user 
defined number of load discretization levels, usually set 
to 32, 64, or 128 depending on accuracy and 
computational efficiency desired (Amzallag, Gerey, 
Robert, & Bahuaud, 1994). 
      Although cycle counting methods have typically 
been viewed as deterministic methods for 
characterizing load histories, the obtained results from 
such methods can be easily transformed for use within 
a statistical framework. This process can be 
accomplished by fitting the elements in the rainflow 
matrix to a joint distribution.  Both the "from" load 
level and "to" load level as determined from the 
rainflow counting procedure are considered as random 
variables, say x and y respectively. Assuming that the 
rainflow counting results are discrete values, the joint 
probability mass function (PMF) of x and y is denoted 
as p(x,y) and the joint cumulative distribution function 
(CDF) F(x,y) given by (Haldar & Mahadevan, 2000): 
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      The variables x and y can also be approximated as 
continuous variables with their joint PDF denoted by 
f(x,y) and the joint CDF F(x,y) given by: 

  (2) 

      This idea allows the extension of the well 
understood deterministic rainflow counting procedure 
to statistical analysis and quantification of the load 
history, which is of importance in fatigue crack growth 
analysis. By using the rainflow counting procedure in 
combination with statistical distribution fitting, a 
complex load history can be easily broken down into its 
elementary cycles and efficiently represented by a joint 
probability density function. 
      The basic objective of the stochastic rainflow 
reconstruction algorithm is to create a systematic 
method to reconstruct a load history given a rainflow 

matrix and its residual.  Dressler et al. (Dressler, Hack, 
& Krüger, 1997) presented an algorithm for 
reconstruction such that an optimal randomization of 
the reconstructed series is attained. Rainflow 
reconstructions are based on the idea of extracting 
cycles from the rainflow matrix and placing them in 
valid locations in the history under construction. 
Several rules are defined to ensure that cycles are 
inserted within the residual in such a way as to yield a 
similar rainflow matrix as the original signal 
(Khosrovaneh & Dowling, 1990).  Reconstruction is 
performed in such a way that fatigue cycles are 
reinserted into the residual in the order of their 
respective amplitudes, with largest amplitudes inserted 
first. For each cycle within the rainflow matrix, all of 
the possible locations for reinsertion are determined, 
each is given an equal probability, and then a sample 
location is randomly generated. The cycle is then 
deleted from the rainflow matrix, and the cycle with the 
next largest amplitude is considered. This process is 
repeated until the rainflow matrix is empty and all 
cycles have been reinserted into the residual.  
Numerous random sequences can be generated in this 
manner, and the distribution of life can be estimated 
based on sequence effects.  
      Instead of calculating the fatigue life of a 
component based on a single load sequence, stochastic 
reconstruction allows for statistical evaluation of the 
fatigue life based on numerous load sequences that 
have the same statistical properties as the original 
spectrum. It should be noted that this method assumes 
that the original spectrum is representative of the 
typical load spectrum experienced by the component 
since all reconstructions are based on the rainflow 
matrix calculated from the original signal. 

2.2 Markov chain method and transition 
probability matrix 

For a realistic loading history, not only the load 
amplitude at a certain time instant is random, the load 
amplitudes at adjacent time instants may also be 
correlated, e.g., the amplitude at time instant Tk can 
affect the amplitude at time instant Tk+1. Given this 
assumption, fatigue loading history with m discrete 
load levels is modeled as a discrete time Markov chain 
{Xn}, which is a Markov stochastic process whose state 
space (the set of discretized load levels) is a finite set, 
and for which n is a discrete time instant ( n = T0, T1, 
T2, …, ) (Karlin, 1966). Let event Ek,i denote that the 
loading amplitude at time instant Tk is equal to load 
level i, and let event Ek+1,j denote that the loading 
amplitude at Tk+1 is equal to load level j. A one-step 
transition probability  between Ek,i and Ek+1,j  is 
defined as the probability of Ek+1,j, given Ek,i, i.e., 
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      With a further assumption that the one-step 
transition probability is independent of the time 
instants, i.e., the transition probability between Ek,i and 
Ek+1,j depends on i and j only, a stationary Markov 
chain transition probability matrix is constructed as: 
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where Pi,j is the one-step stationary transition 
probability between Ek,i and Ek+1,j, and it holds the same 
value for all time instants Tk. 
      Note that fatigue load spectrum is a series of 
extreme points, i.e., it is formed by minimum – 
maximum – minimum - …, etc. Due to this cyclic 
feature, the transition matrix P is split into two 
triangular matrices Pu and Pl, as follows: 

   (5) 
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      The elements of the upper triangular matrix Pu are 
the transition probabilities from minima to maxima, 
whereas the elements of the lower triangular matrix Pl 
are the transition probabilities from maxima to minima. 
      Given a load spectrum with discrete load levels 
from time T0 to Te, the element of the stationary 
Markov chain transition probability matrix Pi,j can be 
estimated using the number of occurrences that the 
event Ek,i is followed by the event Ek+1,i, i.e., 

    (6) 
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      Note that the matrix C formed by Ci,j is also a 
counting matrix but with a simple counting rule 
different from rainflow counting. Once the transition 
matrix is obtained, random samples of loading history 
can be conveniently generated from a given initial 
extreme point. For example, if the load amplitude at the 
current time instant is equal to level i, the amplitude at 
the next time instant can be randomly generated based 

on the ith row of the transition probability matrix using 
sampling techniques. 

2.3 ARMA process loading 

2.3.1 Autoregressive moving average (ARMA) 
model 

The ARMA model is a mix of the autoregressive (AR) 
and moving average (MA) models. It is widely used in 
time series analysis for its flexibility. There is no 
specific pattern assumption in the ARMA model except 
for its order. Only the information from time series data 
is used to construct the model. 
      The autoregressive (AR) model represents the value 
at the current time instant in terms of the values at the 
previous time instants. Hence, it is capable of capturing 
the autocorrelation between time series. A pth order AR 
model can be written as: 

 (9) 
where Yt is the value at time instant t; Yt-i is the value at 
time instant t-i ( there are i time lags before t); φi is the 
coefficient of the AR model; εt is the random noise 
term with respect to time instant t. 
      The moving average model represents the deviation 
of the series at the current time instant from its mean 
value as a linear combination of errors in the past time 
instants. A qth order MA model can be written as: 
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where μ is a constant which can be considered as the 
mean value over time; εt-i is the random noise term at 
time instant t-i.  
      Combining a pth order AR model and a qth order 
MA model, an ARMA(p, q) model is obtained as: 
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2.3.2 Identification of ARMA model 
The first step to build an ARMA model is to identify its 
orders p and q. The sample autocorrelation function and 
the sample partial autocorrelation function of the 
stationary time series data obtained from differentiation 
is used for this purpose.  
      The autocorrelation function (ACF) for a stationary 
time series Y with mean μ and standard deviation σ is 
defined as:  

 
2

)])([(
σ

μμ
ρ

−−
= +ktt

k
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where the operator E refers to the expected value; ρk is 
the autocorrelation function for time lag k, i.e., the 
correlation between Yt and Yt+k.  
      The partial autocorrelation function (PACF) at time 
lag k is defined as a measure of the correlation between 
Yt and Yt+k without accounting for the effects of the 
values at intermediate time instants (Yt+1,…,Yt+k-1) . 
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Derivation and estimation of the partial autocorrelation 
function are given in (Box, Jenkins, & Reinsel, 1994). 
      It is known that each ARMA model has a unique 
pattern for its ACF and PACF (Hanke & Wichern, 
2005). However, subjectivity is involved while visually 
comparing the sample ACF and PACF with the 
theoretical values. One way to address the 
identification problem is to first select an initial model 
tentatively, and then the parameters and residuals 
associated with the selected model are estimated using 
the least square method. Hereafter, some statistics or 
criteria are used to check for adequacy; if the tentative 
model is shown to be inadequate to represent the data, 
it may be replaced by another model. The Ljung-Box Q 
statistic (Ljung & Box, 1978), which is a function of 
the residual autocorrelations and is approximated as a 
chi-square random variable, is used here to check the 
adequacy of the tentative model. The formula for Q is:   

 ∑
= −
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m kn

rnnQ
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2
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where Qm is a chi-square variable with m-r degrees of 
freedom, and r is the number of the estimated 
parameters in the ARMA model; rk is the residual 
autocorrelation at time lag k; n is the number of 
residuals; and m is the number of time lags considered 
in this test. If the p-value, which is equal to (1 - the 
cumulative probability of Q evaluated at Qm), is not 
large enough, this tentative model is rejected. 

2.3.3 Uncertainty in the usage of ARMA model 
In previous studies (Leser, Thangjitham, & Dowling, 
1994; Leser, Juneja, Thangjitham, & Dowling, 1998), 
the coefficients of ARMA model are treated as 
deterministic and estimated through moment estimator. 
The inherent variability of loading amplitude and 
uncertainty from data are incorporated into the single 
noise term εt, which is assumed as an independently 
and identically distributed random process with zero 
mean and constant variance. Mechanical components 
usually work under complicated operating 
environments and many factors contribute to the 
variability of loading amplitudes. The uncertainty due 
to limited amount of data can also be significant. 
Therefore, a single noise term is not always sufficient. 
To accurately capture the aforementioned variability 
and uncertainty, the parameters - φ and ω - of ARMA 
model, along with the noise term εt, can be assumed to 
be random variables. At the beginning of prognosis, if 
no information about the probability distributions of φ 
and ω is available, a uniform prior distribution may be 
assumed and further calibrated by usage monitoring 
data based on Bayes theorem, which will be explained 
in detail in Section 3.2. 
      Besides inherent variability of loading amplitudes 
and uncertainty from data, additional uncertainty arises 
in the selection of appropriate ARMA model, which 

may be referred to as model uncertainty. In principle, 
there is only one correct model for a particular problem 
(Soares, 1997). However, it may not be obvious that 
which model is the correct one when multiple 
competing models are available. The tentative model 
identification method with the Q statistics illustrated in 
Section 2.3.2 can help eliminate models that are 
insufficient to represent the data, and there may still be 
several competing models left. The risk of choosing a 
single incorrect model may be minimized by 
considering several possible models. A straightforward 
way to incorporate multiple models is to assign a 
probabilistic weight to each of the competing models 
(Zhang & Mahadevan, 2000). The probabilistic weight 
PMi for the model Mi represents the probability of the 
model Mi being correct. Combining the uncertainty in 
the ARMA model parameters and the probabilistic 
weights, the probability density function of the fatigue 
loading amplitude at time t is: 
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where Y-t is the vector containing the model outputs in 
the previous time steps Yt-1, Yt-2 , …, Yt-p, and Mi‘s (i = 
1, 2, …, n) are the competing models. f(Yt|Mi,φi,ωi,Y-t) 
is the conditional probability density function of 
loading amplitude Yt for a given ARMA model Mi and 
its associated parameters φi and ωi, which can be 
derived from Eq. 11. f(Y-t) is the joint probability 
density distribution of loading amplitudes in the 
previous time steps, which is obtained using Eq. 14 in 
the previous time steps. f(φi,ωi) is the probability 
density function of φi and ωi, which can be assumed as 
uniform at the beginning of prognosis if no prior 
information is available. Similarly, all the values of 
probabilistic weights PMi’s can be assumed as 1/n if no 
information is available to support any single model. 
These prior assumptions can be calibrated based on 
usage monitoring data, as will be discussed in Section 
3.2. 
      Once the probability distribution of loading 
amplitude with respect to time instant t is obtained, 
samples of future anticipated loading can be generated 
and applied in probabilistic fatigue prognosis. 

3 STATISTICAL UPDATING OF LOAD 
MODELS BASED ON USAGE MONITORING 
DATA 

The samples of anticipated load spectrum required in 
stochastic fatigue prognosis can be generated through 
the three methods presented in Section 2 based on the 
available data. An assumption underlying the 
application of these methods is that the available data 
fully represent the load spectrum and provides 
sufficient information to predict future loading. This 

 5 



Annual Conference of the Prognostics and Health Management Society, 2010 

assumption is challenged when the available data is 
limited and significant uncertainty exists. Further, the 
characteristics of loading may vary gradually with time, 
due to the change of operating environments of 
mechanical components. A continuous updating 
framework incorporating the load modeling methods is 
therefore proposed in this section based on usage 
monitoring data. Section 3.1 presents a direct updating 
scheme for both the rainflow counting method and the 
Markov chain method. Section 3.2 presents a Bayesian 
approach for updating the ARMA model. 

3.1 Direct updating of the characteristic matrix 

Both the rainflow counting method and the Markov 
chain method characterize fatigue load spectrum with a 
single matrix. In the rainflow counting method, the 
counting matrix stores the number of cycles from one 
load level to another load level; in the Markov chain 
method, the transition probability matrix stores the 
transition probability from one load level to another 
load level. As mentioned in Section 2.1 and 2.2, the 
elements of these two characteristic matrices are 
obtained based on the available load amplitude data, 
and samples of load spectrum can be generated. Once a 
new set of data is collected, the rainflow counting 
method and the Markov chain method are applied to 
obtain updated characteristic matrices. If the pattern of 
new data is different from the previous data, it can then 
be incorporated into the updated characteristic matrices. 
For the rainflow counting method, a new counting 
matrix can be obtained from the new data set, and it can 
be added directly to the previous characteristic matrix 
to obtain an updated matrix. Similarly for the Markov 
chain method, a new C matrix with elements Ci,j as 
shown in Eq. 6 can be derived from the new data set, 
and then the addition of the new C matrix and the 
previous C matrix forms an updated C matrix. An 
updated transition probability matrix can be obtained 
from this updated C matrix as shown in Eq. 7. The 
updated characteristic matrices of these two methods 
can then be used to generate samples of load spectrum 
for the next period of prognosis.  
      The accuracy of simulated load histories from these 
two methods can be evaluated by an average square 
error (ASE): 
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where Yt is the simulated load amplitude at time t, 
whereas YDt is the load amplitude data at time t; T is the 
total length of time. If the value of ASE is small, it 
indicates that the simulated load history is close to the 
real data. 

3.2 Bayesian updating of the ARMA model 

3.2.1 Model Calibration based on the Bayes 
Theorem 

Considering one of the competing ARMA models Mi, 
with the associated parameters φi and ωi, the load 
amplitude Yt is predicted as:  

   (16) 
      Note that the model Mi contains uncertainty from 
the random noise terms εt, εt-1, …, ε0, in addition to the 
variability in its parameters. The noise terms are 
assumed as normal random variables with zero mean 
and variance σε2. The variance σε2 can be estimated by 
comparing the model predictions with available data set 
D, as follows: 
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where YDk is the kth element in the data set, and Ytk is the 
corresponding prediction of the model Mi with given 
values of parameters φi and ωi; n is the number of the 
data points considered. 
      The conditional probability density function 
f(Yt|Mi,φi,ωi,Y-t) of the model output Yt of Mi for given 
values of φi and ωi can be constructed based on Eqs. 
16-17, and the probability distributions of the noise 
terms. Monte Carlo simulation is used in this paper to 
estimated f(Yt|Mi,φi,ωi,Y-t). 
      Assuming a joint prior distribution f(φi,ωi) for φi 
and ωi, the calibrated distribution of φi and ωi given a 
collection of data D, f(φi,ωi |D), is obtained as: 

∫
=

iiiiii

iiii
ii

ddfL
fLf

ωφωφωφ
ωφωφDωφ
),(),(

),(),()|,(    (18) 

where the likelihood function of φi and ωi, L(φi,ωi), is 
the probability of observing the collected data for given 
values of φi and ωi, which is calculated as: 

∫ −−−= ttt
ii

i
ii dfMfL YYYωφYωφ D )(),,,|(),(
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=

−−−=
n

k
ttt

ii
iDk
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1

)(),,,|(),( YYYωφωφ

   (19) 

      By assuming the data points are independent of 
each other, Eq. 19 can be further written as: 

(20) 

      The probabilistic weight of Mi, i.e., the probability 
of Mi being the correct model, can be calibrated using 
Bayes theorem as: 

    (21) 

∑
=

= m

j
jj

ii
i

MPML

MPML
MP

1
)()(

)()(
)|( D

where P(Mi) and P(Mi|D) are the prior weight and 
updated weight, respectively; L(Mi) is the likelihood 
function of Mi, that is, the probability of observing the 
data with the assumption that Mi is the correct model. 
L(Mi) is calculated as: 

 ∫∫= iiiiii
i ddfLML ωφωφωφ ),(),()(  (22) 
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3.2.2 Continuous Bayesian updating of the 
ARMA model 

Model calibration based on the Bayes theorem can be 
applied to the ARMA model continuously with usage 
monitoring data. The updated model can then represent 
the pattern of the latest data without losing information 
contained in the previous data sets. In addition, 
Bayesian updating can reduce the uncertainty in the 
model coefficients and the selection of models as more 
data are used. The continuous Bayesian updating can be 
implemented following five steps as shown below: 
       (1) At the beginning of prognosis, by using the 
initial set of data, the ARMA models satisfying the Q 
statistic based-criteria are identified as competing 
models. If no prior information about the probability 
distribution of the corresponding model parameters, 
uniform distributions are first assumed as the priors. 
Similarly, if no model is preferable from the prior 
knowledge, they are assumed to be equally weighted. 
       (2) The probability distributions of model 
parameters and probabilistic model weights are 
calibrated using Eq. 18 and Eq. 21 as mentioned in 
Section 3.2.1.  
       (3) With the estimated distributions of model 
parameters and weights, the probability distribution of 
predicted loading amplitude with respect to time is 
obtained using Eq. 14. Samples of the load spectrum 
are then generated with sampling techniques and 
applied in fatigue prognosis. 
       (4) After a new set of usage monitoring data is 
collected, Step (2) is again conducted by assuming the 
previously estimated ARMA model parameter 
distributions and model weights as priors. 
       (5) Repeat Steps (2) to (4), until the end of the 
prognosis. 
      In the above continuous updating procedure, the 
length of updating period remains unclear. A shorter 
period length means usage monitoring data is retrieved 
more frequently and so is the updating. The increased 
data transmission activities will lower the battery life of 
the monitoring device, and more updating will increase 
the computational effort. It is desired to find an 
optimum period that balances prediction accuracy and 
efficiency. Therefore, it is desired to investigate the 
effect of the updating period length on the accuracy of 
the ARMA model prediction. 
      Note that the output of the ARMA model is a 
random process indexed by time, and hence two 
quantitative statistical metrics – mean square error 
MSEp of mean prediction with respect to load history 
data, and the width Wp of the 95% prediction bounds 
are used to evaluate the accuracy of model output for a 
selected updating period: 

   (23) 2))(( Dttp YYEMSE −=

)025.0()975.0( 11 −− −= YtYtp FFW  (24) 

where E(Yt) is the mean prediction of ARMA model at 
time t, whereas YDt is the load amplitude data at time t; 
FYt

-1 is the inverse cumulative probability function of 
Yt, e.g., FYt(FYt

-1(0.975)) = 0.975. If the value of MSEp 
is small, the prediction of ARMA model is close to the 
real data, i.e., the prediction is accurate with the 
corresponding updating period. If the value of Wp is 
small, the uncertainty in the prediction of ARMA 
model with the corresponding updating period is also 
small. 

3.2.3 Validation of the ARMA model 
In fatigue damage prognosis, the ARMA model is used 
for the prediction of future loading, and it is desired to 
validate the prediction. Validation involves comparison 
of model prediction with experimental data (Rebba, 
Mahadevan, & Huang, 2006). A quantitative validation 
metric based on the Bayesian approach, namely the 
Bayes factor (Jeffreys, 1961), is proposed here to 
validate the ARMA model. Considering a model M, 
when data D is observed, the Bayes factor is defined as 
a likelihood ratio: 

 
)correctnot  is |(

)correct is |(
MP

MPB
D

D
=   (25) 

      If the Bayes factor is greater than 1 then it indicates 
that the data supports the model M, otherwise it 
indicates that the data does not support the model M. 
      It has been shown that the Bayes factor can be 
expressed using prior and posterior probability density 
function (PDF) values at the model prediction when 
there is no prior information about model validity 
(Rebba, Mahadevan, & Huang, 2006). Thus, 
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)|(
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t

Dtt
t Yf

YYf
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where YDt is the data collected at time t. The prior PDF 
for ARMA model prediction is computed using Eq. 14. 
The posterior PDF is computed using Bayes theorem 
as:  

 
∫

=
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      By assuming that the data is collected with 
measurement noise, a normal random variable with 
zero mean and variance σM

2, the likelihood function 
L(Yt) is: 

}
][

2
1exp{

2
1)|()( 2
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      The B(Yt) obtained from Eq. 26 is the value of the 
Bayes factor when the model prediction equals Yt at 
time t. Further, the Bayes factor can be computed as a 
function of time as: 

 ∫= ttt dYYfYBtB )|()()( D   (29) 

      Further, the degree of confidence in the model 
prediction C can be measured as: 
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3.3 Summary 

A continuous model updating framework is developed 
in this section to capture the non-stationary pattern of 
the fatigue load spectrum. Direct updating of 
characteristic matrices is applied to the rainflow 
counting method and the Markov chain method. A 
Bayesian updating approach is applied to the ARMA 
model through calibrating the probability distributions 
of the model coefficients and the values of the 
probabilistic weights. The uncertainty in the ARMA 
model can be reduced as more data are used. The effect 
of updating period to the accuracy of model prediction 
can be investigated using two quantitative metrics. A 
quantitative validation metric, the Bayes factor, is 
proposed to evaluate the validity of model predictions. 

4 NUMERICAL EXAMPLE 

A scaled helicopter combat maneuver loading history 
data including 510 cycles (1020 extrema/turning 
points) (Khosrovaneh, Dowling, Berens, & Gallagher, 
1989) as shown in Fig. 1 is used for the illustration of 
the rainflow counting and reconstruction method, the 
markov chain method, and the ARMA model method. 
It can be observed from the data plot that the load 
spectrum shows a time-variant pattern, and hence the 
proposed continuous updating framework is also 
applied to the aforementioned three methods.  

 

Figure 1: A Scaled Helicopter Combat Maneuver Load 
History Data 

4.1 Rainflow counting, stochastic reconstruction 
and updating 

For the purpose of illustration, two subsets of the 
original data set are used, 1-250 cycles and 251-500 
cycles. The first subset (1-250 cycles) is assumed to be 

the data currently available and is used to conduct the 
initial rainflow counting. A graphical representation of 
the counting matrix is shown in Fig. 2(a). Samples of 
simulated load history are generated from the counting 
matrix using the reconstruction technique introduced in 
Section 2.1.2, as shown in Fig. 2(b). The samples of 
load history show random rearrangements of the cycles 
extracted from the data. For the purpose of prognosis, 
the generated samples can be used as the prediction for 
future loading cycles, i.e., load amplitudes during 251-
500 cycles, before the new usage monitoring data is 
collected.  

 
a) 

 
b) 

Figure 2: a) Graphical representation of rainflow 
counting matrix from the first subset of the load history 
data (1-250 cycles); b) comparison of the load history 
data and two samples of simulated load history (1- 250 

Cycles) 

      The simulated load histories can be quantitatively 
compared with data by the ASE metric (Eq. 15), as 
shown in Table 1. “As reconstruction” indicates the 
simulated load histories are used as reconstruction of 
the original load spectrum and then are compared with 
the data used to generate the counting matrix (1-250 
cycles in this example). “As prediction” means the 
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simulated load histories are used for prediction purpose 
and are compared with the data in the future time 
interval (251-500 cycles in this example). 

Table 1: ASE of simulated load histories (1-250 cycles) 

Average square 
error 

Simulated 
load history 1 

Simulated 
load history 2 

As reconstruction 0.0916 0.0927 
As prediction 0.0942 0.0904 

 
      Consider the second subset of data (251-500 cycles) 
as the newly collected usage monitoring data, and then 
the direct updating method presented in Section 3.1 can 
be applied. First the rainflow counting technique is 
implemented on the new data and a new cycle counting 
matrix is obtained. This new matrix is added to the 
matrix counted from the previous data set (1-250 
cycles) and then an updated counting matrix is 
obtained, as shown in Fig. 3(a). Further, samples of 
loading history are generated based on the updated 
counting matrix, and these samples can be again 
considered as predictions for future loading and used in 
probabilistic fatigue damage prognosis.  

 
a) 

 
b) 

Figure 3: a) Graphical representation of the updated 
rainflow counting matrix using the second subset of the 

data; b) comparison of the load history data and two 
samples of simulated load history (251-500 cycles) 

      Table 2 shows the average square error (ASE) for 
two samples of simulated load histories. No data in the 
future time interval (after the 500th cycle in this 
example) is available and so the ASE is calculated only 
for the case that the simulated load histories are used as 
reconstruction. 

Table 2: ASE of simulated load histories (251-500 
cycles) 

Average square 
error 

Simulated 
load history 1 

Simulated 
load history 2 

As reconstruction 0.0261 0.0310 

4.2 Markov chain method 

The two subsets of data in Section 4.1 are also used to 
illustrate the Markov chain method and the updating of 
the transition probability matrix. The first data subset is 
assumed as the initially available data set, and the 
second data subset is the usage monitoring data set 
obtained later. Following the method presented in 
Section 2.2, the initial transition probability matrix is 
estimated using the first data subset and samples of the 
simulated load spectrum are generated as shown in 
Figs. 4(a)-(b). The generated samples are considered as 
the prediction of future loading and used in prognosis 
for the next time period (251-500 cycles). After a new 
set of usage monitoring data is obtained (the second 
data subset), the initial transition probability matrix is 
updated and then predictions for future loading can be 
again generated for prognosis, as shown in Figs. 4(c)-
(d). 

 
a) 
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b) 

 
c) 

 
d) 

Figure 4: a) Graphical representation of markov chain 
transition probability matrix using the first subset of the 
load history data (1-250 cycles); b) comparison of the 
data and two samples of simulated load history (1-250 
cycles); c) Graphical representation of updated Markov 

chain transition probability matrix using the second 
subset of the data; d) comparison of data and two 

samples of simulated load history (251-500 cycles) 

      Similarly as in Section 4.1, the average square error 
is calculated to evaluate the accuracy of simulated load 
histories from the Markov method, as shown in Tables 
3 and 4. 
Table 3: ASE of simulated load histories (1-250 cycles) 

Average square 
error 

Simulated 
load history 1 

Simulated 
load history 2 

As reconstruction 0.0852 0.0695 
As prediction 0.0758 0.1044 

Table 4: ASE of simulated load histories (251-500 
cycles) 

Average square 
error 

Simulated 
load history 1 

Simulated 
load history 2 

As reconstruction 0.0825 0.0770 

4.3 ARMA model method 

4.3.1 Partition of data set and initial model 
identification 

The whole data set (510 cycles) is used to demonstrate 
the extended ARMA model method, the Bayesian 
approach, and the model verification and validation 
methodology. Due to the cyclic nature of fatigue 
loading, the load spectrum is split into two parts, the 
mean amplitude and the cycle variation, as shown in 
Fig. 5, 

 
a) 
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b) 

Figure 5: a) The mean amplitude of the load spectrum; 
b) the cycle variation of the load spectrum 

      The sample ACF and PACF of the mean amplitude 
data, as shown in Figs. 6(a)-(d), suggest that the mean 
amplitude of the load spectrum can be modeled as a 
ARMA process, whereas the lack of ACF and PACF in 
the cycle variation suggest that it can be modeled as a 
white noise. 

 
  a)   b) 

 
  c)   d) 

Figure 6: a) Sample autocorrelation function (ACF) of 
the mean amplitude of the load history data; b) sample 
partial autocorrelation function (PACF) of the mean 
amplitude of the load history data; c) sample ACF of 
the cycle variation of the load history data; d) sample 
PACF of the cycle variation of the load history data 

      To illustrate the continuous updating framework, 
the original data set is devided into several subsets. The 
first data set (1-250 cycles) is considered as the initially 
available data, and the following data sets are assumed 
as the usage monitoring data retrived subsequently.  

      The initial data set is used to identify possible 
ARMA models based on the Q statistics and the 
associated p-values presented in Section 2.3.2. As 
shown in Table 5, both ARMA(1,0) and ARMA(2,0) 
pass the chi-square test since the corresponding p-
values are significant. Therefore ARMA(1,0) and 
ARMA(2,0) are considered as candidate models for the 
load spectrum. 

Table 5: Calculated Q statistics and the associated p-
values 

 Time Lag 12 24 36 
ARMA(1,0) Ljung-Box Q 10.8 22.8 31.1 

p-value 0.37 0.41 0.61 
ARMA(2,0) Ljung-Box Q 8.45 20.2 28.9 

p-value 0.58 0.57 0.71 
 

4.3.2 Continuous updating on model parameters 
and probabilistic weights 

The parameters of ARMA(1,0) – φ0, φ1, and the 
parameters of ARMA(2,0) - φ0, φ1, φ2 are assumed as 
random variables. Following the Bayesian approach in 
Section 3.2.1, the initial probability distributions of 
these variables can be estimated by combining the 
likelihood functions from the initial data set and non-
informative priors. Probabilistic weights are assigned to 
ARMA(1,0) and ARMA(2,0) respectively. The initial 
values of the weights are assumed equal to each other, 
i.e., the two candidate models are initially assumed to 
have equal probability of being the correct model for 
the loading history. 
      With the usage monitoring data set retrieved in 
succession, the probability distributions of ARMA 
model parameters and the probabilistic weights are 
continuously updated, as presented in Section 3.2.1 and 
3.2.2. For the purpose of illustration, the plot of initial 
probability distributions, updated distributions using 
the second usage monitoring data set, and the updated 
distributions using the third usage monitoring data set 
are shown in Figs. 7(a)-(d). The plot of the updated 
values of the probabilistic weights is also shown in Fig. 
7(e). 
      As shown in Figs. 7(a)-(d), the widths of the 
probability distribution functions of the ARMA model 
parameters shrink gradually with the continuous 
updating process, i.e., the uncertainty due to sparse data 
decreases as more data is retrieved. The increasing 
values of the probabilistic weight for ARMA(1,0) as 
shown in Fig. 7(e) suggest that ARMA(1,0) obtained 
increasing support from usage monitoring data during 
the continuous updating process. 
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  a)    b) 

 
  c)   d) 

 
e) 

Figure 7: a)-d) Initial probability distribution functions 
of the ARMA model parameters – φ0, φ1 of 

ARMA(1,0), φ0, φ2 of ARMA(2,0) - and the updated 
distributions with newly collected data sets; e) the 

updated values of the probabilistic weights versus time 

      The two metrics presented in Section 3.2.2, MSEp 
of mean prediction with respect to load history data, 
and the width of 95% prediction bound Wp, are 
calculated to investigate quantitatively the relationship 
between the model prediction accuracy and the model 
updating period. Figs. 8(a)-(b) give a graphical 
illustration of the two metrics when the updating period 
is five cycles. Figs. 8(c)-(d) plot the relations between 
the two metrics and the updating period. It is observed 
that Wp decreases as the updating period decrease, 
which suggests that the uncertainty in model 
predictions can be reduced by more frequent updating; 
similarly, MSEp also decreases as the updating period 
decreases, which suggests that the accuracy of model 
prediction can be improved by more frequent updating. 
It is also shown that the model prediction can capture 
the time-variant feature of data by continuous updating. 
 

 
a) 

 
b) 

 
c) 
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d) 

Figure 8: a)-b) Prediction bound and mean prediction 
versus data when the updating period is 5 cycles; c) 

MSEp of mean prediction versus the updating period; 
d) width of 95% prediction bound Wp versus the 

updating period 

4.3.3 Model validation 
The predictions from the ARMA model method based 
on the continuous updating are validated using the 
Bayes factor presented in Section 3.2.3. By assuming 
that the measurement noise follows normal distribution 
with zero mean and standard deviation equals to 0.001, 
the Bayes factor and the degree of confidence in 
predition are calculated using Eqs. 29-30. As shown in 
Figs. 9(a)-(b), the Bayes factors are much higher than 
unity, and the degrees of confidence are therefore much 
higher than 50%. This suggests that the model 
predictions have a good support from the corresponding 
data.  

 
a) 

 
b) 

Figure 9: a) The Bayes factor versus time; b) the 
confidence in prediction versus time 

4.4 Comparison of the three methods 

The performance of the three methods on future 
loading prediction can be evaluated using the mean 
square error metric (Eq. 23). The mean prediction E(Yt) 
in Eq. 23 can be estimated by Monte Carlo simulation. 
The data is partitioned in the same way as Section 
4.3.1. All the three methods generate loading prediction 
along with a 5-cycle updating period, i.e., each model is 
updated every 5 cycles and the models make 
predictions for loading in the next 5 cycles. 

Table 6: MSE of the three methods 

 Mean square error 
Rainflow 0.0172 
Markov 0.0290 
ARMA 0.0112 

      As shown in Table 6, ARMA has the least value of 
MSE, which indicates the prediction from ARMA 
method has the highest accuracy in this example. 

5 DISSCUSSION 

Three different methods,  namely rainflow counting 
method, Marikov chain method and ARMA model 
method, to characterize and reconstruct fatigue load 
spectra for prognosis are reviewed. The ARMA method 
is extended through random parameters and 
probabilistic weights to accommodate the inherent 
variability in loading, the uncertainty due to sparse 
data, and the uncertainty in model selection. A 
continuous model updating framework with usage 
monitoring data is developed, including direct updating 
of the characteristic matrices for the rainflow counting 
method and the Markov chain method, and a Bayesian 
updating approach for the ARMA model method. The 
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relation between prediction accuracy and updating 
period is investigated quantitatively. It is shown in 
Section 4.3.2 that the continuous updating framework 
helps the ARMA model method to capture the time-
variant feature of fatigue loading and also reduce the 
uncertainty in prediction due to limited amount of data. 
A rigorous validation metric, the Bayes factor, is used 
to provided quantitative assessment to model 
prediction. It is shown in Section 4.3.3 that the 
extended ARMA model method with the continuous 
updating framework performs well in the numerical 
example, as the Bayes factor and the degree of 
confidence in prediction suggest that the data strongly 
supports the model prediction. A comparison based on 
mean square error  measure between these three 
methods also indicates that the prediction from the 
ARMA method has the highest accuracy in this 
example. Although the consideration of uncertainty in 
model parameters and model form in the extended 
ARMA method, along with the Bayesian updating 
approach, increase the number of funtion calls by the 
magnitude of 100 if Monte Carlo simulation technique 
is used, it is usually affordable since the ARMA model 
takes very little time to run. 
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NOMENCLATURE 

f(x|D) conditional probability density function of 
 random variable x given data D 
ARMA autoregressive moving average 
φ, ω coefficients of ARMA model 
Q Ljung-Box Q statistic 
MSEp   mean square error of the ARMA model mean 
 prediction 
Wp width of the ARMA model prediction bounds 
B Bayes factor 
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