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ABSTRACT 

Verifying diagnostic procedures for complex systems is 
hard and labor-intensive. Usually this verification is 
accomplished primarily through extensive review of the 
procedures by experts.  We aim to augment this review 
process by using insights from comparing the 
diagnostic steps described in the procedural definitions 
with diagnostics information derived from existing 
models of the system. These comparisons offer various 
conformance checks between the manually developed 
diagnostic procedures and the diagnostic trees auto-
generated from the diagnostic system models. We 
previously described our DTV (Diagnostic Tree for 
Verification) technique based on these comparisons. 
This paper describes an extension to DTV, and reports 
results of an application of DTV to a representative 
system’s diagnostic procedures. Specifically, it outlines 
four analyses (branch analysis, root cause coverage, 
path verification, and efficiency) that can be performed 
using DTV; illustrates the process for applying DTV; 
and reports results from our application of DTV to 
assure fifteen of the procedures developed for 
diagnosing problems in an electrical power system 
testbed for spacecraft.*  

1 INTRODUCTION 

The operation of complex engineered systems requires 
the development of diagnostic procedures. These 
provide a detailed set of instructions to help operators 
monitor the system’s parameters and respond to 
                                                             
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

potential problems by detecting and identifying faults, 
and guides them in performing system reconfiguration 
or restoration.  
 These procedural definitions include a complicated 
mix of software checks and calibrations, conditional 
commands, manual inputs, checks of console data, and 
inspection of physical equipment. The crew of the 
Space Shuttle, for example, relies on a collection of 
procedural definitions and checklists in order to 
interpret any potential anomalies, figure out the root 
cause of problems, and work on mitigating the root-
cause failure (Hayashi et al., 2008). As a result, crew 
safety and mission success become highly dependent 
on the correctness of the diagnostic procedures.  
 It is therefore imperative that these procedures are 
verified before being used. However, verifying 
diagnostic procedures for complex systems is hard and 
labor-intensive. Usually this verification is heavily 
dependent on extensive review of the procedures by 
experts.  
  In this research, we aim to augment this review 
process by using insights from comparing the 
diagnostic steps described in the procedural definitions 
with diagnostics information derived from existing 
models of the system. These comparisons offer various 
conformance checks between the manually developed 
diagnostic procedures and the diagnostic system 
models. 
 Checking conformance in this way has two 
advantages. First, the models offer an independent 
perspective distinct from expert review. Second, there 
exists computer software that is able to systematically 
explore the diagnostic implications of a model, a task 
that can be quite intricate as systems grow in size and 
complexity. Both these advantages increase the 
likelihood of revealing errors (if present) in the 
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diagnostic procedures. This approach can therefore 
contribute to assuring the correctness of diagnostic 
procedures for complex systems. Furthermore, this 
approach can also identify opportunities for improving 
the efficiency of diagnostic procedures by revealing the 
presence of redundant steps in the existing procedures, 
and/or by offering alternately structured procedures that 
are capable of arriving at the same diagnostic 
conclusions but in fewer steps. 
 In previous work we introduced the DTV 
(Diagnostic Tree for Verification) technique (Kurtoglu 
et al., 2009). The key idea of DTV is to compare the 
text-based procedures for diagnosing faults during a 
system’s operations with the diagnostic trees auto-
generated from a model of the system. This paper 
describes our investigation of, and an extension to, the 
DTV technique. The extension addresses the challenge 
of assuring the correctness of a text-based procedure in 
the (frequent) case when the auto-generated diagnostic 
tree uses different sequences of tests to arrive at its 
diagnostic conclusions. In such cases, if both trees are 
able to diagnose to the same sets of root causes, this 
offers some assurance, but does not guarantee, that the 
paths followed in the text-based procedure in fact imply 
their diagnostic conclusions. In our extension, we use 
the steps in a path of the text-based procedure to 
“drive” the system model so that once the end of the 
path is reached we can compare the path’s diagnosis 
with the model’s conclusion.  
 The specific contributions of this paper over our 
previous work are:  (1) describes four analyses (branch 
analysis, root cause coverage, path verification, and 
efficiency) that can be performed using DTV; (2) 
describes and illustrates the process for applying DTV; 
and (3) reports results from our application of DTV to 
assure fifteen of the procedures developed for 
diagnosing problems in an electrical power system 
testbed for spacecraft.  
 In what follows, we first present a review of related 
work in verification of operational procedures. Section 
3 describes the Diagnostic Tree for Verification 
method. Section 4 introduces the Electrical Power 
System Testbed in the ADAPT Lab at NASA Ames 
Research Center that is used as a case example in this 
study. Section 5 discusses the application of the DTV 
method to the verification of a specific set of 
procedures developed for the electrical power system. 
Section 6 describes the four analyses and presents the 
results. Finally, Section 7 presents concluding remarks 
and an outlook for future work. 

2 RELATED WORK 

Model-based reasoning methods utilize a wide variety 
of engineering models as the foundation for 
representing diagnostic knowledge and developing 

algorithms that use this knowledge for fault detection 
and isolation. In parallel developments, different 
communities have found value in analytic state-based 
models, input-output transfer function models, fault 
propagation models, and quantitative physics-based 
models to develop online automated diagnostic 
software for monitoring and diagnosis of dynamical 
systems (Patterson-Hine et al., 2005). In this work, we 
seek to leverage information used in building 
diagnostic models in order to check and verify 
diagnostic procedures.  
 There are various techniques developed to help 
verify and validate procedures. Most current 
verification techniques are largely manual (inspection 
and reviews) and focus primarily on the conformance 
of command programs – scripts written for execution of 
procedures - to procedure definitions. Some advanced 
procedure authoring tools such as PRIDE (Kortenkamp 
et al., 2008) support syntax checking and can enforce 
syntax constraints.   
 Automated approaches to verification enable the 
verification of syntactic and semantic well-formedness 
properties of procedure scripts, and simulation 
capabilities enable the validation of equivalence and 
correctness relations between different system 
representations (Brat et al., 2008). Among these, static 
analyzers verify that procedures are syntactically and 
semantically well written and structured. They are used 
to check for missing variable declarations, divide-by-
zero, null pointer dereferences, out-of-bounds array 
references, incorrect ordering of procedure calls, etc. 
An example of a static analysis tool is the commercially 
available Polyspace C-verifier (Polyspace, 2008). Static 
analysis, however, cannot catch all possible problems 
with procedures. An alternative verification method, 
model checking, allows for the systematic exploration 
of the entire state space of a system, checking that user-
specified properties hold of all possible behaviors of a 
system. As a result, model checkers can find errors in 
models like deadlocks or race conditions, and can 
verify whether a procedure is guaranteed to terminate 
with the system left in a desired state. Examples of 
model checkers used in space applications include 
LTSA (LTSA 2008), and Java Path Finder (Visser et 
al., 2003). (Verma et al., 2008) discusses use of Java 
Path Finder to validate a simulated lunar robotic site 
survey operations plan. 

3 DIAGNOSTIC TREE FOR VERIFICATION 
(DTV) METHOD 

The DTV method seeks to exploit knowledge and 
automated analysis techniques applied for the 
diagnostic process by model-based diagnosis systems. 
These tools utilize information from the design phase, 
such as safety and mission assurance analysis, failure 
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modes and effects analysis (FMEA), fault propagation 
models and testability analysis, and employ topological 
and analytical models of the nominal and faulty 
operations of a system for fault diagnosis, isolation, and 
recovery (Patterson-Hine et al., 2005). This information 
provides an independent perspective that the DTV 
method uses both to verify the correctness and 
consistency of diagnostic procedures, and also to 
identify areas where the procedures themselves can be 
improved upon.  
 The primary goal of the DTV method is to enable 
analysts and procedure developers to statically and 
dynamically explore the system model using a set of 
auto-generated diagnostic trees in order to gain insight 
into the efficacy and efficiency of alternative fault 
diagnosis and isolation paths. By comparing the 
sequence of steps described in text-based procedures 
with the paths of auto-generated diagnostic trees, they 
can find relationships between the two representations 
(diagnostic model and text-based procedures) as 
illustrated in Figure 1.  
 The basis for this comparison is a five-step process. 
The steps to apply the DTV analysis for a selected 
system and a set of operational procedures are as 
follows: 
 

(1) The system’s failure effects (how failures will 
propagate through the system, and the observable 
conditions those failures will manifest) are formally 
modeled. 
 
(2) A set of procedures is selected for DTV analysis.  
 

(3) Conditions (or observations) that trigger the 
selected procedures are documented and added to the 
model as “symptoms”. 
 
(4) A set of diagnostic trees is auto-generated from 
the model for each “symptom” point in the model. 
 
(5) Analyses are conducted by comparing the 
elements and steps in the text-based procedural 
definitions with those in the diagnosis trees generated 
from the model.  

 
This comparison is currently performed manually. 
However, we are working towards developing a 
representation that would capture the information 
contained within the text-based procedures and 
diagnostic trees using a common language, such that 
this comparative analysis can be done in an automated 
fashion. In what follows, we describe each step of the 
DTV method in detail. 

3.1 Step 1: Build a System Model  

The Testability Engineering and Maintenance System 
(TEAMS) tool suite (QSI, 2009) is the primary 
platform used for modeling by the DTV method. 
TEAMS is built upon the multi-signal modeling 
formalism (Deb et al., 1995), which is a hierarchical 
modeling methodology where the propagation paths of 
the effects of a failure are captured using directed 
graphs. The model is based on structural connectivity 
or a conceptual block diagram of a physical system 
connected by links or paths. Software modules 
interfacing with the system are treated like any other 
hardware component, and can be included in the model. 

 

 
Figure 1.  Overview of the developed DTV Method 
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Functions describe attributes of system variables to be 
traced. The TEAMS modeling elements called test 
points are then added to the model. Test points 
represent the physical or computational locations of 
checks using sensors or sensor data as well as other 
means for observing a system. Tests are checks that 
look at the data from the sensors and make decisions 
about system attributes associated with those 
measurements. This graph topology is then converted 
into a matrix representation describing the relationship 
between faults and test points for a given mode of the 
system. This representation contains the basic 
information needed to interpret test results and 
diagnose failures during operations.  

3.2 Step 2: Select/Develop a Set of Procedures 

A procedure is a detailed set of instructions specifying 
how a piece of equipment is operated, or a task is to be 
performed (Frank, 2008). In this research we are 
focusing on a specific class of procedures, namely 
those developed for troubleshooting anomalies in a 
system. Their purpose is to guide operators on how to 
diagnose potential faults and identify their root causes. 
The operational steps in diagnostic procedures include 
checks/tests/verification of the physical and software 
parameters of the system, commands to and from the 
system, and manual and automated actions for 
recovery.  

3.3 Step 3: Add “Symptoms” to the Model 

A “symptom” in the TEAMS model is a condition, 
observation, or an observable state that indicates 
whether or not a system is performing its intended 
function. For example, for an electrical power system 
the observation of “low voltage level at battery output” 
constitutes a symptom. For the purposes of the DTV 
method, symptoms are used as starting points to 
perform subsequent troubleshooting and diagnosis 
analyses. Therefore, symptom points corresponding to 
the selected set of procedures in Step 2 are added to the 
TEAMS model to facilitate comparative analysis of the 
procedures. 

3.4 Step 4: Auto-generate Diagnostic Trees for the 
Selected Set of “Symptoms” 

A diagnostic tree describes a branching sequence of 
checks/tests used for troubleshooting an anomaly in the 
system. Different operational modes or configurations 
have different diagnostic trees since some faults are 
only possible, and some checks are only appropriate or 
available, in certain configurations or modes of 
operation. All the branch points of the diagnostic tree 
are tests in the TEAMS model. Each of the leaf nodes 
of the diagnostic tree is a candidate root cause 

explaining the symptom, while sets of faults form so-
called “ambiguity groups”. Each element of an 
ambiguity group is a possible root cause of the 
symptom, but isolation to which specific element of 
that set is the actual cause is not determinable in the 
model.  

3.5 Step 5: Compare Procedure Definitions and 
Diagnostic Trees 

In this step, the sequence of steps described in the text-
based diagnostic procedure definitions is compared to 
the diagnostic paths of the auto-generated diagnostic 
trees. In particular, four different analyses (branch 
completeness, root cause coverage, path verification, 
and efficiency) are performed to assure and verify the 
diagnostic procedures. These analyses are further 
detailed in Section 6. 

4 CASE EXAMPLE: ADAPT ELECTRICAL 
POWER SYSTEM TESTBED  

In this section, we provide a brief overview of the 
electrical power system used for DTV analysis and 
describe its major elements. 
 The Advanced Diagnostics and Prognostics Testbed 
(ADAPT) at the NASA Ames Research Center is a 
unique facility designed to test, measure, evaluate, and 
mature diagnostic and prognostic health management 
technologies. Reflecting the importance of electrical 
power systems (EPS) in aerospace (Button and 
Chicatelli, 2005; Poll et al., 2007), ADAPT provides a 
representative aerospace vehicle EPS that enables 
automated diagnosis in a complex domain. A simplified 
version of main functions and layout of the ADAPT 
electrical power system is shown in Figure 2. The EPS 
can deliver power to various loads, which in an 
aerospace vehicle would include subsystems such as 
the avionics, propulsion, life support, and thermal 
management systems. 
 ADAPT EPS contains elements common to many 
aerospace applications: power storage and power 
distribution. In the simplified version used in this study, 
the power storage consists of two battery modules. 
Either of the two batteries can be used to power either 
of the two load banks in the power distribution element. 
This design gives the ADAPT EPS basic redundancy 
and reconfiguration capability. Electromechanical 
relays are used to route the power from the sources to 
the batteries and from the batteries to the loads. An 
inverter converts the DC battery input to AC output. 
Circuit breakers are located at various points in the 
distribution network to prevent overcurrents from 
causing unintended damage to the system components. 
 A data acquisition and control system sends 
commands to, and receives data from the EPS. Testbed 
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operator stations are integrated into a software 
architecture that allows for nominal and faulty 
operations of the EPS, and includes a system for 
logging all relevant data. The instrumentation allows 
for monitoring of voltages, currents, temperatures, 
switch positions, light intensities, and AC frequencies, 
and includes over 100 sensors. (More information on 
the ADAPT EPS testbed can be found in (Poll et al., 
2007)). 

5 APPLICATION OF THE DTV METHOD TO 
THE ADAPT EPS SYSTEM  

This section describes our work to date to apply the 
diagnostic tree for verification (DTV) method and its 

modeling, analysis and implementation steps outlined 
in Section 3 to the electrical power system testbed.  

5.1 Step 1: Building the ADAPT EPS System Model  

A detailed model of the ADAPT EPS Testbed has been 
previously developed at NASA Ames. Figure 3 shows 
the high-level structure of the system model in 
TEAMS. The model incorporated the hierarchical 
structure of the EPS system, as well as all the relevant 
components and sensors. The model also captured 
failure modes of individual components and tests that 
are used for fault detection and isolation. 

 

Figure 2.  The schematic of the Electrical Power System (EPS) 
in the Advanced Diagnostics and Prognostics Testbed (ADAPT) Laboratory 
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5.2 Step 2: Selecting ADAPT EPS Procedures 

The operational procedures for the EPS system were 
modified from an advanced caution and warning 
system developed as an interface concept for a crewed 
vehicle (McCann et al., 2006). Table 1 shows the list of 
15 unique procedures that were used in our study of the 
application of the DTV method to the EPS system.  
 
 

 
Table 1.  The list of the 15 procedure definitions (and 
corresponding symptom points in the ADAPT model)  

 

5.3 Step 3: Adding Symptoms to the ADAPT EPS 
TEAMS Model 

In running the DTV analyses, we have identified the 
symptoms (i.e., observable states) of the EPS system 
that correspond to anomalous conditions. We then 
added 15 symptoms to the TEAMS model for the 
procedures listed in Table 1. The table also shows 
where each symptom is implemented in the model. For 
example, the “Battery Out Volts Low” symptom is 
implemented in component EI140.  

5.4 Step 4: Auto-Generating Diagnostic Trees  

In this step, we set the previously defined 15 symptoms 
to be active in the TEAMS model one at a time. This 
automatically generates a diagnostic tree in TEAMS by 
forcing the symptom to be the root node of the tree. As 
described before, the diagnostic tree captures a 
sequence of tests/checks that, if performed, will 
diagnose/isolate the fault that is causing the analyzed 
symptom (such as the one shown in Figure 4).   

5.5 Step 5: Comparing Procedural Definitions and 
Diagnostic Trees 

As a final step, we conducted four analyses by 
comparing different characteristics of the 15 manual 
procedures listed in Table 1 with those 15 diagnostic 

 

Figure 3. High-level screenshot of the ADAPT model developed 
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trees auto-generated from the TEAMS EPS model. The 
next section describes the application of each of the 
four analyses in detail.  

6 ANALYSES USING THE DTV METHOD  

The four analyses conducted to assure and verify the 
diagnostic procedures were: branch analysis, root cause 
coverage, path verification, and efficiency. Each is 
described below, together with the results of the 
analysis and the possible implications of these results 
for application of the DTV technique on other systems.  
 The analyses used the diagnostic tree auto-generated 
by TEAMS to compare with the steps described in the 
text-based procedure. To facilitate the comparison, we 
first manually converted the steps in each procedure to 
a Visio tree representation similar in style to the look of 
the trees that TEAMS auto-generates. This conversion 
was straightforward for our fifteen procedures, but we 
are also working toward an automated translation to use 
with systems containing a large number of procedures.   
The next step was to do a tree-to-tree comparison of the 
Visio drawings to the diagnostic trees generated from 
the TEAMS model. As described below, the DTV 
analyses gave an independent perspective on the 
procedures’ branch completeness, root cause coverage, 
path correctness, and efficiency.    

6.1 Branch Completeness Analysis  

Diagnostic, operational procedures lead one through a 
sequence of checks where each check’s result is either 
passed or failed. In the decision tree representation of 
the procedure, this means that each check should have 
two outgoing branches, each leading to a successor 
node (either another check, or a diagnosis). The 

branches indicate the next action to be taken based on 
the result of the check.    
 The branch completeness analysis of the procedures 
applies three criteria: 

• that every non-leaf node in the textual 
procedure’s diagnostic tree has two outgoing 
branches, representing both a passed and a 
failed check, each branch leading to another 
node which if it is a leaf node must be a 
diagnosis, or if not, another check, 

• that any check in a path from root node to leaf 
node is not duplicated in that path, nor its 
negation is also included in that path, and 

• that both outgoing branches from a non-leaf 
node in the procedure’s diagnostic tree have the 
same successor node in the TEAMS generated 
diagnostic tree. 

The first two criteria do not require the equivalent 
diagnostic tree to have yet been generated by TEAMS.   
Applying the third criteria does require the equivalent 
diagnostic tree to have been generated by TEAMS.    
 Branch completeness. Figure 5 shows an example of 
the first criteria. The first diagnostic check in the 
procedure, whether the voltage sensor EI 167 returns a 
value, has only one branch, regardless of the result of 
the diagnostic check.  This could indicate that either 
this check or the subsequent check (whether there is 
voltage at EI 181) is superfluous.  It could also be that 
both checks are needed but that the procedure is 
missing a branch, or that our translation of the 
procedure into a diagnostic tree was flawed.  In this 
case, the procedure is used to diagnose the likely cause 
when the symptom is that Load Bus Voltage is Low. 
The diagnostic procedure redundantly checks both the 
downstream AC and DC voltage sensors (although the 
TEAMS generated diagnostic tree does not). By 
examination of the diagnostic procedures’ trees, we 

 

Figure 4. An auto-generated diagnostic tree for a voltage anomaly indicated at sensor EI142 (E142 in Fig. 2) 
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found a total of four diagnostic procedures with two 
sequential checks tied to a single yes-no outcome.   
 Test uniqueness.  An example from applying the 
second criteria is a procedure which begins with the 
check “Is CB 166 closed?” and then has the negation of 
this, “Is CB 166 open?” farther down in the path. Given 
the assumption that the state of the system does not 
change during the diagnosis, this check is redundant.                        
 Branch successors. With regard to the third criteria, 
an example is two cases in which the successor 
branches to a check in the diagnostic procedures were 
different from the successor branches to that same 
check in the TEAMS generated diagnostic trees.  These 
turned out to be caused by a naming inconsistency 
between the procedures and the TEAMS model. In both 
cases the diagnostic procedure described a specific load 
(“Fan 415”, “Pump 425”), while the model described 
the load in terms of its location (“AC_Load_L1B”, 
“AC_Load_L1E”).  Such naming inconsistencies have 
been time-consuming across the project and have led 
the project to improved standardization in naming 
model components and to rigorous maintenance of 
name-mapping tables.  More generally, to our surprise, 
the TEAMS-generated diagnostic tree was not the same 
as the textual procedure's diagnostic tree for any of the 
fifteen symptoms we investigated. This is because there 
are many test points along the path by which current 
flows from sources to the loads in EPS, and the 
TEAMS generated diagnostic trees typically choose a 

different test point as the first step compared to the 
text-based procedures. 

6.2  Root Cause Coverage Analysis 

A root cause of a symptom is a component whose 
failure would cause that symptom to be exhibited. Root 
Cause Coverage Analysis compares two diagnostic 
trees to see whether they are able to isolate failures to 
the same sets of possible root causes.  

Each of the leaf nodes of a symptom’s diagnostic 
tree should identify either a single component whose 
failure would cause that symptom, or a set of several 
components (an “ambiguity group”) the failure of any 
single one of which would cause that symptom. Thus: 
• Every component identified in a leaf node of a 

symptom’s diagnostic tree should be a root cause of 
that symptom. 

• The union of all of a symptom’s diagnostic tree’s 
leaf node components should include all the 
possible root causes of the symptom. 

• A leaf node should consist of a set of several 
components (an “ambiguity group”) only if it is not 
possible to disambiguate further among the 
components in that set. 

In the DTV approach, these criteria are assessed by 
comparing the leaf nodes of the text-based procedure’s 
diagnostic tree for a symptom against the leaf nodes of 
a diagnostic tree generated by TEAMS to diagnose that 
same symptom. Note that only the leaf nodes of the two 

 

Figure 5. A translated tree representation of a diagnostic procedure for a voltage anomaly indicated at sensor EI142 
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trees are compared, not the structure of the trees 
themselves – in the later subsections we will consider 
the tree structures. 

First, we form the union of the symptom’s 
procedural diagnostic tree’s leaf node components; we 
form the union of the TEAMS generated diagnostic 
tree’s leaf node components; we compare the two sets 
so formed.  
• If the two sets are equal, then the comparison has 

not revealed any problems (this does not prove 
there are no problems – it could be that both the 
procedure and the TEAMS model have the same 
flaw(s)).  

• If a component in the set formed from the 
procedure’s diagnostic tree is not in the set formed 
from the TEAMS generated diagnostic tree, then 
either the TEAMS model is incorrect, or that 
component is not a root cause of the symptom – i.e., 
we have identified an instance of incorrectness in 
the procedure.  

• If a component in the set formed from the TEAMS 
generated diagnostic tree is not in the set formed 
from the procedure’s diagnostic tree, then either the 
TEAMS model is incorrect, or that component is a 
root cause of the symptom missing from the 
procedure’s diagnostic tree – i.e., we have identified 
an instance of incompleteness in the procedure. 

We can also compare the two diagnostic trees’ ability 
to isolate failures by examining their leaf nodes 
consisting of sets of components – the “ambiguity 
groups.” If one tree contains a leaf node comprising a 
set of components, but that set is not a leaf node in the 
other tree, instead some of those components are 
individual leaf nodes, or are in smaller ambiguity 
groups, then the second tree is demonstrating a more 
refined isolation than the first.  
 As illustration, consider the symptom Load Bus 
Volts Low (EI 142). The procedure’s diagnostic tree is 
shown in Figure 5, and the TEAMS-generated 
diagnostic tree is shown in Figure 4. As can be seen, 
both diagnostic trees have the same set of leaf nodes, 
namely {EI 142, EY 141, CB 136 and Battery 1}, 
despite the two trees having different overall structures 
and containing different checks. 

Overall, we found that for each symptom, the set of 
leaf nodes of the procedure’s diagnostic tree for that 
symptom was equal to the set of leaf nodes of the 
TEAMS-generated diagnostic tree for that same 
symptom. However, for several symptoms the 
TEAMS-generated diagnostic tree contained a leaf 
node consisting of several components (i.e., an 
“ambiguity group”), while the procedure’s diagnostic 
tree for that same symptom contained only leaf nodes 
consisting of single components. These discrepancies 
suggested that the procedure’s diagnostic trees were 
capable of isolating each symptom to unique root 

causes, yet the same was not true in the TEAMS model. 
It turned out that the TEAMS model was lacking some 
of the tests equivalent to checks utilized by the 
procedures in isolating faults. 

We also observed that for a few symptoms, the 
procedure’s diagnostic tree contained a check with one 
of its two outcome branches terminating without 
indicating any leaf node whatsoever! When we 
examined these cases we were able to determine that 
for the check result to take the abruptly terminating 
outcome branch, it would require more than one 
component to have failed. Thus given our assumption 
of diagnosis in the context of only single component 
failures, that abruptly terminating branch of the check 
could never be taken. 

6.3 Path Verification Analysis 

A path within a symptom’s diagnostic tree is a 
sequence that starts at the root node of the tree, 
descends through the tree taking one of the outcome 
branches of each check it encounters on the way, and 
terminates at a leaf node. It indicates that given the 
symptom and that sequence of check outcomes, the 
diagnosis is the root cause(s) listed in the leaf node. 
Path verification analysis aims to verify whether the 
path’s diagnosis is correct. Note that it is possible for a 
diagnostic tree to satisfy root cause coverage analysis 
when compared to another (correct) diagnosis tree, and 
yet contain incorrect path diagnoses if the “pass” 
branch of a check was assigned the outcome of the 
“fail” branch, and vice-versa. 

In general, path verification analysis cannot be 
achieved by comparing the procedure’s diagnostic tree 
with the TEAMS-generated diagnostic tree for the same 
symptom. This is because the respective paths in the 
two trees leading to the same diagnosis may make use 
of different sequences of checks. This was the case for 
all 15 of the procedures we examined. The DTV 
approach instead uses another capability of the TEAMS 
tool, to indicate what can be deduced about the state of 
components given a set of check outcomes. To do this, 
we take a path from the procedure’s diagnostic tree for 
a symptom, and input to TEAMS the symptom itself 
(as a “failed” test in TEAMS parlance), and each of the 
check outcomes along the path (each as a “passed” or 
“failed” test as appropriate). We then compare the 
procedure’s path’s diagnosis with the TEAMS-
calculated status of components. The two agree if they 
indicate the same set of components as possible root 
causes. 

Using this approach we were able to verify six of 
the procedure diagnostic trees completely, i.e., every 
path in the diagnostic tree. For several more of the 
diagnostic trees we could only perform verification on 
some of their paths. The paths we could not perform 
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verification on were those that made use of checks for 
which the equivalent test had not been modeled in the 
TEAMS model. Finally, for a few of the diagnostic 
trees the very first check in the tree did not have an 
equivalent in the TEAMS model, so verification could 
not be performed on any of their paths. 

For all the paths on which we were able to perform 
verification, the TEAMS result confirmed the 
procedure’s diagnosis. Again, this does not prove 
correctness, since it could be that both the procedure 
and the TEAMS model have the same flaw(s). 

In one instance we first thought we had discovered 
an error – the TEAMS result did not match the 
procedure’s diagnosis. On more careful scrutiny, we 
realized it was because we had not noticed that the 
procedure’s check was written in a non-standard way 
such that the “Yes” answer to the check matched the 
“Failed” (rather than the “Passed”) answer to the 
corresponding TEAMS test. Once we had corrected for 
our misunderstanding, the path was confirmed. 

However, perhaps this indicates the potential for others 
to make the same mistake. On this basis it might be 
worthwhile to consider either highlighting the 
somewhat unusual nature of this check in the 
procedure, or rephrasing it to be the usual way around.  

In several cases we were able to identify 
redundancy in the procedure’s diagnostic tree. An 
instance of this is the pair of checks at the root of the 
diagnostic tree seen in Figure 6. Using TEAMS we 
were able to show that just the first of this pair of 
checks would suffice; the second check is redundant. 
We did this by verifying each of the paths without 
including TEAMS test result equivalent to the second 
of the pair of checks. Furthermore, we found that if 
those two checks return opposite results, then TEAMS 
reveals that it takes more than one component’s failure 
to explain the results.  

Figure 6 illustrates the use of TEAMS to explore a 
path in a procedure. The upper half of the figure 
displays the procedure’s diagnostic tree for the Load 

 

Figure 6.  Using TEAMS for path verification analysis  
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Bus Volts Low symptom. The lower half of the figure 
displays a (partial) screenshot of TEAMS. The path 
through the tree under investigation is that in which: 
• the first check returns result “No”. 
• the second check is ignored (it’s the redundant 

check discussed above),  
• the third check returns the result “Yes”, and 
• the leaf node EY 141 is the resulting diagnosis.  
The TEAMS test equivalents of the symptom and the 
first test have been placed in the “Tests Failed” list, 
while the TEAMS test equivalent of the third test (with 
the “Yes” result) has been placed in the “Test Passed” 
list. From these test results, TEAMS concludes that a 
single component’s failure, EY141, completely 
explains the test results. This confirms the diagnosis of 
EY141 at the leaf node in the procedure’s diagnostic 
tree. 

6.4 Efficiency Analysis 

The efficiency analysis compares the total number of 
checks in all paths of a procedure’s diagnostic tree with 
the total number of tests in all paths of the TEAMS 
generated diagnostic tree for the same symptom.  The 
goal of the efficiency analysis is to see whether it is 
possible to identify the same set of root causes with 
fewer tests. The efficiency metric for our investigation 
at this point was simply the number of checks/tests, 
without regard to their potentially different resource 
usage (e.g., some tests may require more computation 
or power than others), duration (some may take longer 
than others), or need for human action (some may 
require a person to observe a setting or threshold).  This 
metric sufficed for our efficiency analysis except in one 
case, where the procedure needed a person to observe 
whether or not a change was abrupt or gradual.  
• Same efficiency. We found that five of the procedures 
used the same number of checks to identify the same 
set of root causes as the diagnostic tree generated from 
the TEAMS model.  These tend to be the simplest 
procedures.   
• Efficiency/isolation tradeoffs. Six of the procedures’ 
diagnostic trees had more checks than the number of 
tests in the corresponding TEAMS-generated 
diagnostic trees. In each case, however, the TEAMS 
diagnostic tree involved ambiguity groups that were not 
present in the procedure’s diagnostic tree.  Four of 
these six diagnostic trees had one ambiguity group, 
while the remaining two had two ambiguity groups.  
This suggests that, as we would expect, there are 
tradeoffs to be made between isolating the root cause to 
a single fault and keeping down the number of tests.  It 
may be that in some domains, in those cases where the 
recovery action will be the same for all the ambiguity 
group’s root causes, that fewer tests will be preferred to 
some degree of ambiguity. Certainly, the use of the 

model-driven diagnostic tree to capture and display 
these tradeoffs was one of the useful results of our 
study.  
• Better efficiency. In two other cases the TEAMS 
diagnostic tree achieved the same result (uniquely 
identify the root causes) in fewer tests than in the 
procedure’s tree. One of these cases has been described 
above and is illustrated in Figure 4. The other case is 
similar in that the procedure’s tree uses two sequential 
tests, with both branches of the first test leading to the 
same second test, whereas the model’s diagnostic tree 
only uses one test.  In these two cases the TEAMS-
generated diagnostic tree is more efficient than the 
procedure’s diagnostic tree. Such results are promising, 
because they can identify potential, alternate paths to 
uniquely identifying root causes.  
 While the goal of our work was to verify the 
procedures, we also found that the comparison in some 
cases also indicated possible improvements in the 
model. Specifically, in the six cases where the 
diagnostic tree generated from the TEAMS model had 
fewer tests than the procedures but resulted in an 
ambiguity group, the additional check needed to 
disambiguate the root causes in the TEAMS generated 
tree was present in the procedure’s tree.  For example, a 
test that was present in a procedure but absent in the 
TEAMS diagnostic tree was to see if Circuit Breaker 
162 had tripped.  Adding this test to the TEAMS model 
would not only bring the trees closer together but 
would also remove the ambiguity group in the model-
generated tree.  

7 CONCLUSIONS AND FUTURE WORK  

We have presented a technique, namely the Diagnostic 
Tree for Verification (DTV), developed with the goal 
of leveraging the information contained within auto-
generated diagnostic trees in order to assist the 
verification of diagnostic procedures. 
 Our most significant finding from the application 
was that that the model-based diagnostic tree often 
showed feasible, alternate paths to isolation of the same 
root cause. We also found two procedures that each had 
a superfluous step that did not move the diagnosis 
forward (under the assumption of a single-fault). 
Conversely, we discovered cases in which the 
procedures could isolate the symptom to a single root 
cause while the model-based diagnosis lacked one or 
more tests needed to do so. We also identified a 
procedural check that was written in a non-standard 
way, such that a "Yes" answer corresponded to a 
"Failed" test and vice versa, leading us to recommend 
that such mismatches be avoided in order not to risk 
confusing operators during missions. Perhaps most 
importantly, the comparisons between the model-based 
diagnostic tree and the diagnostic steps in the procedure 
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led us (as non-experts in electrical power systems) to 
have increased understanding and confidence in the 
operational procedures.    
 Our approach to using TEAMS to verify a 
procedure’s diagnosis assumes that performing the 
checks of the procedure does not cause any change to 
the system itself before the diagnosis is complete. This 
assumption would not hold if one of the steps of a 
procedure reconfigured the system (e.g., switched to a 
different source of power) partway through diagnosis. 
We currently have some preliminary and as yet 
untested ideas on how to extend the DTV approach to 
handle procedures that do make such changes partway 
through diagnosis.  
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