
Annual Conference of the Prognostics and Health Management Society, 2010

 1

Model-Based Assurance of Diagnostic Procedures
for Complex Systems

Tolga Kurtoglu1, Robyn Lutz2, and Martin S. Feather3

1 Mission Critical Technologies @ NASA Ames Research Center, Moffett Field, CA, 94035, USA
tolga.kurtoglu@nasa.gov

2 Jet Propulsion Laboratory/Caltech, Pasadena, CA, 91109, and Iowa State University, USA
robyn.r.lutz@jpl.nasa.gov

3 Jet Propulsion Laboratory, California Institute of Technology, CA, 91109, USA

martin.s.feather@jpl.nasa.gov

ABSTRACT

Verifying diagnostic procedures for complex systems is
hard and labor-intensive. Usually this verification is
accomplished primarily through extensive review of the
procedures by experts. We aim to augment this review
process by using insights from comparing the
diagnostic steps described in the procedural definitions
with diagnostics information derived from existing
models of the system. These comparisons offer various
conformance checks between the manually developed
diagnostic procedures and the diagnostic trees auto-
generated from the diagnostic system models. We
previously described our DTV (Diagnostic Tree for
Verification) technique based on these comparisons.
This paper describes an extension to DTV, and reports
results of an application of DTV to a representative
system’s diagnostic procedures. Specifically, it outlines
four analyses (branch analysis, root cause coverage,
path verification, and efficiency) that can be performed
using DTV; illustrates the process for applying DTV;
and reports results from our application of DTV to
assure fifteen of the procedures developed for
diagnosing problems in an electrical power system
testbed for spacecraft.*

1 INTRODUCTION

The operation of complex engineered systems requires
the development of diagnostic procedures. These
provide a detailed set of instructions to help operators
monitor the system’s parameters and respond to

* This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are
credited.

potential problems by detecting and identifying faults,
and guides them in performing system reconfiguration
or restoration.
 These procedural definitions include a complicated
mix of software checks and calibrations, conditional
commands, manual inputs, checks of console data, and
inspection of physical equipment. The crew of the
Space Shuttle, for example, relies on a collection of
procedural definitions and checklists in order to
interpret any potential anomalies, figure out the root
cause of problems, and work on mitigating the root-
cause failure (Hayashi et al., 2008). As a result, crew
safety and mission success become highly dependent
on the correctness of the diagnostic procedures.
 It is therefore imperative that these procedures are
verified before being used. However, verifying
diagnostic procedures for complex systems is hard and
labor-intensive. Usually this verification is heavily
dependent on extensive review of the procedures by
experts.
 In this research, we aim to augment this review
process by using insights from comparing the
diagnostic steps described in the procedural definitions
with diagnostics information derived from existing
models of the system. These comparisons offer various
conformance checks between the manually developed
diagnostic procedures and the diagnostic system
models.
 Checking conformance in this way has two
advantages. First, the models offer an independent
perspective distinct from expert review. Second, there
exists computer software that is able to systematically
explore the diagnostic implications of a model, a task
that can be quite intricate as systems grow in size and
complexity. Both these advantages increase the
likelihood of revealing errors (if present) in the

Annual Conference of the Prognostics and Health Management Society, 2010

 2

diagnostic procedures. This approach can therefore
contribute to assuring the correctness of diagnostic
procedures for complex systems. Furthermore, this
approach can also identify opportunities for improving
the efficiency of diagnostic procedures by revealing the
presence of redundant steps in the existing procedures,
and/or by offering alternately structured procedures that
are capable of arriving at the same diagnostic
conclusions but in fewer steps.
 In previous work we introduced the DTV
(Diagnostic Tree for Verification) technique (Kurtoglu
et al., 2009). The key idea of DTV is to compare the
text-based procedures for diagnosing faults during a
system’s operations with the diagnostic trees auto-
generated from a model of the system. This paper
describes our investigation of, and an extension to, the
DTV technique. The extension addresses the challenge
of assuring the correctness of a text-based procedure in
the (frequent) case when the auto-generated diagnostic
tree uses different sequences of tests to arrive at its
diagnostic conclusions. In such cases, if both trees are
able to diagnose to the same sets of root causes, this
offers some assurance, but does not guarantee, that the
paths followed in the text-based procedure in fact imply
their diagnostic conclusions. In our extension, we use
the steps in a path of the text-based procedure to
“drive” the system model so that once the end of the
path is reached we can compare the path’s diagnosis
with the model’s conclusion.
 The specific contributions of this paper over our
previous work are: (1) describes four analyses (branch
analysis, root cause coverage, path verification, and
efficiency) that can be performed using DTV; (2)
describes and illustrates the process for applying DTV;
and (3) reports results from our application of DTV to
assure fifteen of the procedures developed for
diagnosing problems in an electrical power system
testbed for spacecraft.
 In what follows, we first present a review of related
work in verification of operational procedures. Section
3 describes the Diagnostic Tree for Verification
method. Section 4 introduces the Electrical Power
System Testbed in the ADAPT Lab at NASA Ames
Research Center that is used as a case example in this
study. Section 5 discusses the application of the DTV
method to the verification of a specific set of
procedures developed for the electrical power system.
Section 6 describes the four analyses and presents the
results. Finally, Section 7 presents concluding remarks
and an outlook for future work.

2 RELATED WORK

Model-based reasoning methods utilize a wide variety
of engineering models as the foundation for
representing diagnostic knowledge and developing

algorithms that use this knowledge for fault detection
and isolation. In parallel developments, different
communities have found value in analytic state-based
models, input-output transfer function models, fault
propagation models, and quantitative physics-based
models to develop online automated diagnostic
software for monitoring and diagnosis of dynamical
systems (Patterson-Hine et al., 2005). In this work, we
seek to leverage information used in building
diagnostic models in order to check and verify
diagnostic procedures.
 There are various techniques developed to help
verify and validate procedures. Most current
verification techniques are largely manual (inspection
and reviews) and focus primarily on the conformance
of command programs – scripts written for execution of
procedures - to procedure definitions. Some advanced
procedure authoring tools such as PRIDE (Kortenkamp
et al., 2008) support syntax checking and can enforce
syntax constraints.
 Automated approaches to verification enable the
verification of syntactic and semantic well-formedness
properties of procedure scripts, and simulation
capabilities enable the validation of equivalence and
correctness relations between different system
representations (Brat et al., 2008). Among these, static
analyzers verify that procedures are syntactically and
semantically well written and structured. They are used
to check for missing variable declarations, divide-by-
zero, null pointer dereferences, out-of-bounds array
references, incorrect ordering of procedure calls, etc.
An example of a static analysis tool is the commercially
available Polyspace C-verifier (Polyspace, 2008). Static
analysis, however, cannot catch all possible problems
with procedures. An alternative verification method,
model checking, allows for the systematic exploration
of the entire state space of a system, checking that user-
specified properties hold of all possible behaviors of a
system. As a result, model checkers can find errors in
models like deadlocks or race conditions, and can
verify whether a procedure is guaranteed to terminate
with the system left in a desired state. Examples of
model checkers used in space applications include
LTSA (LTSA 2008), and Java Path Finder (Visser et
al., 2003). (Verma et al., 2008) discusses use of Java
Path Finder to validate a simulated lunar robotic site
survey operations plan.

3 DIAGNOSTIC TREE FOR VERIFICATION
(DTV) METHOD

The DTV method seeks to exploit knowledge and
automated analysis techniques applied for the
diagnostic process by model-based diagnosis systems.
These tools utilize information from the design phase,
such as safety and mission assurance analysis, failure

Annual Conference of the Prognostics and Health Management Society, 2010

 3

modes and effects analysis (FMEA), fault propagation
models and testability analysis, and employ topological
and analytical models of the nominal and faulty
operations of a system for fault diagnosis, isolation, and
recovery (Patterson-Hine et al., 2005). This information
provides an independent perspective that the DTV
method uses both to verify the correctness and
consistency of diagnostic procedures, and also to
identify areas where the procedures themselves can be
improved upon.
 The primary goal of the DTV method is to enable
analysts and procedure developers to statically and
dynamically explore the system model using a set of
auto-generated diagnostic trees in order to gain insight
into the efficacy and efficiency of alternative fault
diagnosis and isolation paths. By comparing the
sequence of steps described in text-based procedures
with the paths of auto-generated diagnostic trees, they
can find relationships between the two representations
(diagnostic model and text-based procedures) as
illustrated in Figure 1.
 The basis for this comparison is a five-step process.
The steps to apply the DTV analysis for a selected
system and a set of operational procedures are as
follows:

(1) The system’s failure effects (how failures will
propagate through the system, and the observable
conditions those failures will manifest) are formally
modeled.

(2) A set of procedures is selected for DTV analysis.

(3) Conditions (or observations) that trigger the
selected procedures are documented and added to the
model as “symptoms”.

(4) A set of diagnostic trees is auto-generated from
the model for each “symptom” point in the model.

(5) Analyses are conducted by comparing the
elements and steps in the text-based procedural
definitions with those in the diagnosis trees generated
from the model.

This comparison is currently performed manually.
However, we are working towards developing a
representation that would capture the information
contained within the text-based procedures and
diagnostic trees using a common language, such that
this comparative analysis can be done in an automated
fashion. In what follows, we describe each step of the
DTV method in detail.

3.1 Step 1: Build a System Model

The Testability Engineering and Maintenance System
(TEAMS) tool suite (QSI, 2009) is the primary
platform used for modeling by the DTV method.
TEAMS is built upon the multi-signal modeling
formalism (Deb et al., 1995), which is a hierarchical
modeling methodology where the propagation paths of
the effects of a failure are captured using directed
graphs. The model is based on structural connectivity
or a conceptual block diagram of a physical system
connected by links or paths. Software modules
interfacing with the system are treated like any other
hardware component, and can be included in the model.

Figure 1. Overview of the developed DTV Method

Annual Conference of the Prognostics and Health Management Society, 2010

 4

Functions describe attributes of system variables to be
traced. The TEAMS modeling elements called test
points are then added to the model. Test points
represent the physical or computational locations of
checks using sensors or sensor data as well as other
means for observing a system. Tests are checks that
look at the data from the sensors and make decisions
about system attributes associated with those
measurements. This graph topology is then converted
into a matrix representation describing the relationship
between faults and test points for a given mode of the
system. This representation contains the basic
information needed to interpret test results and
diagnose failures during operations.

3.2 Step 2: Select/Develop a Set of Procedures

A procedure is a detailed set of instructions specifying
how a piece of equipment is operated, or a task is to be
performed (Frank, 2008). In this research we are
focusing on a specific class of procedures, namely
those developed for troubleshooting anomalies in a
system. Their purpose is to guide operators on how to
diagnose potential faults and identify their root causes.
The operational steps in diagnostic procedures include
checks/tests/verification of the physical and software
parameters of the system, commands to and from the
system, and manual and automated actions for
recovery.

3.3 Step 3: Add “Symptoms” to the Model

A “symptom” in the TEAMS model is a condition,
observation, or an observable state that indicates
whether or not a system is performing its intended
function. For example, for an electrical power system
the observation of “low voltage level at battery output”
constitutes a symptom. For the purposes of the DTV
method, symptoms are used as starting points to
perform subsequent troubleshooting and diagnosis
analyses. Therefore, symptom points corresponding to
the selected set of procedures in Step 2 are added to the
TEAMS model to facilitate comparative analysis of the
procedures.

3.4 Step 4: Auto-generate Diagnostic Trees for the
Selected Set of “Symptoms”

A diagnostic tree describes a branching sequence of
checks/tests used for troubleshooting an anomaly in the
system. Different operational modes or configurations
have different diagnostic trees since some faults are
only possible, and some checks are only appropriate or
available, in certain configurations or modes of
operation. All the branch points of the diagnostic tree
are tests in the TEAMS model. Each of the leaf nodes
of the diagnostic tree is a candidate root cause

explaining the symptom, while sets of faults form so-
called “ambiguity groups”. Each element of an
ambiguity group is a possible root cause of the
symptom, but isolation to which specific element of
that set is the actual cause is not determinable in the
model.

3.5 Step 5: Compare Procedure Definitions and
Diagnostic Trees

In this step, the sequence of steps described in the text-
based diagnostic procedure definitions is compared to
the diagnostic paths of the auto-generated diagnostic
trees. In particular, four different analyses (branch
completeness, root cause coverage, path verification,
and efficiency) are performed to assure and verify the
diagnostic procedures. These analyses are further
detailed in Section 6.

4 CASE EXAMPLE: ADAPT ELECTRICAL
POWER SYSTEM TESTBED

In this section, we provide a brief overview of the
electrical power system used for DTV analysis and
describe its major elements.
 The Advanced Diagnostics and Prognostics Testbed
(ADAPT) at the NASA Ames Research Center is a
unique facility designed to test, measure, evaluate, and
mature diagnostic and prognostic health management
technologies. Reflecting the importance of electrical
power systems (EPS) in aerospace (Button and
Chicatelli, 2005; Poll et al., 2007), ADAPT provides a
representative aerospace vehicle EPS that enables
automated diagnosis in a complex domain. A simplified
version of main functions and layout of the ADAPT
electrical power system is shown in Figure 2. The EPS
can deliver power to various loads, which in an
aerospace vehicle would include subsystems such as
the avionics, propulsion, life support, and thermal
management systems.
 ADAPT EPS contains elements common to many
aerospace applications: power storage and power
distribution. In the simplified version used in this study,
the power storage consists of two battery modules.
Either of the two batteries can be used to power either
of the two load banks in the power distribution element.
This design gives the ADAPT EPS basic redundancy
and reconfiguration capability. Electromechanical
relays are used to route the power from the sources to
the batteries and from the batteries to the loads. An
inverter converts the DC battery input to AC output.
Circuit breakers are located at various points in the
distribution network to prevent overcurrents from
causing unintended damage to the system components.
 A data acquisition and control system sends
commands to, and receives data from the EPS. Testbed

Annual Conference of the Prognostics and Health Management Society, 2010

 5

operator stations are integrated into a software
architecture that allows for nominal and faulty
operations of the EPS, and includes a system for
logging all relevant data. The instrumentation allows
for monitoring of voltages, currents, temperatures,
switch positions, light intensities, and AC frequencies,
and includes over 100 sensors. (More information on
the ADAPT EPS testbed can be found in (Poll et al.,
2007)).

5 APPLICATION OF THE DTV METHOD TO
THE ADAPT EPS SYSTEM

This section describes our work to date to apply the
diagnostic tree for verification (DTV) method and its

modeling, analysis and implementation steps outlined
in Section 3 to the electrical power system testbed.

5.1 Step 1: Building the ADAPT EPS System Model

A detailed model of the ADAPT EPS Testbed has been
previously developed at NASA Ames. Figure 3 shows
the high-level structure of the system model in
TEAMS. The model incorporated the hierarchical
structure of the EPS system, as well as all the relevant
components and sensors. The model also captured
failure modes of individual components and tests that
are used for fault detection and isolation.

Figure 2. The schematic of the Electrical Power System (EPS)
in the Advanced Diagnostics and Prognostics Testbed (ADAPT) Laboratory

Annual Conference of the Prognostics and Health Management Society, 2010

 6

5.2 Step 2: Selecting ADAPT EPS Procedures

The operational procedures for the EPS system were
modified from an advanced caution and warning
system developed as an interface concept for a crewed
vehicle (McCann et al., 2006). Table 1 shows the list of
15 unique procedures that were used in our study of the
application of the DTV method to the EPS system.

Table 1. The list of the 15 procedure definitions (and
corresponding symptom points in the ADAPT model)

5.3 Step 3: Adding Symptoms to the ADAPT EPS
TEAMS Model

In running the DTV analyses, we have identified the
symptoms (i.e., observable states) of the EPS system
that correspond to anomalous conditions. We then
added 15 symptoms to the TEAMS model for the
procedures listed in Table 1. The table also shows
where each symptom is implemented in the model. For
example, the “Battery Out Volts Low” symptom is
implemented in component EI140.

5.4 Step 4: Auto-Generating Diagnostic Trees

In this step, we set the previously defined 15 symptoms
to be active in the TEAMS model one at a time. This
automatically generates a diagnostic tree in TEAMS by
forcing the symptom to be the root node of the tree. As
described before, the diagnostic tree captures a
sequence of tests/checks that, if performed, will
diagnose/isolate the fault that is causing the analyzed
symptom (such as the one shown in Figure 4).

5.5 Step 5: Comparing Procedural Definitions and
Diagnostic Trees

As a final step, we conducted four analyses by
comparing different characteristics of the 15 manual
procedures listed in Table 1 with those 15 diagnostic

Figure 3. High-level screenshot of the ADAPT model developed

Annual Conference of the Prognostics and Health Management Society, 2010

 7

trees auto-generated from the TEAMS EPS model. The
next section describes the application of each of the
four analyses in detail.

6 ANALYSES USING THE DTV METHOD

The four analyses conducted to assure and verify the
diagnostic procedures were: branch analysis, root cause
coverage, path verification, and efficiency. Each is
described below, together with the results of the
analysis and the possible implications of these results
for application of the DTV technique on other systems.
 The analyses used the diagnostic tree auto-generated
by TEAMS to compare with the steps described in the
text-based procedure. To facilitate the comparison, we
first manually converted the steps in each procedure to
a Visio tree representation similar in style to the look of
the trees that TEAMS auto-generates. This conversion
was straightforward for our fifteen procedures, but we
are also working toward an automated translation to use
with systems containing a large number of procedures.
The next step was to do a tree-to-tree comparison of the
Visio drawings to the diagnostic trees generated from
the TEAMS model. As described below, the DTV
analyses gave an independent perspective on the
procedures’ branch completeness, root cause coverage,
path correctness, and efficiency.

6.1 Branch Completeness Analysis

Diagnostic, operational procedures lead one through a
sequence of checks where each check’s result is either
passed or failed. In the decision tree representation of
the procedure, this means that each check should have
two outgoing branches, each leading to a successor
node (either another check, or a diagnosis). The

branches indicate the next action to be taken based on
the result of the check.
 The branch completeness analysis of the procedures
applies three criteria:

• that every non-leaf node in the textual
procedure’s diagnostic tree has two outgoing
branches, representing both a passed and a
failed check, each branch leading to another
node which if it is a leaf node must be a
diagnosis, or if not, another check,

• that any check in a path from root node to leaf
node is not duplicated in that path, nor its
negation is also included in that path, and

• that both outgoing branches from a non-leaf
node in the procedure’s diagnostic tree have the
same successor node in the TEAMS generated
diagnostic tree.

The first two criteria do not require the equivalent
diagnostic tree to have yet been generated by TEAMS.
Applying the third criteria does require the equivalent
diagnostic tree to have been generated by TEAMS.
 Branch completeness. Figure 5 shows an example of
the first criteria. The first diagnostic check in the
procedure, whether the voltage sensor EI 167 returns a
value, has only one branch, regardless of the result of
the diagnostic check. This could indicate that either
this check or the subsequent check (whether there is
voltage at EI 181) is superfluous. It could also be that
both checks are needed but that the procedure is
missing a branch, or that our translation of the
procedure into a diagnostic tree was flawed. In this
case, the procedure is used to diagnose the likely cause
when the symptom is that Load Bus Voltage is Low.
The diagnostic procedure redundantly checks both the
downstream AC and DC voltage sensors (although the
TEAMS generated diagnostic tree does not). By
examination of the diagnostic procedures’ trees, we

Figure 4. An auto-generated diagnostic tree for a voltage anomaly indicated at sensor EI142 (E142 in Fig. 2)

Annual Conference of the Prognostics and Health Management Society, 2010

 8

found a total of four diagnostic procedures with two
sequential checks tied to a single yes-no outcome.
 Test uniqueness. An example from applying the
second criteria is a procedure which begins with the
check “Is CB 166 closed?” and then has the negation of
this, “Is CB 166 open?” farther down in the path. Given
the assumption that the state of the system does not
change during the diagnosis, this check is redundant.
 Branch successors. With regard to the third criteria,
an example is two cases in which the successor
branches to a check in the diagnostic procedures were
different from the successor branches to that same
check in the TEAMS generated diagnostic trees. These
turned out to be caused by a naming inconsistency
between the procedures and the TEAMS model. In both
cases the diagnostic procedure described a specific load
(“Fan 415”, “Pump 425”), while the model described
the load in terms of its location (“AC_Load_L1B”,
“AC_Load_L1E”). Such naming inconsistencies have
been time-consuming across the project and have led
the project to improved standardization in naming
model components and to rigorous maintenance of
name-mapping tables. More generally, to our surprise,
the TEAMS-generated diagnostic tree was not the same
as the textual procedure's diagnostic tree for any of the
fifteen symptoms we investigated. This is because there
are many test points along the path by which current
flows from sources to the loads in EPS, and the
TEAMS generated diagnostic trees typically choose a

different test point as the first step compared to the
text-based procedures.

6.2 Root Cause Coverage Analysis

A root cause of a symptom is a component whose
failure would cause that symptom to be exhibited. Root
Cause Coverage Analysis compares two diagnostic
trees to see whether they are able to isolate failures to
the same sets of possible root causes.

Each of the leaf nodes of a symptom’s diagnostic
tree should identify either a single component whose
failure would cause that symptom, or a set of several
components (an “ambiguity group”) the failure of any
single one of which would cause that symptom. Thus:
• Every component identified in a leaf node of a

symptom’s diagnostic tree should be a root cause of
that symptom.

• The union of all of a symptom’s diagnostic tree’s
leaf node components should include all the
possible root causes of the symptom.

• A leaf node should consist of a set of several
components (an “ambiguity group”) only if it is not
possible to disambiguate further among the
components in that set.

In the DTV approach, these criteria are assessed by
comparing the leaf nodes of the text-based procedure’s
diagnostic tree for a symptom against the leaf nodes of
a diagnostic tree generated by TEAMS to diagnose that
same symptom. Note that only the leaf nodes of the two

Figure 5. A translated tree representation of a diagnostic procedure for a voltage anomaly indicated at sensor EI142

Annual Conference of the Prognostics and Health Management Society, 2010

 9

trees are compared, not the structure of the trees
themselves – in the later subsections we will consider
the tree structures.

First, we form the union of the symptom’s
procedural diagnostic tree’s leaf node components; we
form the union of the TEAMS generated diagnostic
tree’s leaf node components; we compare the two sets
so formed.
• If the two sets are equal, then the comparison has

not revealed any problems (this does not prove
there are no problems – it could be that both the
procedure and the TEAMS model have the same
flaw(s)).

• If a component in the set formed from the
procedure’s diagnostic tree is not in the set formed
from the TEAMS generated diagnostic tree, then
either the TEAMS model is incorrect, or that
component is not a root cause of the symptom – i.e.,
we have identified an instance of incorrectness in
the procedure.

• If a component in the set formed from the TEAMS
generated diagnostic tree is not in the set formed
from the procedure’s diagnostic tree, then either the
TEAMS model is incorrect, or that component is a
root cause of the symptom missing from the
procedure’s diagnostic tree – i.e., we have identified
an instance of incompleteness in the procedure.

We can also compare the two diagnostic trees’ ability
to isolate failures by examining their leaf nodes
consisting of sets of components – the “ambiguity
groups.” If one tree contains a leaf node comprising a
set of components, but that set is not a leaf node in the
other tree, instead some of those components are
individual leaf nodes, or are in smaller ambiguity
groups, then the second tree is demonstrating a more
refined isolation than the first.
 As illustration, consider the symptom Load Bus
Volts Low (EI 142). The procedure’s diagnostic tree is
shown in Figure 5, and the TEAMS-generated
diagnostic tree is shown in Figure 4. As can be seen,
both diagnostic trees have the same set of leaf nodes,
namely {EI 142, EY 141, CB 136 and Battery 1},
despite the two trees having different overall structures
and containing different checks.

Overall, we found that for each symptom, the set of
leaf nodes of the procedure’s diagnostic tree for that
symptom was equal to the set of leaf nodes of the
TEAMS-generated diagnostic tree for that same
symptom. However, for several symptoms the
TEAMS-generated diagnostic tree contained a leaf
node consisting of several components (i.e., an
“ambiguity group”), while the procedure’s diagnostic
tree for that same symptom contained only leaf nodes
consisting of single components. These discrepancies
suggested that the procedure’s diagnostic trees were
capable of isolating each symptom to unique root

causes, yet the same was not true in the TEAMS model.
It turned out that the TEAMS model was lacking some
of the tests equivalent to checks utilized by the
procedures in isolating faults.

We also observed that for a few symptoms, the
procedure’s diagnostic tree contained a check with one
of its two outcome branches terminating without
indicating any leaf node whatsoever! When we
examined these cases we were able to determine that
for the check result to take the abruptly terminating
outcome branch, it would require more than one
component to have failed. Thus given our assumption
of diagnosis in the context of only single component
failures, that abruptly terminating branch of the check
could never be taken.

6.3 Path Verification Analysis

A path within a symptom’s diagnostic tree is a
sequence that starts at the root node of the tree,
descends through the tree taking one of the outcome
branches of each check it encounters on the way, and
terminates at a leaf node. It indicates that given the
symptom and that sequence of check outcomes, the
diagnosis is the root cause(s) listed in the leaf node.
Path verification analysis aims to verify whether the
path’s diagnosis is correct. Note that it is possible for a
diagnostic tree to satisfy root cause coverage analysis
when compared to another (correct) diagnosis tree, and
yet contain incorrect path diagnoses if the “pass”
branch of a check was assigned the outcome of the
“fail” branch, and vice-versa.

In general, path verification analysis cannot be
achieved by comparing the procedure’s diagnostic tree
with the TEAMS-generated diagnostic tree for the same
symptom. This is because the respective paths in the
two trees leading to the same diagnosis may make use
of different sequences of checks. This was the case for
all 15 of the procedures we examined. The DTV
approach instead uses another capability of the TEAMS
tool, to indicate what can be deduced about the state of
components given a set of check outcomes. To do this,
we take a path from the procedure’s diagnostic tree for
a symptom, and input to TEAMS the symptom itself
(as a “failed” test in TEAMS parlance), and each of the
check outcomes along the path (each as a “passed” or
“failed” test as appropriate). We then compare the
procedure’s path’s diagnosis with the TEAMS-
calculated status of components. The two agree if they
indicate the same set of components as possible root
causes.

Using this approach we were able to verify six of
the procedure diagnostic trees completely, i.e., every
path in the diagnostic tree. For several more of the
diagnostic trees we could only perform verification on
some of their paths. The paths we could not perform

Annual Conference of the Prognostics and Health Management Society, 2010

 10

verification on were those that made use of checks for
which the equivalent test had not been modeled in the
TEAMS model. Finally, for a few of the diagnostic
trees the very first check in the tree did not have an
equivalent in the TEAMS model, so verification could
not be performed on any of their paths.

For all the paths on which we were able to perform
verification, the TEAMS result confirmed the
procedure’s diagnosis. Again, this does not prove
correctness, since it could be that both the procedure
and the TEAMS model have the same flaw(s).

In one instance we first thought we had discovered
an error – the TEAMS result did not match the
procedure’s diagnosis. On more careful scrutiny, we
realized it was because we had not noticed that the
procedure’s check was written in a non-standard way
such that the “Yes” answer to the check matched the
“Failed” (rather than the “Passed”) answer to the
corresponding TEAMS test. Once we had corrected for
our misunderstanding, the path was confirmed.

However, perhaps this indicates the potential for others
to make the same mistake. On this basis it might be
worthwhile to consider either highlighting the
somewhat unusual nature of this check in the
procedure, or rephrasing it to be the usual way around.

In several cases we were able to identify
redundancy in the procedure’s diagnostic tree. An
instance of this is the pair of checks at the root of the
diagnostic tree seen in Figure 6. Using TEAMS we
were able to show that just the first of this pair of
checks would suffice; the second check is redundant.
We did this by verifying each of the paths without
including TEAMS test result equivalent to the second
of the pair of checks. Furthermore, we found that if
those two checks return opposite results, then TEAMS
reveals that it takes more than one component’s failure
to explain the results.

Figure 6 illustrates the use of TEAMS to explore a
path in a procedure. The upper half of the figure
displays the procedure’s diagnostic tree for the Load

Figure 6. Using TEAMS for path verification analysis

Annual Conference of the Prognostics and Health Management Society, 2010

 11

Bus Volts Low symptom. The lower half of the figure
displays a (partial) screenshot of TEAMS. The path
through the tree under investigation is that in which:
• the first check returns result “No”.
• the second check is ignored (it’s the redundant

check discussed above),
• the third check returns the result “Yes”, and
• the leaf node EY 141 is the resulting diagnosis.
The TEAMS test equivalents of the symptom and the
first test have been placed in the “Tests Failed” list,
while the TEAMS test equivalent of the third test (with
the “Yes” result) has been placed in the “Test Passed”
list. From these test results, TEAMS concludes that a
single component’s failure, EY141, completely
explains the test results. This confirms the diagnosis of
EY141 at the leaf node in the procedure’s diagnostic
tree.

6.4 Efficiency Analysis

The efficiency analysis compares the total number of
checks in all paths of a procedure’s diagnostic tree with
the total number of tests in all paths of the TEAMS
generated diagnostic tree for the same symptom. The
goal of the efficiency analysis is to see whether it is
possible to identify the same set of root causes with
fewer tests. The efficiency metric for our investigation
at this point was simply the number of checks/tests,
without regard to their potentially different resource
usage (e.g., some tests may require more computation
or power than others), duration (some may take longer
than others), or need for human action (some may
require a person to observe a setting or threshold). This
metric sufficed for our efficiency analysis except in one
case, where the procedure needed a person to observe
whether or not a change was abrupt or gradual.
• Same efficiency. We found that five of the procedures
used the same number of checks to identify the same
set of root causes as the diagnostic tree generated from
the TEAMS model. These tend to be the simplest
procedures.
• Efficiency/isolation tradeoffs. Six of the procedures’
diagnostic trees had more checks than the number of
tests in the corresponding TEAMS-generated
diagnostic trees. In each case, however, the TEAMS
diagnostic tree involved ambiguity groups that were not
present in the procedure’s diagnostic tree. Four of
these six diagnostic trees had one ambiguity group,
while the remaining two had two ambiguity groups.
This suggests that, as we would expect, there are
tradeoffs to be made between isolating the root cause to
a single fault and keeping down the number of tests. It
may be that in some domains, in those cases where the
recovery action will be the same for all the ambiguity
group’s root causes, that fewer tests will be preferred to
some degree of ambiguity. Certainly, the use of the

model-driven diagnostic tree to capture and display
these tradeoffs was one of the useful results of our
study.
• Better efficiency. In two other cases the TEAMS
diagnostic tree achieved the same result (uniquely
identify the root causes) in fewer tests than in the
procedure’s tree. One of these cases has been described
above and is illustrated in Figure 4. The other case is
similar in that the procedure’s tree uses two sequential
tests, with both branches of the first test leading to the
same second test, whereas the model’s diagnostic tree
only uses one test. In these two cases the TEAMS-
generated diagnostic tree is more efficient than the
procedure’s diagnostic tree. Such results are promising,
because they can identify potential, alternate paths to
uniquely identifying root causes.
 While the goal of our work was to verify the
procedures, we also found that the comparison in some
cases also indicated possible improvements in the
model. Specifically, in the six cases where the
diagnostic tree generated from the TEAMS model had
fewer tests than the procedures but resulted in an
ambiguity group, the additional check needed to
disambiguate the root causes in the TEAMS generated
tree was present in the procedure’s tree. For example, a
test that was present in a procedure but absent in the
TEAMS diagnostic tree was to see if Circuit Breaker
162 had tripped. Adding this test to the TEAMS model
would not only bring the trees closer together but
would also remove the ambiguity group in the model-
generated tree.

7 CONCLUSIONS AND FUTURE WORK

We have presented a technique, namely the Diagnostic
Tree for Verification (DTV), developed with the goal
of leveraging the information contained within auto-
generated diagnostic trees in order to assist the
verification of diagnostic procedures.
 Our most significant finding from the application
was that that the model-based diagnostic tree often
showed feasible, alternate paths to isolation of the same
root cause. We also found two procedures that each had
a superfluous step that did not move the diagnosis
forward (under the assumption of a single-fault).
Conversely, we discovered cases in which the
procedures could isolate the symptom to a single root
cause while the model-based diagnosis lacked one or
more tests needed to do so. We also identified a
procedural check that was written in a non-standard
way, such that a "Yes" answer corresponded to a
"Failed" test and vice versa, leading us to recommend
that such mismatches be avoided in order not to risk
confusing operators during missions. Perhaps most
importantly, the comparisons between the model-based
diagnostic tree and the diagnostic steps in the procedure

Annual Conference of the Prognostics and Health Management Society, 2010

 12

led us (as non-experts in electrical power systems) to
have increased understanding and confidence in the
operational procedures.
 Our approach to using TEAMS to verify a
procedure’s diagnosis assumes that performing the
checks of the procedure does not cause any change to
the system itself before the diagnosis is complete. This
assumption would not hold if one of the steps of a
procedure reconfigured the system (e.g., switched to a
different source of power) partway through diagnosis.
We currently have some preliminary and as yet
untested ideas on how to extend the DTV approach to
handle procedures that do make such changes partway
through diagnosis.

ACKNOWLEDGMENT

The research described in this paper was carried out in
part at the Jet Propulsion Laboratory, California
Institute of Technology, and Ames Research Center
under a contract with the National Aeronautic and
Space Administration and funded by NASA’s OSMA
Software Assurance Research Program.

REFERENCES

Brat, G., M. Gherorghiu, D. Giannakopouluo, C.
Pasareanu, (2008), Verification of Plans and
Procedures in Proceedings of IEEE Aerospace
Conference.

Button R.M. and A. Chicatelli, (2005), Electrical Power
System Health Management, In Proc. 1st
International Forum on Integrated System Health
Engineering and Management in Aerospace, Napa,
CA.

Deb, S., Pattipati, K.R., Raghavan, V., Shakeri, M.,
Shrestha, R., (1995), Multisignal flow graphs: a
novel approach for system testability analysis and
fault diagnosis, IEEE Aerospace and Electronics
Systems Magazine, Vol.10, No. 5, pp. 14 -25.

Frank G., (2008), Automation for Operations,
Proceedings of AIAA SPACE Conference and
Exposition, San Diego, California.

Hayashi, M., U. Ravinder, B.Beutter, R. S. McCann, L.
Spirkovska and F. Renema, (2008), Operator
Performance Evaluation of Fault Management
Interfaces for Next-Generation Spacecraft, In Proc.
of the 38th International Conference on
Environmental Systems.

Kortenkamp, D., R. Peter Bonasso and D.
Schreckenghost, (2007), Developing and Executing
Goal-Based, Adjustably Autonomous Procedures, in
Proceedings of the AIAA InfoTech@Aerospace
Conference .

Kurtoglu, T., R. Lutz and A. Patterson-Hine, (2009),
Towards Verification of Operational Procedures

using Auto-Generated Diagnostic Trees, in Proc. of
the Annual Conference of the Prognostics and
Health Management Society.

LTSA, (2008), http://www.doc.ic.ac.uk/ltsa/eclipse/.
McCann, R., Beutter, B. R., Matessa, M., McCandless,

J. W., Spirkovska, L., Liston, D., Hayashi,M.,
Ravinder, U., Elkins, S., Renema, F., Lawrence,R.,
& Hamilton, A., (2006), Description and
Evaluation of a Real-time Fault Management
Concept for Next-generation Space Vehicles,
Internal Report to Johnson Space Center.

Patterson-Hine, A., Narasimhan, S., Aaseng, G.,
Biswas, G., Pattipati, K., (2005), A Review of
Diagnostic Techniques for ISHM Applications., in
1st Integrated Systems Health Engineering and
Management Forum. Napa, CA.

Poll S., A. Patterson-Hine, J. Camisa, D. Garcia, D.
Hall, C. Lee, O. J. Mengshoel, C. Neukom, D.
Nishikawa, J. Ossenfort, A. Sweet, S. Yentus, I.
Roychoudhury, M. Daigle, G. Biswas, and X.
Koutsoukos, (2007), Advanced Diagnostics and
Prognostics Testbed, In Proc. of the 18th
International Workshop on Principles of Diagnosis
(DX-07), Nashville, TN.

Polyspace, (2008), http://www.polyspace.com
QSI, Testability Engineering and Maintenance System

(TEAMS) Tool, www.teamsqsi.com.
Verma, V., V. Baskaran, H. Utz, R. Harris and C. Fry,

(2008), Demonstration of Robust Execution on a
NASA Lunar Rover Testbed, In Proc. of
International Symposium on Artificial Intelligence,
Robotics and Automation in Space (iSAIRAS).

 Visser W., K. Havelund, G. Brat, S. Park and F. Lerda.
(2003), Model Checking Programs., In the
Automated Software Engineering Journal, Vol. 10,
number 2, April 2003.

Tolga Kurtoglu is a Research Scientist with Mission
Critical Technologies at the Intelligent Systems
Division of the NASA Ames Research Center working
for the Systems Health Management group. His
research focuses on the development of prognostic and
health management systems, model-based diagnosis,
design automation and optimization, and risk and
reliability based design. He received his Ph.D. in
Mechanical Engineering from the University of Texas
at Austin in 2007 and has an M.S. degree in the same
field from Carnegie Mellon University. Dr. Kurtoglu
has published over 40 articles and papers in various
journals and conferences and is an active member of
ASME, ASEE, AIAA, and AAAI. Prior to his work
with NASA, he worked as a professional design
engineer at Dell Corporation in Austin, Texas.

Annual Conference of the Prognostics and Health Management Society, 2010

 13

Robyn R. Lutz received the Ph.D. degree from the
University of Kansas (1980). She has worked at Jet
Propulsion Laboratory/Caltech since 1983, currently as
a senior engineer in the Flight Software and Data
Systems section. She is also a professor in the
Department of Computer Science at Iowa State
University. Her work focuses on software safety,
software product lines, defect analysis, and formal
modeling and analysis, especially for fault detection
and recovery. Her research is supported by NASA and
the National Science Foundation. She is a member of
ACM and a Senior Member of IEEE.

Martin S. Feather is a Principal in the Software
Assurance Technology and Reliability group at the Jet
Propulsion Laboratory, California Institute of
Technology. He works on developing research ideas
and maturing them into practice, with current activities
in the areas of software and system V&V, safety cases,
early phase requirements engineering, and risk
informed decision making. He works collaboratively
with other researchers, and with software and systems
engineering practitioners in cross-disciplinary settings
at JPL. He obtained bachelors and masters degrees in
mathematics and computer science from Cambridge
University, England, and a Ph.D. in artificial
intelligence from the University of Edinburgh,
Scotland.

