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ABSTRACT 

Prognostics is an emerging science of predicting the 

health condition of a system (or its components) based 

upon current and previous system states. A reliable 

predictor is very useful to a wide array of industries to 

predict the future states of the system such that the 

maintenance service could be scheduled in advance 

when needed. In this paper, an adaptive recurrent neural 

network (ARNN) is proposed for system dynamic state 

forecasting. The developed ARNN is constructed based 

on the adaptive/recurrent neural network architecture 

and the network weights are adaptively optimized using 

the recursive Levenberg-Marquardt (RLM) method. 

The effectiveness of the proposed ARNN is 

demonstrated via an application in remaining useful life 

prediction of lithium-ion batteries.
*
 

1. INTRODUCTION 

Prognostics and health management (PHM) is an 

enabling discipline of technologies and methods with 

the potential capability of solving reliability problems 

that have been manifested due to complexities in 

design, manufacturing, environmental and operational 

conditions (Pecht and Jaai, 2010). Although a key 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

component of PHM is prognostics, it is also the least 

mature element under development (Goebel et al., 

2008). Prognostics entails the use of the current and 

previous system (or component) states to predict the 

future states of a dynamic system, and the forecast 

information can be used for: 1) condition monitoring to 

provide a reliable alarm before a fault reaches critical 

levels, so as to prevent machinery performance 

degradation, malfunction, or even catastrophic failures 

(Liu et al., 2010); and 2) schedule of repairs and 

maintenance in advance (Jardine et al., 2006). 

 Traditionally, prognostics can be implemented using 

either model-based approaches or data-driven 

approaches (Schwabacher and Goebel, 2007). Model-

based approaches typically involve building 

mathematical functions to describe the physics of the 

system and failure modes and thus incorporate physical 

understanding of the system into the estimation of 

remaining useful life (RUL) (Saha and Goebel, 2009; 

Orchard et al., 2005; Oppenheimer and Loparo, 2002; 

Adams, 2002; Chelidze and Cusumano, 2004). 

However, an accurate analytical model is usually 

difficult to derive for a complex dynamic system, 

especially when the system operates under noisy and/or 

uncertain environments (e.g., most real-world industrial 

applications). Data-driven approaches use pattern 

recognition and machine learning to establish the 

connection between operational data and system health, 

thereby enabling changes in system states to be 

detected (Tse and Atherton, 1999; Gupta and Ray, 

2007; Goebel et al., 2008). Classical data-driven 
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approaches for nonlinear system prediction also include 

the use of stochastic models such as the autoregressive 

(AR) model (Groot and Wurtz, 1991), the threshold AR 

model (Tong and Lim, 1980), the bilinear model 

(Subba Rao, 1981), the projection pursuit (Friedman 

and Stuetzle, 1981), the multivariate adaptive 

regression splines (Friedman, 1991), and the Volterra 

series expansion (Brillinger, 1970). These approaches 

rely on past patterns of the degradation of similar 

systems to project future system states and are more 

appropriate when the understanding of first principles 

of system operation is not comprehensive and/or when 

the system is sufficiently complex that developing an 

accurate model is prohibitively expensive. Since the 

last decade, more research interests in system state 

forecasting have shifted to the use of data-driven 

flexible models such as neural networks (Tse and 

Atherton, 1999; Atiya et al., 1999) and neural fuzzy 

systems (Jang, 1993; Korbicz, 2004). 

 Although data-driven flexible-model approaches 

have demonstrated some superior properties to other 

classical forecasting tools, advanced research still needs 

to be conducted before it can be applied to real-world 

industrial applications (Wang, 2007): 1) improving the 

convergence properties, especially for multi-step 

predictions; and 2) enhancing the adaptive capability to 

accommodate time-varying system conditions. 

Consequently, the aim of this paper is to develop an 

adaptive recurrent neural network (ARNN) for 

prognostic applications. The developed ARNN 

predictor is new in the following aspects: 1) a multi-

layer state adaptive and recurrent paradigm is proposed 

for multi-step forecasting, such that the information 

from the previous steps could be properly utilized to 

improve the forecasting accuracy; 2) a recursive 

Levenberg-Marquardt (RLM) algorithm is adopted to 

adaptively optimize the network parameters to 

accommodate time-varying system conditions; 3) the 

proposed ARNN is implemented for the RUL 

prediction of lithium-ion batteries. The useful life of a 

battery is defined by the time until which a battery is 

able to maintain a minimum charge capacity when fully 

charged. In this experiment data were collected at fixed 

time intervals (every four weeks), therefore, RUL is 

calculated as the time remaining until the battery 

charge retention capacity drops to 70% of its full 

capacity observed at the beginning. 

 The organization of this paper is as follows. The 

developed ARNN predictor is described in Section 2. 

The effectiveness of this ARNN predictor is 

demonstrated in Section 3 via an application in battery 

RUL prediction. Some conclusions and remarks are 

included in Section 4. 

2. THE ADAPTIVE RECURRENT NEURAL 

NETWORK 

The developed ARNN predictor includes two main 

components: the adaptive and recurrent neural network 

architecture and the network parameter optimization 

using a RLM method, which will be described in the 

following discussions. 

2.1 The ARNN Network Architecture  

The network architecture of the proposed ARNN 

predictor is schematically shown in Figure 1. It is a 

hybrid model of both direct, adaptive, and recursive 

predictions; that is, the ARNN predictor is constructed 

based on a feed-forward multi-layer neural network 

with adaptive and recurrent feedback links from user-

selected nodes. The connection topology may vary 

from one application to another, which can be 

conveniently redefined by users. The adaptive feedback 

links represent temporal information spatially while the 

recurrent feedback links deal with time explicitly. The 

feedback units copy the activations of the nodes from 

the previous time step, and allow the network to 

memorize the clues from the past, which forms a 

reasoning base for current processing. 

Output

Hidden Nodes/Layers

InputsPrevious States Z-1 Z-1 Z-1

Z-1

Weights
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Weights

W
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Weights
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Adaptive Feedback
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Figure 1: The network architecture of the developed 

ARNN predictor. 

 In the developed ARNN predictor, the sigmoid 

activation functions (AF) are used for the nodes in the 

hidden layers and the linear AF is chosen for the nodes 

in the output layer; correspondingly the inputs )(nxi , 

the previous states from the hidden layers )1( nyh , 

and the previous outputs )( lnyo  should be properly 

normalized to [0 1] or [-1 1] based on the type of the 

sigmoid AFs employed. For n-th sample, the output of 

the j-th node in the first hidden layer is given by 

)()( jj netfny  , (1) 

,)(

)()1()(

j
l

ojl

i
iji

h
hjhj

lnyw

nxvnyunnet








 (2) 



Annual Conference of the Prognostics and Health Management Society, 2010 

 3  

where j  is the bias; U, V and W are the network 

weight matrices that correspond to the previous states, 

the inputs and the previous outputs, respectively; l = 1, 

2, …, L, where L denotes the maximum output 

feedback depth; )(f  is the chosen AF. The 

connections between the first hidden layer and the 

network output can take any form of multi-layer 

perceptron (MLP), denoted by 

))(()( nygnyo  , (3) 

where )(g represents the nonlinear mapping of this 

MLP. The proposed state adaptive and recurrent 

feedbacks include temporal aspects into network such 

that the useful information from the previous steps 

could be properly utilized for a more accurate 

estimation on the future system states. The network 

weights are optimized by the developed RLM method 

(Liu et al., 2009) as discussed in the following section. 

2.2 The ARNN Network Training 

The ARNN predictor as developed in Section 2.1 

should be properly trained to generate an optimal 

input/output mapping. For offline training, 

representative training data should cover all the 

possible application conditions (Liu et al., 2009). Such 

requirement is difficult to achieve in real-world 

applications because most machines/systems operate in 

noisy and/or uncertain environments. Usually, the 

classical forecasting schemes are employed for time-

invariant systems or systems with slowly varying 

model parameters. However, system’s dynamic 

characteristics may change suddenly, for example, just 

after repairs or regular maintenance. In this section, a 

RLM method is adopted to adaptively optimize the 

ARNN weights to accommodate time-varying system 

conditions. 

 For a training data pair,  Tn
d

n yx )()(
, )(nx is a 

vector that contains the network inputs as well as the 

previous states and outputs; n = 1, 2, …, N; N is the 

total number of training data sets;
)(n

dy  is the desired 

output. The objective function for all the N training 

data sets is defined as 
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where ]10(  is the forgetting factor, 

and ]19.0(  is usually used to avoid possible 

convergence instability;   denotes all the network 

weights and 1 qR ;   is the point forecasting 

error. 

 The computation of the inverse Hessian matrix in 

the classical LM is time-consuming and impractical for 

real-time applications (Jang et al., 1997). In this case, a 

remedy is to apply the matrix inversion lemma to avoid 

the direct inversion of Hessian matrix (Ljung and 

Soderstrom, 1983). Instead of adding the qq  matrix 

In)(  at each step, only one diagonal element is 

added at a time. As a result, the weights of the ARNN 

are recursively updated by 
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where )(ˆ n  is the estimate of )(n at sample instant 

n;  dd  is the Jacobian matrix; R is the inverse 

of an approximated Hessian matrix, and R(0) is chosen 

as an identity matrix IN  with a constant 

]1010[ 53N ; 
*  and 

*  are, respectively, 

given as 
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The RLM parameter )(n  conversely affects the trust 

region radius (Jang et al., 1997), which should be 

adaptively modified based on the performance of the 

updated weights. The following strategy is applied in 

this work: the initial value )1( is set to 0.1; if the 

objective function in Eq. (4) decreases as the weights 

are updated, reduce )(n  by kn)( ; otherwise, if the 

objective function increases as the weights are updated, 

enlarge the )(n  by )(nk , where k is a design 

parameter. In determining these LM parameters, a 

series of simulation tests have been conducted in terms 
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of training accuracy and convergence speed. )1(  

[0.01, 1] have been tested and )1( = 0.1 is used as an 

initial value which will be updated in training. On the 

other hand, k [1.01, 2.00] was explored in this work; 

a larger value of the updating parameter k may lead to 

training instability, whereas a smaller k slows down the 

training process. k = 1.15 is used in this work. 

3. PERFORMANCE EVALUATION 

The effectiveness of the proposed ARNN predictor is 

shown for a battery health management application for 

RUL prediction. We compare its performance with the 

classical recurrent neural network (RNN) and the 

recurrent neural fuzzy system (RNF) (Liu et al., 2009) 

in more details in addition to making comparisons with 

other data driven algorithms that have been applied to 

the battery health dataset in earlier works. 

3.1 Application: Battery RUL Prediction 

Batteries are widely used in various engineering and 

household systems. An effective prognostic tool is 

critically needed to predict the future capacity of a 

battery and reliably estimate its RUL. The forecast 

RUL information can be used not only for battery fault 

detection to prevent performance degradation of the 

related equipment, but also for scheduling battery 

recharge which is critical in many applications such as 

the emerging electric vehicles and aerospace industries. 

Both applications differ in the way they define RUL. 

For one, RUL is computed by tracking its charge 

retention capacity that tends to diminish with every 

recharge cycle, and for the other RUL is defined by the 

expected discharge of a battery within a charge cycle. 

While, both are critical applications, the experimental 

data used in this paper is suitable for prediction battery 

capacity only. 

 Dynamic models have been built for PHM of 

lithium ion batteries (Gao et al., 2002). These models 

take into consideration nonlinear equilibrium 

potentials, rate and temperature dependencies, thermal 

effects, and transient power response. However, it still 

remains difficult to accurately predict the RUL of a 

battery using a model-based approach when 

environmental and load conditions changes; 

furthermore, modeling a lithium-ion battery from the 

first principles of the internal electrochemical reactions 

can be very tedious and computationally intractable.  

Developing data-driven methods that use sensor 

measurements to make these predictions provides 

alternative ways to make predictions in absence of 

good system model. In this work, we have implemented 

the developed data-driven ARNN predictor for the 

RUL prediction of lithium-ion batteries. The battery 

RUL is estimated in terms of capacity degradation 

(Goebel et al., 2008; Saxena et al., 2009). The failure 

threshold is generally defined by the manufacturer for a 

specific application. In this case, a lithium-ion battery 

is deemed to fail when its capacity 1C  fades by 30% 

of the rated value. The batteries’ capacity is usually 

inaccessible to be gathered though sensor 

measurements; therefore, indirect measurements are 

employed to assess battery health. A lumped parameter 

model can be used that models the inside chemistry of 

the batteries though a simple electrical circuit and the 

change in resistive components of this circuit explains 

the reduction in battery capacity. Features extracted 

from sensor data of voltage, current, power, impedance, 

frequency, and temperature readings are used to 

estimate the internal parameters in the lumped-

parameters battery model. The values of these internal 

parameters change with various aging and fault 

processes like plate sulfation, passivation, and 

corrosion (Goebel et al., 2008). Specifically, 

parameters ER and CTR  are tracked and employed for 

battery RUL prediction, where ER  denotes the 

electrolyte resistance and CTR  denotes the charge 

transfer resistance in the lumped-parameter model 

(Saha et al., 2009).  ER CTR  is typically inversely 

proportional to the capacity 1C  and can be estimated 

through the electrochemical impedance spectroscopy 

test.  The data used in this study were from the second 

generation, Gen 2, 18650-size lithium-ion cells that 

were cycle-life tested at 60% state-of-charge (SOC) 

and temperature (25
o
C and 45

o
C) (Christophersen et 

al., 2006). 

3.2  Results and Discussion 

The prediction algorithms developed in this study 

namely; the ARNN predictor, the classical RNN 

predictor and the RNF predictor are trained using the 

history  ER CTR data collected from multiple 

batteries of the same type at 25
o
C and 45

o
C, and are 

then employed to predict an unknown  ER CTR  

trajectory of the test battery collected at 45
o
C. Figure 2 

shows the  ER CTR  trajectories that were used for 

network training and testing. As can be seen from the 

figure below, these batteries take more than a year to 

age. Running such systems to failure in a lab 

environment could be a lengthy and rather costly 

process. Therefore, data from multiple batteries being 

aged in parallel was collected on a monthly basis. 

However, the  ER CTR  data available in this work 

for network training are quite limited in the sense it has 

very few points (one per month or less than twenty per 

aging battery) to let the network train properly and 

hence could not be directly used for early RUL 
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predictions; thus data interpolation was applied to 

generate more data points for a proper network weights 

optimization. 
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R
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Testing Data

Training Data Collected at 25oC

Training Data Collected at 45oC

 

Figure 2: The battery parameter data used for network 

training and testing. 

The learning process on the degradation patterns 

carried out from the history  ER CTR data is 

somewhat complicated. As seen in Figure 2, various 

trajectories obtained from experimental data are shifted 

that results in different target values for a given time 

input during learning phase. Therefore, the same input 

data (i.e., the previous degradation states), the training 

targets (i.e., the one-step-ahead state) may be 

significantly different, which confuses the learning of 

the predictors and thus necessitate more inputs and 

finer training scenarios. The initialization settings for 

the parameters associated with the proposed RLM 

learning algorithm are based on the literature, which is 

a common practice for most of learning algorithms 

(e.g., the initial settings on weights and learning rate in 

steepest gradient).  During our testing phase, we found 

that the RLM algorithm is very stable in terms of 

convergence and repeatability when the proper ranges 

of learning parameters are specified and therefore 

impart higher degree of confidence in the prediction 

results. 

 In our implementation, the temperature was used as 

an additional network input. As indicated earlier that 

the experimental data was available from tests 

conducted at different temperatures and that the 

operational temperature significantly affects the 

capacity life of a battery, a prediction should take into 

account such operational environmental conditions. 

This facilitates prediction of battery capacity at 

different temperatures. Several initial runs are taken to 

examine the complexity (or nonlinearity) of the data so 

as to help define the structure of the related NN-based 

predictors. It must be noticed that designing a suitable 

network is usually considered an art with few 

guidelines available from the literature. For a fair 

comparison, the ARNN and RNN predictors were built 

with the same number of layers and nodes, that is, six 

nodes for the first hidden layer, eight nodes for the 

second hidden layer, and four nodes for the third 

hidden layer. The maximum adaptive feedback depth 

was set to four for the ARNN and RNN predictors and 

was limited to three for the RNF predictor (constrained 

by the structure, Liu et al., 2009). The predictors are 

trained using the history  ER CTR  data of the 

battery of the same type so as to capture the patterns on 

how the temperature )(1 nx , the current battery 

state )(nyo , and the previous battery states )4( nyo , 

)3( nyo , )2( nyo , )1( nyo affect the one-step-

ahead battery state )1( nyo .  After the learning step 

the trained network is used to predict the 

 ER CTR degradation trend on an unknown test 

trajectory. Multiple predictions were generated starting 

from week 20 to week 64 at an every four weeks 

interval. The predictor was run fifty times to obtain 50 

 ER CTR trajectories to gather statistical 

significance that were then averaged to compute the 

final predicted trajectory. Using a linear mapping from 

 ER CTR  to battery capacity (Saha and Goebel, 

2008), the battery capacity from the predicted 

trajectories was derived. As mentioned earlier, the 

threshold for determining the RUL was chosen at 70% 

of the rated capacity. 

 To quantify the prognostic performance, the α-λ 

prognostic metric, as defined in (Saxena et al., 2010), is 

employed. We first compare the predictions from these 

three predictors with the four algorithms that were 

previously used for the same dataset (Goebel et al., 

2008; Saha et al., 2009; Saxena et al., 2009). Figure 3 

shows the predicted means from all seven different 

approaches that include the ARNN predictor, the 

classical RNN predictor, the RNF predictor, a Particle 

.Filter based predictor, Gaussian process regression 

(GPR), relevance vector machine (RVM), and a simple 

polynomial regression approach. Since the previous 

works compared only the point predictions, a 

comparison using the point predictions is made here. 

Comparing these approaches in Figure 3, following 

observations can be made: 1) the proposed ARNN 

predictor, the classical RNN predictor and the particle 

filtering (PF) based predictor provide a better 

prognostic performance than the other four predictors 

in terms of prediction accuracy; 2) the performance of 

the RNF predictor is not as good as the ARNN and 

RNN predictor; this may be attributed to the fact that 

the RNF predictor is constrained by the number of 

network inputs (usually less than five), and the 

complexity of the RNF structure (e.g., prognostic rules 

and consequent parameters) increases exponentially as 
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the number of inputs rises; based on a limited number 

of training data, the neural network based techniques 

could be more suitable in this prognostic application 

than the RNF to capture the common/hidden 

characteristics between the training data and testing 

data; 3) the proposed ARNN predictor outperforms all 

the other predictors in this test and performs within 

90% accuracy of the true RUL since early predictions; 

4) the test results also indicate that the prognostic 

performance improves when adaptive/recurrent 

feedbacks from the previous system states are properly 

utilized, 5) the implemented RLM approach shows a 

better learning capability than the classical training 

algorithms. 

 

Figure 3: The battery RUL prediction comparison 

between seven different prediction methods. 

 To better understand the prediction variability 

(uncertainty), distributions of the RUL predictions over 

50 program runs were analyzed using the enhanced 

prognostic metrics that were developed in (Saxena et 

al., 2010). These results are plotted in Figures 4-6.  
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Figure 4: The distribution of the RUL predictions from 

the proposed ARNN predictor. 

Also indicated on the plots are the percentages of RUL 

distribution overlap with the 10% accuracy cone and 

whether it satisfies the α-λ metric at all times according 

to the β-criterion with β =.05.It can be seen that the 

confidence interval of the RUL prediction from the 

proposed ARNN predictor is markedly smaller than the 

classical RNN predictor and the RNF predictor, which 

indicates that the ARNN predictor can provide a more 

reliable RUL prediction on this dataset. 

15 20 25 30 35 40 45 50 55 60 65
0

10

20

30

40

50

60

70

38.0%

False

50.0%

True

54.0%

True

36.0%

False

60.0%

True
40.0%

False
18.0%

False

52.0%

True

56.0%

True

38.0%

False

66.0%

True

Time (weeks)

R
U

L
 (

w
e

e
k
s
)

RNN (=0.1, =0.5)

 

 

(1)RUL

True RUL

5th and 95th Percentiles

Interquartile Range

 

Figure 5: The distribution of the RUL predictions from 

the classical RNN predictor. 
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Figure 6: The distribution of the RUL predictions from 

the RNF predictor. 

4. CONCLUSION 

In this paper, an adaptive recurrent neural network 

(ARNN) has been developed for remaining useful life 

(RUL) prediction of lithium-ion batteries. This ARNN 
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predictor can enhance the prediction accuracy by 

properly utilizing the previous system states through 

adaptive/recurrent feedbacks. A recursive Levenberg-

Marquardt (RLM) technique is implemented to 

adaptively optimize the ARNN weights so as to 

accommodate time-varying system conditions. The 

developed ARNN predictor was applied to predict the 

remaining useful life (RUL) of lithium-ion batteries. 

The results of this investigation have shown that the 

ARNN technique can effectively learn system states 

from a limited number of measurements to update the 

data-driven nonlinear prediction model. It outperforms 

the classical RNN and the RNF in battery RUL 

prediction. 
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NOMENCLATURE 

n sample index (represents time for time series) 

i input index 

j node index in a network layer 

h layer index in a network 

l index to denote output feedback depth (look 

back distance in time) 

θj bias for the jth node 

U weight matrix (ujh) for previous states 

V weight matrix (vji) for network inputs 

W weight matrix (wjl) for previous outputs 

f(·) activation function (AF) 

g(·) a nonlinear mapping between a hidden layer 

and the network output of a MLP 

xi(n) network inputs 

yh(n-1) previous states from hidden layer h 

yo(n-l) previous output looking back l time instants 

x(n) vector of network inputs and previous states 

and outputs 

    
)(n

d
y  desired output (target) for the network 

λ forgetting factor to weigh previous inputs 

differently ]10(  

Θ all network weights, 1 qR  

ε point forecasting error 

    
)(ˆ n

 
is the estimate of )(n

 
at sample instant n 


 

is the Jacobian given by dd  
R is the inverse of an approximated Hessian 

matrix 

αN is a constant to initialize R; R(0) = αNI 

μ(n) RLM parameter inversely proportional to trust 

region radius 

k a design parameter to scale μ 

     ER   denotes the electrolyte resistance of the battery 

     CTR   denotes the charge transfer resistance of the   

battery 

C/1 battery capacity 

α-λ accuracy bounds to satisfy while evaluating 

prediction performance at specific time 

instant, λ(EoL-tp), relative to ailing life of the 

components 

β required probability specified for RULs to fall 

within  α bounds 
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