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ABSTRACT 

This paper presents a methodology for 

assessing the confidence and the predictive 

capability of prognosis models, using the 

application of fatigue crack growth analysis. 

Structures with complicated geometry and 

multi-axial variable amplitude loading 

conditions are considered. Several models –

finite element model, crack growth model, 

retardation model, surrogate model, etc. – are 
efficiently connected through a Bayes network 

and the parameters of these models are 

calibrated after collecting inspection data. The 

results of the calibration are then used to 

develop a Bayesian confidence metric to 

assess the confidence of the models used in 

fatigue crack growth analysis. Three types of 

uncertainty are included in analysis: (1) 

natural variability in loading and material 

properties; (2) data uncertainty, due to crack 

detection uncertainty, measurement errors, and 
sparse data; (3) modeling uncertainty and 

errors in crack growth analysis, and finite 

element analysis. The proposed methodology 

is illustrated using a numerical example of 

surface cracking in a cylindrical structure.* 

1 INTRODUCTION 

The scientific community has increasingly resorted to 

the use of computational models to predict the 

performance of engineering components and systems 

so as to facilitate risk assessment and management, 

inspection and maintenance scheduling, and operational 
decision-making. Model-based prognosis, i.e. 

predicting the performance of a system using a physics-

based model is promising for health management. 

                                                        
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 
credited. 

However, no model can perfectly represent the system 

and hence it is necessary to include model form errors 

and model uncertainty in the prognosis. Secondly, 

complex engineering systems may have to be modeled 

using multiple models that interact with one another. In 

such cases, each model has its own error/uncertainty 

and the interaction between the errors of multiple 

models is non-trivial. Some errors are deterministic 

while some others are stochastic. Systematic methods 

are needed to quantify the uncertainty and confidence 
associated with the model prediction. Hence, prognosis 

methods need to facilitate the integration of multiple 

models, quantification of different types of uncertainty 

(physical variability, data uncertainty, and model 

uncertainty) and assess the confidence associated with 

the results of prognosis. 

 This paper uses the fatigue crack growth problem as 

a foundation to develop this methodology. The 

objective of this problem is to predict the crack growth 

in a structural component as a function of number of 

load cycles. Fracture mechanics-based models such as 
Paris law (Paris et al., 1961) are calibrated from 

experimental testing of coupons and used for crack 

growth analysis. The extrapolation of the results of 

laboratory testing to practical applications (complicated 

geometry with multi-axial variable amplitude loading 

conditions) not only introduces several types of 

uncertainty but also questions the confidence in the 

prediction.  

 There are several issues to be considered while 

using fracture mechanics-based models for fatigue 

damage prognosis. The aforementioned fracture 
mechanics-based models are currently used to predict 

the growth of the crack only in the long crack region. 

This paper uses an equivalent initial flaw size (Liu and 

Mahadevan, 2008) to replace the short crack growth 

calculations and to make direct use of a long crack 

growth model. A modified Paris law is used in 

conjunction with a Wheeler retardation model to 

account for variable amplitude loading. Three stress 

intensity factors (mode-I, mode-II, and mode-III)  are 

calculated using finite element analysis and combined 

to obtain an equivalent mode-I stress intensity factor 
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using a characteristic plane approach. Further, the finite 

element model is expensive and hence, replaced with 

an efficient Gaussian process surrogate model. Note 

that the paper uses modified Paris’ law, Wheeler’s 

model, Gaussian process surrogate model, etc. only for 

the purpose of illustration and any other suitable 
combination of models may be used. 

 Fatigue crack growth is a stochastic process and the 

various sources of uncertainty – natural variability, data 

uncertainty and model uncertainty – need to be 

considered in crack growth analysis. Natural variability 

includes variability in loading, material properties, 

geometry and boundary conditions. The geometry of 

the specimen and boundary conditions are considered 

deterministic in this paper. The uncertainty in 

experimental data needs to be accounted for. An error 

term (treated as a random variable) is added to the 

crack growth law to represent the fitting error since 
experimental data were used to estimate its coefficients.  

Further, the model coefficients are also treated as 

random variables. The discretization error in finite 

element analysis can be estimated using Richardson 

extrapolation. This finite element analysis is replaced 

by a Gaussian process model whose prediction 

uncertainty can be modeled as a random variable. 

These different types of uncertainty are summarized in 

Table. 1.  

 This paper develops a systematic procedure to (1) 

connect different models – finite element model, 
surrogate model, crack growth model, etc. efficiently; 

(2) quantify the uncertainty in each model; (3) 

propagate the different sources of uncertainty and 

calculate the overall uncertainty in the crack growth 

prediction; and (4) use experimental data to calibrate 

the model parameters and assess the confidence in the 

crack growth prediction.  

 The various models involved in crack growth 

analysis and the different sources of uncertainty can be 

connected effectively through a Bayes network, which 

is useful in two different ways, (1) in an inverse 

problem (Urbina, 2009), where the crack growth model 
is calibrated after experimental data (crack size after a 

number of load cycles) are collected and, (2) in a 

forward problem (Sankararaman et al., 2009), where 

the probability distribution of the crack size is 

calculated as a function of number of loading cycles. 

 The goal of this paper is to quantify the uncertainty 

in the crack growth prediction and assess the associated 

confidence by quantifying “the extent to which 

available experimental data support the prognosis 

results.” A two-step methodology has been devised for 

this purpose:  (1) Prior probability distributions are 
chosen for the model parameters and in the presence of 

experimental evidence (crack size after number of 

loading cycles), and a Bayesian inference technique is 

used to update their distributions and calculate posterior 

probability distributions (2) The prior distributions 

(before calibration) and the posterior distributions are 

both used for crack growth prediction (prognosis), 

thereby resulting in “prior-prognosis” and “posterior-

prognosis”. These two results are compared and a 

Bayesian metric is proposed to assess the confidence in 
the model prediction. 

 

Table 1. Classification of Sources of Uncertainty 

 

SOURCES OF UNCERTAINTY 

Natural 

Variability 

Data 

Uncertainty 

Model 

Errors and 

Uncertainty 

1) Loading 

2) Material 

properties 

3) Geometry 

4) Boundary 

conditions 

1) Sparse data 

(to construct 

probability 

distributions for 

material 

properties) 

2) Output 
measurement 

error 

3) Crack 

detection 

uncertainty 

1) Crack 

growth law : 

model form 

error and 

parameter 

uncertainty 

2) Finite 
element 

discretization 

error 

3) Surrogate 

model 

prediction 

uncertainty 

 

 The following section reviews the literature relevant 

to this topic and motivates the current study. Section 3 

discusses the crack growth modeling procedure used in 

this paper. Section 4 discusses the several sources of 
uncertainty and proposes methods to handle them. 

Section 5 outlines the proposed Bayesian inference 

technique for calibrating the crack growth model 

parameters. Section 6 develops the Bayesian metric to 

assess the confidence in model prediction. Section 7 

illustrates the proposed methods using an example, 

surface cracking in a cylindrical crack. 

2 PREVIOUS WORK 

Numerous studies have addressed probabilistic crack 

growth and life prediction but focused mainly on 

natural variability in loading, geometry and material 
properties. However, the need of probabilistic 

prediction has been emphasized and the need to assess 

the confidence in the prediction of models is evident. 

Several metrics have been proposed to quantify the 

predictive capability of prognosis models. Saxena et al. 

(2009) reviewed the literature and discussed the various 

metrics used for assessing the performance of 

prognostic algorithms. These metrics are based on the 
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error observed, standard deviation of the quantity 

observed, sensitivity, reliability and cost-benefit 

analysis. Also several new metrics such as Prognostics 

horizons, α-λ performance were proposed. Many of 

these metrics are calculated on the basis of comparison 

between the model predictions with the observed set of 
experiments. However, experimental results may not be 

available to facilitate this comparison. Sometimes, a 

current set of experimental results may be available and 

it may be of interest to assess the prediction of the 

model in future. There is an evident need to develop a 

methodology which can use available experimental 

data to assess the prediction of the model in future. 

 Rebba and Mahadevan (2006) proposed a Bayesian 

methodology to extrapolate the confidence in the 

prediction of the model from one domain to another. 

Though this was a generic procedure, time-dependent 

models were not considered and the various sources of 
uncertainty such as physical variability, data 

uncertainty and model uncertainty were not clearly 

delineated. Further, this procedure is not directly 

applicable if there are multiple interacting models.. In 

this paper, the approach in (Rebba and Mahadevan, 

2006) is extended to overcome these limitations. One 

important advantage in the proposed methodology is 

that the various quantities of interest can be connected 

through a Bayes network, which allows for addition of 

more models and sources of uncertainty. Further, for 

use in time-dependent problems, a dynamic Bayesian 
network can be constructed and the same set of 

principles developed by Rebba and Mahadevan (2006) 

can be applied. This approach consists of two steps: (1) 

model calibration using experimental evidence, and 2) 

prediction of future behavior and assessment of the 

prediction. 

 Model calibration is a well-known statistical 

problem and several techniques of statistical inference 

may be employed to solve this problem. As the various 

quantities of interest in this paper are connected 

through a Bayesian network, a Bayesian inference-

based calibration technique has been employed in this 
work. The various quantities of interest are assigned 

prior probability distributions which are then updated to 

calculate the posterior probability distributions. Such 

techniques have been employed by various researchers 

in the past (Urbina, 2009), but they have been used to 

calibrate either a single parameter (Makeev et al., 2006) 

or the parameters of a single model (Cross et al., 2007). 

These studies have considered simple structures under 

uniaxial constant amplitude loading conditions. In this 

paper, several different models are combined in crack 

growth analysis (finite element analysis, surrogate 
model development, crack growth model) and multiple 

model parameters are calibrated using the experimental 

evidence, while accounting for the different sources of 

uncertainty in a systematic manner.  

 While fatigue life prediction and probabilistic 

fracture mechanics are well-known research problems, 

only a few studies have focused on the various sources 

of uncertainty involved in crack growth analysis. The 

“damage prognosis” project at the Los Alamos national 

laboratory (Doebling and Hemez, 2001; Hemez et al., 
2003; Farrar et al., 2004; Farrar and Lieven, 2006) 

addressed this problem in detail and researchers 

proposed probabilistic methods as a solution to this 

problem. Several sources of errors and uncertainty such 

as discretization error, surrogate model error, crack 

growth model error, etc. were not included. 

 Besterfield et al. (1991) combined probabilistic 

finite element analysis with reliability analysis to 

predict crack growth in plates. Patrick et al (2007) 

introduced an online fault diagnosis and failure 

prognosis methodology applied to a helicopter 

transmission component. A crack growth model (Paris 
law) was used for fatigue life prediction. Sources of 

uncertainty such as data uncertainty and model 

uncertainty were not considered in these works. 

 Gupta and Ray (2007) developed algorithms for 

online fatigue life estimation that relied on time series 

data analysis. Pierce et al (2008) discussed the 

application of interval set techniques to the 

quantification of uncertainty in neural networks.  These 

works only considered the physical variability in input 

data and other sources of uncertainty were not 

investigated in detail. 
 Orchard et al (2008) used the method of particle 

filters for uncertainty management in fatigue 

prediction. Papazian et al (2009) developed a structural 

integrity prognosis system (SIPS) for modeling and 

simulation. While measurement errors and sensor data 

were considered in detail, solution errors, variability of 

model parameters, randomness in loading, etc were not 

considered. 

 It is clear from the above survey of existing 

literature that past studies have mostly considered 

physical variability in loading and material properties 

but did not consider other sources of uncertainty such 
as data and model uncertainty. When approximate 

computational models are used to predict crack growth 

in the presence of uncertain data about variable loading 

and structural properties, there is a clear need to assess 

the confidence in the prediction of such models before 

practical application. The existing methods 1) do not 

account for these sources of uncertainty, and 2) are not 

suitable when there is no experimental data available 

for direct comparison. This paper develops systematic 

techniques for model calibration and fatigue life 

prediction under various sources of uncertainty – 
physical variability, data uncertainty, and model 

uncertainty/errors. A Bayesian metric is proposed to 

assess the confidence in model prediction. This does 

not require experimental evidence collected over the 
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entire life of the specimen; data collected at any time 

instant can be useful in assessing the confidence in the 

model prediction at a future time. Thereby, this 

methodology overcomes the limitations of the existing 

approaches and is suitable for solving practical 

problems. The various steps in the proposed 
methodology are explained in the following sections. 

3 CRACK GROWTH MODELING 

This section summarizes the steps of fatigue damage 

prognosis for structures with complicated geometry and 

multi-axial variable amplitude loading conditions. The 

various models – finite element model, surrogate 

model, crack growth law, retardation model, 

characteristic plane model, etc. - involved in this 

procedure are briefly described and these models are 

connected systematically to predict the crack growth as 

a function of number of cycles.  

 The rigorous approach to fatigue life prediction 
would be to perform crack growth analysis starting 

from the actual initial flaw, accounting for voids and 

non-metallic inclusions. The concept of an equivalent 

initial flaw size (EIFS) was proposed to bypass small 

crack growth analysis and make direct use of a long 

crack growth law for fatigue life prediction. A physics-

based formula for the EIFS was proposed by Liu and 

Mahadevan (2008) in terms of material properties 

(ΔKth, the threshold stress intensity factor and σf, the 

fatigue limit) and geometric properties (Y). 

2

0
)/)(/1(

fth
YKa           (1) 

 The equivalent initial flaw size is used as an initial 

condition for the long crack growth model. This 

quantity is a model parameter; Eq. 1 is used to 

construct the prior distribution of EIFS which is 

updated after collecting experimental data.  

 The methods developed in this paper can be applied 

with any long crack growth low. For the purpose of 

illustration, this paper uses a modified Paris’ law with 

retardation effects as shown:  

da/dN = υrC (ΔK)n(1- ΔKth/ΔK)m                (2) 

 Note that several alternate models (Yuen et al., 
2006; Schjive, 1976; Noroozi et al., 2008) have been 

proposed to tackle variable amplitude loading 

conditions. This paper uses Wheeler’s retardation 

model (Sheu et al., 1995) only to illustrate the proposed 

uncertainty quantification methodology, and other 

appropriate models can also be used instead of the 

Wheeler model. In Eq. 2, υr refers to the retardation 

parameter  (Sheu et al., 1995) , and is equal to unity if 

ai + rp,i > aOL + rp,OL where aOL is the crack length at 

which the overload is applied, ai is the current crack 

length, rp,OL is the size of the plastic zone produced by 

the overload at aOL, and rp,i is the size of the plastic 

zone produced at the current crack length ai. Else, υr is 

calculated as: 

υr = (rp,i / (aOL+rp,OL-ai))
λ            (3) 

  

 In Eq. 3, λ (shaping exponent) is a curve fitting 

parameter for the original Wheeler model (Yuen et al., 
2006). Song. et al. (2001) observed that crack growth 

retardation actually takes place within an effective 

plastic zone. Hence the size of the plastic zone can be 

calculated in terms of the applied stress intensity factor 

(K) and yield strength (σ) as: 

rp = α (K/σ)2                      (4) 
 
 In Eq. 4, α is known as the effective plastic zone 

size constant which is calculated experimentally (Yuen 

et al., 2006). The retardation model parameters are 

calibrated for particular experimental conditions, which 

need to be matched to the problem at hand for proper 

application (Yuen et al., 2006). The expressions in Eq. 

3 and Eq. 4 can be combined with Eq. 2 and used to 

calculate the crack growth as a function of number of 

cycles as: 

    dadNN r )K)/K -(1K)( C/(1 m
th

n            (5) 

 For structures with complicated geometry and 

loading conditions, the integral in Eq. 5 is to be 

evaluated cycle by cycle, calculating the stress intensity 

factor (ΔK) in each cycle of the crack growth analysis. 

Further, if the loading is multi-axial (for example, 
simultaneous tension, torsion and bending), then the 

stress intensity factors corresponding to all three 

cracking modes need to be taken into account. This can 

be accomplished using an equivalent stress intensity 

factor. If KI, KII, KIII represent the mode-I, mode-II and 

mode-III stress intensity factors respectively, then the 

equivalent stress intensity factor Keqv can be calculated 

using a characteristic plane approach proposed by Liu 

and Mahadevan (2005).  

2
H

23222

1 )()()()(
1

s
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B
Keqv          (6) 

 In Eq. 6, K1, K2, K3 are the parameters associated 

with mode I, II, and III cracking, respectively. KH is 

related to hydrostatic stress. s is the ratio of modes II 

and I stress intensity factor at a specific crack growth 

rate (da/dN). A and B are material parameters. The use 

of the characteristic plane approach for crack growth 

prediction under multi-axial variable amplitude loading 

has been validated earlier with several data sets (Liu 

and Mahadevan, 2005). 

 In each cycle, the deterministic finite element 
analysis is substituted with a surrogate model because it 

is computationally inefficient to use a FEA for cycle-
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by-cycle integration. The use of a Gaussian process 

(GP) surrogate model for this purpose has been 

demonstrated in previous work (Sankararaman et al., 

2009; Sankararaman et al., 2010). A few runs of the 

finite element analysis are used to train this surrogate 

model and then, this GP model is used to predict the 
stress intensity factor for other crack sizes and loading 

cases (for which finite element analysis has not been 

carried out).  The Gaussian process model predicts the 

mean and the variance of the stress intensity factor in 

each cycle. Refer to McFarland (McFarland, 2008) for 

details of this methodology.  

 The flow of computations through the various 

models used in this section is shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Crack Growth Analysis 

 The algorithm in Fig. 1 for crack propagation 
analysis is deterministic and does not account for errors 

and sources of uncertainty. The following section 

quantifies different sources of uncertainty associated 

with each of the blocks in Fig. 1. 

4 SOURCES OF UNCERTAINTY 

This section proposes methods to quantify the various 

sources of uncertainty and errors associated with crack 

growth prediction. These various sources of uncertainty 

can be classified as: 

I. Physical Variability 

A. Loading 

B. Material properties  
II. Data Uncertainty 

A. Material properties 

B. Crack detection uncertainty 

C. Output measurement error  

III. Model Uncertainty/Errors 

A. Equivalent initial flaw size 

B. Crack growth law uncertainty (model form 

and parameters)  

C. Uncertainty in Stress Intensity factor 

a. Discretization error in FEA 

b. Uncertainty in surrogate model output 
  

 (Note: The material parameters considered in this 

work are threshold stress intensity factor and fatigue 

limit. Natural variations in other material properties 

such as the friction coefficient, Poisson Ratio, Young’s 

modulus, etc. and geometrical properties are assumed 

to be small and not included in this paper. However, if 

desired, these can also be included in the proposed 

framework by constructing different finite element 

models (for different geometry and boundary 

conditions) and use these runs to train the Gaussian 

process surrogate model.) 
 The following subsections briefly discuss each 

source of uncertainty and propose methods to quantify 

them. 

4.1 Physical Variability in Loading 

The methods developed in this paper are applicable to 

all generic random load histories and a block loading 

history is chosen here only for the purpose of 

illustration. In this paper, the block length is assumed to 

have a uniform distribution (U(0,500)) and the 

maximum and minimum amplitudes for each block are 

assumed to follow normal distributions (N(8,2) and 
N(24,2) respectively, in KNm) respectively. A sample 

loading history is shown in Fig. 2. 

 
Fig. 2. Sample Loading History 

4.2 Material Properties (Natural Variability and 

Data Uncertainty) 

Material properties such as the threshold stress intensity 

factor (ΔKth) and the fatigue limit (Δσf) have natural 

variability. Experimental data are available in literature 

to characterize their probability distributions. 

Sometimes, the available data may not be sufficient to 

construct a probability distribution (data uncertainty 
due to sparse data). In order to address this type of data 

 

ΔKeqv 

Surrogate Model  

Finite Element Analysis 
(Generate training points) 

 

Loading 
 

EIFS 

Crack 

Propagation 
Analysis 

Predict Final Crack Size (A) as a 

function of number of load cycles (N) 

Material Properties 
ΔKth, σf 
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uncertainty, the quantity of interest is resampled and 

represented using a probability distribution, whose 

parameters are in turn represented by probability 

distributions. For e.g., if a quantity X has a distribution 

fX(x|P), then the distribution of the parameters P can be 

calculated. This leads to a family of distributions for X 
which can be integrated using the principles of 

conditional probability and total probability as: 

 

 dPPfxfxf
PPXX

)()()(
|        

(7) 

4.3 Crack Detection Uncertainty and Output 

Measurement Error 

Crack growth data measured from laboratory 

experiments is directly used for the inference of EIFS 
in the approach followed in this paper. These 

measurements are affected by several factors, such as 

environment, equipment, operator skills, etc. and it is 

necessary to account for these factors include the 

measurement errors in the inference of EIFS. For an in-

service component, non-destructive inspection (NDI) 

technique is commonly used for damage detection. 

Several metrics could be used to evaluate the 

performance of NDI, such as probability of detection 

(POD), flaw size measurement accuracy, and false call 

probability (FCP). These criteria are developed from 

different methods, and they are used to evaluate 
different aspects of NDI performance. However, Zhang 

and Mahadevan (2001) showed that these quantities are 

mathematically related. POD and FCP can be derived 

from size measurement accuracy, which measures the 

difference between actual values and observed values 

of the crack size. 

 Inspection results may be of two types: (a) crack is 

detected and measured; (b) crack is not detected. For 

the case of detecting a crack and also measuring its 

size, size measurement accuracy could be used to 

quantify the uncertainty in crack growth inspection 
data, with the following expression determined by 

regression analysis (Zhang and Mahadevan, 2001): 

mm aa   10       (8) 

 In Eq. 9, am is the measured flaw size; a is the actual 

flaw size; β0 and β1 are the regression coefficients; and 

εm represents the unbiased measurement error, 

commonly assumed as a normal random variable with 

zero mean and standard deviation στ. The value of στ is 

different for each inspection technique used.  

4.4 Equivalent Initial Flaw Size 

As mentioned earlier, this paper treats the equivalent 

initial flaw size (initial condition of the differential 
equation) as a model calibration parameter. However, a 

prior probability distribution can be estimated using Eq. 

2, and can be updated using data. This prior distribution 

is calculated using the probability distribution of 

material properties such as the threshold stress intensity 

factor (ΔKth) and fatigue limit (σf). 

4.5 Uncertainty in Crack Growth Model 

In this paper, a modified Paris law has been used for 

illustration, however, the methodology can be 
implemented using any other crack growth model. The 

uncertainty in crack growth model can be subdivided 

into two different types: crack growth model form 

uncertainty, and uncertainty in model parameters. In 

each cycle, a normally distributed random variable εcg 

is added to the crack growth rate equation in Eq. 2 to 

account for model form uncertainty. Prior probability 

distributions can be assumed for model coefficients and 

model form error term εcg, and updated after collecting 

evidence. 

4.6 Uncertainty in Stress Intensity Factor 

The calculation of stress intensity factor ΔK is done in 
two stages. First, a few finite element analysis runs are 

required to train the GP model. Second, the GP model 

is used to predict the stress intensity factor. Finite 

element solutions have discretization errors which are 

deterministic and surrogate model prediction 

uncertainty is stochastic. First, the errors in finite 

element analysis are calculated and the solutions are 

corrected before training the Gaussian process 

surrogate model. The surrogate model prediction is 

stochastic, and hence the surrogate model uncertainty is 

addressed through sampling techniques. 
 The finite element discretization error is calculated 

based on Richardson extrapolation in this paper. This 

method is based on convergence analysis and calculates 

the error based on solutions from three different mesh 

sizes. For further details of this methodology, refer can 

be found in Sankararaman et al. (2010).  

 Once the finite element solutions are corrected for 

discretization error, they are used to train the surrogate 

model. The prediction of the Gaussian process model is 

a normal distribution with mean and variance 

(McFarland, 2008). Hence, in each cycle, a value of 

stress intensity factor is sampled from this normal 
distribution and used in crack growth analysis. 

5 INSPECTION DATA AND CALIBRATION 

Several prognosis metrics have been proposed based on 

comparison between available inspection data and 

model prediction. However, inspection data may be 

available only at a particular time and it may be 

necessary to assess the prognosis confidence at a future 

time instant when there is no data available. In order to 

accomplish this, a two step methodology is proposed: 

(1) calibrate the model parameters using available data, 
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and (2) use the calibration results to assess the 

prognosis at a future time. This section describes the 

calibration methodology while the proposed confidence 

metric is discussed in Section 6.  

 Inspection data can be in three forms: (1) Crack is 

not detected after N cycles; (2) Crack is detected after 
N cycles but size not measured; (3) Crack is detected 

and the size is measured after N cycles. There are 

several possible quantities that can be calibrated; these 

include (1) equivalent initial flaw size; (2) parameters 

of modified Paris’s law (C, m); (3) error (εcg) of the 

modified Paris law; (4) material properties such as 

threshold stress intensity factor (ΔKth), and fatigue limit 

(σf); and (5) output (final crack size) measurement error 

(εexp). All of these parameters can be connected through 

a Bayes network as shown in Fig. 3. Note that this is a 

dynamic Bayes network, which connects the variables 

in a particular load cycle (i) to the next load cycle 
(i+1).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Dynamic Bayes Network 

 Let Ω denote the vector of quantities that are 

selected for calibration. Assume that there is a set of m 

experimental data points (Ai, Ni, i = 1 to m), i.e. the 

measured crack size A after N loading cycles, and n “no 

crack detections” after Ai (i = 1 to n) number of cycles. 

Using this information, it is possible to calculate the 

probability distributions of Ω using Bayes theorem. In 

this paper, experimental data have been simulated by 

assuming true distributions for Ω.  

 Bayesian updating is a three step procedure: (1) 

Prior probability distributions are assumed for each of 
the parameters in Ω. (2) The likelihood of Ω is 

calculated as being proportional to the probability of 

observing the given data conditioned on Ω; and (3) The 

prior and likelihood of Ω are multiplied and normalized 

to calculate the posterior probability distribution. 

Finally, the joint distribution of Ω is used to calculate 

the individual distributions of the parameters, i.e. 

equivalent initial flaw size (a0), model parameters (C) 

and crack growth model error (εcg).  

 The likelihood in Step 2 is a function of Ω and it 

needs to account for the other sources of uncertainty 

explicitly. For every realization of Ω a Monte Carlo 
analysis is required for the calculation of the likelihood 

function. The various steps in the construction of the 

likelihood function are as follows: (1) Design 

experiments for trainings points and construct the 

Gaussian process surrogate model after correcting for 

discretization errors. The likelihood function then needs 

to be constructed as a function of Ω. Hence, for a given 

value of Ω, (2) Generate a loading history (N cycles); 

(3) Use the deterministic crack growth analysis 

algorithm in Fig. 1 to calculate the final crack size at 

the end of Ni (for i = 1 to m) cycles; (4) Repeat steps 2 
and 3 and calculate the probability distribution of crack 

size at the end of Ni (for i = 1 to max(m,n)) cycles by 

sampling the stochastic quantities not contained in Ω. 

Let this distribution be denoted by f(a). Use Eq. 9 to 

calculate f(am|a). This probability density function can 

be used to calculate the likelihood of Ω. 

 If no crack is detected, then the likelihood function 

can be calculated as being “proportional to the 

probability of not detecting a crack” based on f(am|a). 


0

)|()|()(
ma

im daNafaafL            (9) 

 If a crack is detected but size not measured, the 

likelihood function can be calculated as:  


0

)|()|()(
ma

im daNafaafL  (10) 

 If a crack is detected and the size is measured, then 
the likelihood function can be calculated as:  

)|()( iim NAafL        (11) 

 Combining all inspection data, i.e. “no detection”, 

“crack detections without size measurement”, and 

“crack detection with size measurement”, the overall 

likelihood function can be calculated by multiplying 

Eq. 9, Eq. 10, and Eq. 11 for each inspection. 

Repeat for  

N cycles 

Calibration 

Parameters 

β0, β1, εm 

Ω 

aN am 

ai 

C, m, n 

εc

g 

ΔKth, σf 

Load Cycle i 

ai+1 

C, m, n 

εc

g 

ΔKth, σf 

Load Cycle  i+1 

ΔK ΔK 
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 Finally, the likelihood is multiplied with the prior 

and normalized to calculate the posterior distribution. 

This joint posterior distribution can be used to calculate 

the individual posterior distributions of the parameters. 

The following section describes how these results can 

be used to assess the confidence in prognosis. 

6 PROGNOSIS CONFIDENCE ASSESSMENT 

This section proposes a methodology to assess the 

confidence in the future prediction of the fatigue crack 

growth model using current experimental data. Rebba 

and Mahadevan (2006) developed a method using 

which the confidence in the model prediction can be 

extrapolated from experimental conditions to actual 

usage conditions. The proposed methodology uses this 

concept and extends their work to time-dependent 

fatigue crack growth problems, where the confidence in 

the model prediction is extrapolated from the current 

instant to the future. 
 Consider the crack-growth algorithm discussed in 

Section 3. The probability distribution of the crack size 

(A) can be calculated as a function of number of load 

cycles (N) after accounting for the various sources of 

uncertainty in a systematic manner. For complete 

details of this algorithm, refer Sankararaman et al. 

(2009). The overall aim is to assess the confidence in 

this prediction. Rebba and Mahadevan (2006) used the 

concept of Bayes factor (B) for confidence assessment. 

The Bayes factor can be expressed as the ratio of 

likelihoods of “the model being correct” and “the 
model being incorrect” (Zhang and Mahadevan, 2003) 

as: 

)__|(

)__|(

incorrectisModelDataP

correctisModelDataP
B        (12) 

 In the presence of uncertainty, the quantity of 

interest (i.e. the quantity predicted by the model, for 

e.g. crack size) can be represented using a probability 
distribution. When experimental data is available for 

validation, the distribution of the quantity of interest is 

updated to obtain a posterior distribution. Rebba and 

Mahadevan (2006) showed that the Bayes factor can be 

expressed the ratio between the prior distribution and 

the posterior distribution of the quantity of interest, and 

the associated confidence can be calculated as B/ (B+1). 

The similar approach is used here to calculate the 

confidence in crack growth prediction. Here, the Bayes 

factor is a metric for validating the crack growth model 

using experimental data. This is then used to calculate 
the confidence in the prediction in future.  

 Jiang and Mahadevan (2006) derived a risk-based 

measure for the threshold Bayes factor value for model 

acceptance, based on the costs involved in type-I and 

type-II errors in hypothesis testing. If the Bayes factor 

is equal to one, then the associated confidence is equal 

to 50%, thereby stating that the two hypotheses “the 

model is correct” and “the model is incorrect” are both 

equally likely. Note that the term “confidence” used in 

this paper, refers to the posterior probability of the 

“model being correct” and is not related to confidence 

intervals in statistical hypothesis testing.. 

 First, the prior distributions of the quantities Ω 
(defined earlier in Section 5) are used to calculate the 

prior distribution (f ') of the crack size (A) as a function 

of the number of load cycles (N). Then, the posterior 

distributions of the quantities Ω are used to calculate 

the posterior distribution (f '') of the crack size (A) as a 

function of the number of load cycles (N). Then the 

Bayes factor (B) is calculated as the ratio between the 

posterior and the prior distributions. However, in this 

case, the Bayes factor can be measured at any crack 

size and hence it is not clear where to calculate the 

Bayes factor. Two options may be explored: (a) Bayes 

factor at the mean of the posterior distribution, and (b) 
Expected value of the Bayes factor. The first metric is a 

first-order approximation and hence is preliminary, 

whereas the second metric is more rigorous.  

 If Am is the mean of posterior distribution of the 

crack size (A), then the first metric can be calculated as: 

)('

)(''
)(

m

m

m
AAf

AAf
AB




    (13) 

 The second metric, i.e. the expected value of the 

Bayes factor can be calculated as: 

 dAAf
Af

Af
BE )(''

)('

)(''
)(     (14) 

 The confidence associated with the prediction can 

be calculated as B/ (B+1). Higher the Bayes factor 

value, higher is the confidence associated with the 

model prediction. According to Jiang and Mahadevan 

(2006), a higher confidence implies a lower risk in 

terms of decision making. 

 In summary, Sections 4 and 5 proposed a Bayesian 

methodology for (1) calibration of model parameters 

using inspection data (crack size measurements after 
number of cycles, including cases where no cracks 

were detected), and (2) using the results of calibration 

to assess the confidence in prognosis. The following 

section illustrates the proposed methodology using a 

numerical example. 

7 NUMERICAL EXAMPLE 

A two radius hollow cylinder with an elliptical crack in 

fillet radius region is chosen for illustrating the 

proposed methodology. An initial semi-circular surface 

crack configuration is assumed and the crack shape 

develops over time into a semi-elliptical planar, surface 

crack under biaxial loading.  
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Fig. 4. Surface Crack in a Cylinder 

 The commercial finite element software ANSYS 

(ANSYS, 2007) is used to build and analyze the finite 

element model, shown in Fig. 4. A sub-modeling 
technique is used near the region of the crack for 

accurate calculation of stress intensity factors. 

Sankararaman et al. (2009) describe in detail the 

modeling of the specimen and also provide the material 

and geometrical properties.  

 The  geometry of the structure, Young’s modulus, 

Poisson ratio, boundary conditions, friction coefficient 

between crack faces, etc are treated to be deterministic 

in this paper. This finite element model is run for 10 

different crack sizes and 6 different loading cases and 

these results are used to train the Gaussian process 
surrogate model for the calculation of the stress 

intensity factor. 

 Experimental evidence of 20 data points is 

simulated and used for calibration and confidence 

assessment as explained in Section 4.  In this paper, for 

the purpose of illustration, the equivalent initial flaw 

size (θ), model parameters (C) and crack growth model 

error (εcg) are chosen for calibration. The prior 

distribution of EIFS is constructed using Eq. 2. A non-

informative prior is used for the standard deviation of 

crack growth model error (εcg). A zero mean is assumed 
for this quantity because it represents the fitting error 

and only the variance is updated. The prior distribution 

of C is obtained from Liu and Mahadevan (2008).  

 The results of prognosis using these probability 

distributions are shown in Fig. 5. The mean of the crack 

size and the 90% bounds are plotted as a function of 

number of cycles. 

 

 

Fig. 5. Mean, Median, and 90% Bounds 

 The results of model calibration using Bayesian 

inference are shown in Table 2. 

 

Table 2. Results of Parameter Estimation 

Distribution a0 

(mm) 

C x10-13
 

m/cycle 

εcg 

(mm) 

True     

Mean 0.375 6 0 

Std. Deviation 0.025 1 0.001 

Prior     

Μean 0.5 6.5 0 

Std. Deviation 0.1 4 0.01 

Posterior     

Μean 0.37 6.1 0 

Std. Deviation 0.024 1.3 0.005 

  

 From Table 2, it is seen that while the distribution 
of EIFS is almost the same as the true distribution, the 

distributions for the other parameters are not identical 

to the true distributions. During calibration, the 

equivalent initial flaw size is used only once to start the 

crack growth propagation procedure, whereas the 

model parameter C and the error εcg are used in every 

loading cycle, thereby adding uncertainty with every 

additional loading cycle. This uncertainty may be 

decreased by frequent inspections and collecting more 

data for calibration. 

 The ratio of the prior and the posterior distributions 
of the crack size is used to calculate the Bayes factor, 

and hence the confidence in prediction. These results 

are shown in Fig. 6 and Fig. 7 respectively. 

 
Fig. 6. Expected Value of Bayes Factor 

 
Fig. 7. Confidence in Model Prediction 

Refined  

Sub-model 

Coarse Full Model 
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 From Fig. 6, it is observed that the Bayes factor 

decreases steadily, thereby indicating a decreasing 

confidence in the prediction made by the model as the 

number of cycle increases. With each additional 

loading cycle, there is more uncertainty added to the 

crack growth analysis. Future loading conditions, crack 
growth errors, etc. are unknown and hence, the 

confidence in the model prediction decreases with time. 

8 CONCLUSION 

This paper presented a methodology for model 

calibration and confidence assessment in fatigue 

damage prognosis. Structures with complicated 

geometry and multi-axial variable amplitude loading 

conditions were considered. The finite element analysis 

used for the calculation of stress intensity factor was 

replaced using a Gaussian process surrogate model, 

thereby reducing the computational effort. Different 

sources of uncertainty – physical variability, data 
uncertainty, and model error/uncertainty – were 

included in the crack growth analysis. Different types 

of model errors – discretization errors, crack growth 

errors, surrogate model uncertainty – were considered 

explicitly. Deterministic errors were corrected and 

stochastic errors were addressed using sampling 

techniques during uncertainty propagation.  

 A Bayesian inference-based methodology was 

proposed where the parameters of different models are 

calibrated using inspection results (crack size after 

number of cycles, including no crack detected). The 
results of prognosis using prior distributions, and the 

results of prognosis using posterior distributions are 

compared to compute a Bayesian confidence metric to 

assess the confidence in the model prediction. The prior 

and posterior distributions of the predicted crack size 

were used to assess the confidence in model prediction. 

The general trend observed was that the confidence in 

prediction decreases steadily over time, as expected.  

 Note that this approach is applicable to prognosis in 

several engineering disciplines and the problem of 

crack growth analysis was used as an illustration to 

develop the methodology. In general, the proposed 
methodology provides a fundamental framework in 

which multiple models can be connected through a 

Bayes network and the predictive capability of the 

overall prognosis model can be assessed quantitatively. 

The use of a Bayes network also facilitates the 

systematic treatment of various sources of uncertainty 

for both model calibration and prognosis. The proposed 

Bayes factor metric provides a measure of confidence 

in the model prediction. If the confidence in the model 

prediction reduces below a critical level at a particular 

time in future, then it would be desirable to inspect the 
structure at that time instant. Therefore, the proposed 

method can also guide maintenance planning and 

inspection scheduling. 
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NOMENCLATURE 

A Crack size 

N Number of loading cycles 

a0 Equivalent initial flaw size 

ΔKth Threshold stress intensity factor  

ΔK Stress intensity factor in each cycle 

σf Fatigue limit 

Y Geometry factor 
φr    Wheeler’s retardation coefficient  

C, m, n  Parameters of modified Paris’ law 

B Bayes Factor  
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