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ABSTRACT 

In this paper, a general framework for 

concurrent structural fatigue prognosis using 

limited sensor data is developed. The 

Empirical Mode Decomposition method is 

employed to reconstruct the structural 

dynamical response for the critical spot 

susceptible to fatigue damage. The sensor data 

available at limited locations measured from 

the usage monitor system are decoupled into 

several Intrinsic Mode Functions using the 

Empirical Mode Decomposition method. 

Those IMFs are applied to extrapolate the 

dynamic response for the critical spot where 

the direct response measurements are 

unavailable. The extrapolated dynamic 

response time series for the critical spot is then 

integrated with a physical fatigue crack 

growth model for fatigue damage prognosis. 

The proposed procedure is demonstrated using 

a multi degree-of-freedom (MDOF) cantilever 

beam example. The proposed method has 

great potential for the real-time decision 

making in the vehicle health management 

framework due to its ability for the concurrent 

damage prognosis.
*
 

1 INTRODUCTION 

Fatigue prognosis is of critical importance for the 

structural health management and is still a challenging 

problem despite extensive progresses during the last 

few decades. Fatigue prognosis attempts to forecast 

system performance by assessing current damage state 

of the system (Inman et al., 2005). More specifically, 

fatigue prognosis is to predict the remaining useful life 

by using physical models or data-driven models. Data-

driven methods are applicable where the physics of the 

problem does not change much. For example, the 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

loading spectrum of training samples needs to be 

similar with those of predictions. This paper uses 

physics-based models for damage prognosis, which is 

capable of handling different random loading 

spectrums. One of major sources of uncertainties in 

fatigue damage prognosis is the unknown loading 

uncertainties. Classical fatigue damage tolerance 

analysis and design used specified design spectrums for 

the entire fleet. The structural health monitoring and 

usage monitoring systems make it possible for the 

fatigue damage prognosis using measured loading 

spectrums for each individual vehicle, which will 

significantly advance the next generation vehicle health 

management (Link and Weiland, 2009; Papazian et al., 

2007; Gupta et al., 2007). One of the objectives of this 

study is to propose a general methodology for the 

fatigue damage prognosis integrating usage monitoring 

system.  

 One critical challenge for the overall structural 

health monitoring is that the number of sensors is 

limited and it is not possible to put sensor at every 

critical location. Several methods for fatigue damage 

prognosis using direct sensor measurements are 

available (Papazian et al., 2007; Gupta et al., 2007; Li 

et al., 2001; Adams and Nataraju, 2002; Papazian et al., 

2009; Yan and Gao, 2006).  If critical locations are not 

covered by sensors or the critical location is uncertain 

due to the complex operational conditions, proper 

extrapolation process using the sensor data obtained 

from available location is required in order to identify 

and reconstruct the state on the critical spot. This is 

especially true when the number of available sensors is 

limited in structures. The proposed study uses the 

dynamic system identification technique and finite 

element extrapolation to estimate the dynamic 

responses at different critical locations in the structure. 

Extensive researches have been made on the system 

identification using sensor data. Wavelet transform 

(WT), which decomposes the measured signal in the 

frequency-time domain, is wildly used for system 

identification (Gurley and Kareem, 1999; Haase and 

Widjajakusuma, 2003; Pislaru et al., 2003; Tan et al., 

2008; Luk and Damper, 2006). Hilbert transform (HT) 

has also received considerable attention in the system 

identification field and it has been applied to the single-
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degree-of-freedom (SDOF) case (Feldman, 1985; 

Feldman, 1997). However, there are several limitations 

for these two methodologies. The selection of the type 

of the basic wavelet function is critical for WT method; 

it will affect the effectiveness in identification (Yan and 

Gao, 2006). On the other hand, well-behaved HT 

requires the mono-component frequency for input data 

which is hardly achieved for practical field (Yang et al., 

2003; Huang et al., 1999; Huang et al., 1998). In 

comparison, Hilbert-Huang transform (HHT) does not 

suffer from these limitations (Yang et al., 2003; Huang 

et al., 1999; Bao et al., 2009). In HHT method, the 

Empirical Mode Decomposition (EMD) method is 

employed to decompose the signal into several Intrinsic 

Mode Functions (IMFs) which only contains a single 

frequency component before the well-behaved HT 

transform can be performed. In recent years, HHT 

method has been applied to identify the modal 

parameters of multi degree-of-freedom (MDOF) for 

both linear and nonlinear systems (Yang et al., 2003; 

Huang et al., 1999; Bao et al., 2009; Poon and Chang, 

2007). In this paper, the HHT-based system 

identification method is used. 

 The current work focuses on fatigue analysis using 

limited sensor data. EMD is employed to decompose 

the signal data into a series of IMFs cooperating with 

intermittency criteria. Those IMFs which represent the 

dynamic response under mode coordinates are used to 

extrapolate the dynamic response at the critical spot 

with respect to mode coordinates. Full Mode 

information obtained from finite element method is 

used as the basis of the extrapolation. When all the 

mode information is extrapolated, mode superposition 

method is employed to reconstruct the dynamic 

response in the time domain. After the local dynamic 

response is determined, fatigue prognosis can be 

performed by a physical fatigue crack growth model. 

The flowchart for the proposed method is shown in 

Figure 1. One major benefit of this method is that only 

limited number of sensors is required, which greatly 

facilitate the realistic applications. Another benefit is 

that the fatigue damage can be obtained concurrently 

with structural dynamics analysis, which is critical for 

real-time decision making. A novel small time scale 

formulation of fatigue crack growth prognosis is 

employed to predict the crack growth in this paper. 

This physical fatigue model is fundamentally different 

with the traditional cycle-based approach. It describes 

the crack propagation in small time intervals and it is 

based on the geometry at the crack tip. The fatigue 

prognosis does not suffer from the cycle-counting 

requirements and stress ratio effects compares to the 

cycle-based fatigue prognosis models, which has great 

potential for real-time structural fatigue prognosis.  

 This paper is organized as follows. First, the EMD 

method is briefly introduced. Then, the extrapolation 

and reconstruction process is proposed and verified 

with numerical examples. Next, a novel fatigue crack 

growth model is discussed and integrated with the 

structural dynamic analysis. Following this, a cantilever 

beam is taken as an example to demonstrate the 

structural prognosis procedure using limited sensor 

data. Finally, some conclusions are drawn based on the 

current study. 

Sensor 

measurement 

Intermittency 

Criteria

EMD

IMFs

Extrapolation for 

critical spot

Fatigue analysis

Mode superposition 

method

 

Figure 1: Flowchart of the concurrent fatigue analysis 

using limited sensor data 

2 EMPERICAL MODE DECOMPOSITION 

In this section, the EMD methods used in this paper is 

briefly introduced. 

2.1 EMD methodology 

EMD method is employed cooperating with 

intermittency criteria to decompose the measured signal 

into several IMFs which only have the mono-

component of frequency (Yang et al., 2003; Huang et 

al., 1999). The basic procedure of EMD (shown in 

Figure 2) is to construct the upper and lower envelops 

for the signal using spline fitting methods. The mean 

values of both envelopes are calculated. Following that, 

the signal is subtracted from this mean value. The 

procedure described above is known as the sifting 

process. By repeating the sifting process until the 

remaining of the signal is a mono-component, meaning 

that the number of up-crossings (or down-crossings) of 

zero is equal to the number of peaks (or troughs). Those 

mono-component signals are known as Intrinsic Mode 

Functions (IMFs). 

 By applying the EMD method, the original signal y&&  

can be express as a summation of n IMFs and a residue 

shown in Eq (1), fi is the n IMFs, for i from 1 to n. r is 
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the residue which is also the mean trend or constant for 

this signal (Yang et al., 2003) .  
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Figure 2: Flowchart for EMD procedure 

IMFs obtained from the signal data may contain several 

frequency components in each IMF, which are not 

modal responses. Intermittency criteria denoted by wint 

is used to solve this problem. The IMFs will not contain 

any frequency component lower than wint by removing 

the signal which contains frequency lower than wint. 

The detail procedure for the EMD which is imposed 

intermittency criteria as follow: First, the measured 

signal is transformed by Fourier transformation and an 

approximate frequency range (fL < f < fH) for each 

mode can be determined. Then, the EMD with this 

intermittency frequency range is performed to collect 

the IMFs which only contain the frequency component 

within the range. By repeating the above procedures 

and choosing different frequency range according to 

each mode, one can get several IMFs. These IMFs have 

several characteristics: 1) Each IMF contains the 

intrinsic characteristics of the signal; 2) Once an IMF is 

obtained, the next IMF will not have the same 

frequency at the same time instant (Yang et al., 2003; 

Huang et al., 1999; Kyong et al., 2008). The original 

signal expression (Eq(1)) can be modified as Eq(2) 

∑ ∑
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mn
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1 1
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x&& is the modal response for each mode.  

 Yang et al. reported in 2003 (Yang et al., 2003) that 

a bandpass filtering can be a good alternative for the 

above intermittency criteria. From the Fourier spectrum 

of the original signal, the approximated natural 

frequencies can be obtained and then the frequency 

ranges can be determined in advance. A bandpass filter 

can be applied based on the frequency range. The 

filtered data will be processed through the EMD 

method, and the resulting first IMF is the modal 

response. 

 By repeating above procedures, all the modal 

responses at the sensor location can be obtained from 

the sensor measurements.  

2.2 Validation for EMD method 

A simple example is used here to verify the accuracy of 

the modal response obtained from above procedures. 

The cantilever beam has been divided into two parts to 

solve the dynamic response. The properties of the beam 

are listed in Table 2.  

 

Table 2 Dimensions and material properties of the 

beam 

Property name value 

Young’s modulus (MPa) 69600 

Density (kg/m3) 2.73×103 

Width of cross section (m) 0.01 

Thickness of beam (m) 0.01 

Length of beam (m) 1 

 

An impact force is applied at the free end of the beam. 

The force and the measured displacement for the last 

DOF are shown in Figure 3. 
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Figure 3: Applied force and displacement at the last 

DOF 

The displacement data obtained from computer 

simulation are used to represent the direct 

measurements from sensors. The EMD method is used 

to extract the mode shape from the sensor data at node 

point. Natural frequencies obtained from processing the 

signal through Fourier spectrum are shown in Figure 4. 

This dynamic system has four natural frequencies. 

According to the frequency distribution, a bandpass 

filter is designed to filter the frequency other than the 
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frequency component for the first mode. It is important 

to notice that the bandpass filter should have as small 

phase shift as possible (Yang et al., 2003) . The 

frequency response for the designed filter is shown in 

Figure 5. After filtering, only the first mode frequency 

is kept, as shown in Figure 6. 
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Figure 4: System natural frequencies 
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Figure 5: Filter frequency response 
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Figure 6: Signal frequency component after filter 

The displacement data before and after the filtering 

process are shown in Figure 7. 
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a) before bandpass filter                
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  b) after bandpass filter 

Figure 7: Displacement signal 

Following that, the EMD method is applied to this 

filtered signal which contains only the frequency for 

the first mode. 
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Figure 8: Signal after EMD 

Figure 8 a) shows the residual and all IMFs obtained 

from applying EMD and the first IMF is shown in 

Figure 8 b). The first IMF represents the displacement 

under the first mode with respect to mode coordinates. 

By repeating the above procedure for all DOFs, the 

displacements under first mode for all DOFs are 

obtained. The rest of the modes (mode 2, mode 3, and 

mode 4) can be obtained by using different bandpass 

filters. This procedure can be described as following 

steps: 1) Measure displacement signal for all DOFs; 2) 

Obtain all natural frequencies using the Fourier 

transform; 3) Choose the proper frequency band (fL < f 

< fH) for the specific mode; 4) Use the bandpass filter to 

collect signal which contains only the frequency 

component for the required mode; 5) Decompose the 

signal into several IMFs using the EMD method; 6) 

Calculate the first IMF under mode coordinates. Signal 

measurements for all DOFs are required in order to 

obtain the entire mode shape information. The 

comparison between the extracted and theoretical mode 

shape is shown in Table 2. 

Table 2 Mode shape comparison between extracted 

result and theoretical solution 

 Mode 1 Mode 2 Mode 3 Mode 4 

Theor

-etical 

{1;3.3487; 

2.4639; 

3.7685} 

{1; -

2.1582; 

-1.4886;-

7.9749} 

{1;89.3601; 

-10.5884;  

-111,991} 

{1;17.0227; 

3.4852; 

81.7384} 

Extrac

-tion 

{1;3.3490; 

2.4636; 

3.7687} 

{1; -

2.1582;  

-1.4886; 

-7.9761} 

{1; 86.8015; 

-10.2846; -

108.7965} 

{1; 

16.6546; 

3.4850; 

81.5701} 

Error ≤0.01% ≤0.01% ≤3% ≤2% 

 

Table 2 evinces that good agreement between the 

identified mode shape and the theoretical solution. 

3 IDENTIFICATION FOR CRITICAL SPOT 

USING LIMITIED SENSOR DATA 

From above discussions, the sensor measurements, 

which are in the time domain, are decomposed into 

several IMFs using the EMD method with bandpass 

filters. Following this, the dynamic responses for 

critical spots without sensors can be extrapolated by 

combining the available sensor measurements and the 

finite element model of the entire structure. For fatigue 

prognosis, several critical spots can be selected based 

on the structural analysis (i.e., maximum stressed 

locations, stress concentrations, initial crack locations, 

etc.). The procedure is discussed below.  

 For an n DOFs system, it has an n×n mode shape 

matrix (Eq. (3)), which can be obtained from the finite 

element modeling and classical structural dynamics 











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



nnn

n

φφ

φφ

L

MOM

L

1

111

                           (3) 

According to modal analysis, we have the following 

scaling equation (Eq. (4)), 

iu

ie

iu

ie

δ

δ

φ

φ
=

                               (4) 

where the subscript e denotes DOFs which can be 

measured by sensors; u denotes the DOFs which are 

unavailable for sensors; i represents the ith mode; Φie 

represents the mode information for the eth DOF under 

the ith mode; δie represents the dynamic response for 

the eth DOF under the ith mode with respect to mode 

coordinates. The dynamic response can be acceleration 

or displacement. In this paper, displacement is used. 

Once the sensor data have been decomposed into 

separated modes, the mode information can be used to 

extrapolate the dynamic response for the critical spot 

according to Eq. (4). The mode superposition 

methodology is applied to obtain the dynamic response 

in time domain after all the mode information has been 

extrapolated. The dynamic response reconstruction 

process is repeated for different critical spots and the 

obtained local stress/strain will be used for damage 

prognosis as detailed in the next section. 

4 FATIGUE CRACK GROWTH MODEL 

 The methodology for reconstructing the dynamical 

response for the critical spot using limited sensor data 

is introduced above. The reconstructed dynamic 

response is employed to perform the fatigue analysis. In 

this part, a brief introduction about the fatigue crack 

growth model is given. 

 Traditional fatigue crack growth models are based 

on the relationship between the crack growth per cycle 

and the applied stress intensity factor range (Poon and 

Chang, 2007). The small time scale fatigue crack 
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growth model adopted in this paper is based on the 

incremental crack growth at any arbitrary time instant 

during a loading cycle (Lu and Liu, 2010). The key 

concept is to define the fatigue crack kinetics at any 

arbitrary time instant (dt). The crack will extend a 

distance da during the small time scale dt. The 

geometric relationship between the Crack Tip Opening 

Displacement (CTOD) and the instantaneous crack 

growth kinetics is shown in Figure 9.  

 

Figure 9: Crack tip geometry 

The crack growth rate da/dt is derived based on the 

geometric relationship shown in Eq. (5), where θ is the 

crack tip opening angle (CTOA). 

2/δθ dctgda ×=                                  (5) 

Following the derivation of (Lu and Liu, 2010), the 

instantaneous crack growth rate at an arbitrary time is 

expressed as Eq. (6). 

( ) ( ) a
C

C
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−
⋅−⋅= σσ
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σσσ &&&
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2      (6) 

H is the Heaviside step function. σref is the reference 

stress level above which the crack begins to grow. The 

crack length at any arbitrary time is calculated by the 

integration of Eq. (6). Detailed discussion of the model 

can be found in (Lu and Liu, 2010). One advantage of 

the proposed small scale model is that it can be used for 

fatigue analysis at variable time and length scales. The 

fatigue crack growth analysis under random variable 

amplitude loading conditions can be performed without 

cycle-counting. This main advantage makes it possible 

to couple the fatigue crack model with structural 

dynamics for concurrent analysis. 

5 AN EXAMPLE 

In this part, a cantilever beam problem is used as an 

example to demonstrate the procedure of the dynamic 

reconstruction and fatigue crack growth prognosis. The 

beam is divided into ten segments with an impact 

loading at the end of the beam (shown in Figure 10). A 

through edge crack is assumed at the fixed end of the 

beam which is also the critical spot inaccessible for 

sensors. A displacement sensor is placed at the free end 

of the beam. The impact force and the dynamic 

response for the free end are shown as Figure 11. The 

property of the beam is listed in Table 2. 

 

Figure 10: MDOF dynamic system 
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Figure 11 Applied force and displacement for the last 

DOF 

The data representing the sensor measurement are 

obtained from numerical simulation and 3% Gaussian 

White Noise (GWN) is added to the deterministic 

signal (Figure 11) shown in Figure 12. This sensor 

measurement data are employed to extrapolate the 

dynamic response for the critical spot.  
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Figure 12: Signal which represents sensor data 

The first four modes are chosen to reconstruct the 

displacement information at the critical spot. The 

measured displacement signal data need to be 

decoupled into four modes using the EMD method. 

Only the procedure for extracting the first mode is 

demonstrated here. Figure 13 shows the designed 

bandpass filter with 0.3dB pass band attenuation and 

current crack surface at t+dt 

old crack surface at t 
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10dB stop band attenuation. Only the first mode 

frequency component is kept after the bandpass 

filtering, as shown in Figure 14. The original data and 

filtered data are shown in Figure 15 a) and b), 

respectively. 
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Figure 13: Band-pass filter frequency response 
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Figure 14: Signal frequency after filter 
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Figure 15: Displacement signal 

The signal after the filtering (Figure 15 b)) can readily 

be processed using the EMD method. Figure 16 a) 

shows the first IMF after the EMD analysis, which also 

represents the displacement for the first mode. The 

separated displacement for each of the modes can be 

obtained using the same procedure. The other IMFs for 

each of the modes are also shown in Figure 16. 
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     a) Mode 1 
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     b) Mode 2 
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c) Mode 3 
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d) Mode 4 

Figure 16: Displacement for the first mode 

An extrapolation process, according to Eqs.(3-4), is 

applied to those decoupled data to get the displacement 

at the critical spot. The mode superposition method is 

employed to reconstruct the displacement in the time 

domain using the four extrapolated modal response. A 

comparison between the theoretical solution and the 

reconstructed response is shown in Figure. 17. The 

numerical solution to the beam problem serves as the 

basis of the comparison. A satisfactory result is 

observed. 
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Figure 17: Comparison between extrapolate 

displacement and theoretical solution 

When the extrapolation procedure is completed, the 

reconstructed dynamic response at the critical spot is 

employed to perform the fatigue analysis. The local 

stress calculated using the extrapolated displacement is 

shown as Figure 18. 
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Figure 18: Local stress at the critical spot 

The fatigue crack growth prognosis under the identified 

loading spectrum (Figure 18) is performed using 

Eqs.(5-6). The predicted crack growth curve and the 

exact numerical solution of the crack growth curve are 

shown in Figure 19, where a consistent result is 

observed. 
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Figure 19: Fatigue crack growth 

6 CONCLUSION 

In this study, a new methodology for the structural 

fatigue prognosis is proposed. EMD method is 

employed to decompose the signal into a series of IMFs 

with a specific filtering process. Those IMFs, which 

represent the displacement for each mode, are used to 

extrapolate the dynamic response under mode 

coordinates for a critical spot. It should be noticed that 

the mode shape information is required and can be 

obtained from the classical finite element analysis. The 

fatigue crack growth prognosis is performed after the 

extrapolation process. Based on the current study, 

several conclusions are drawn: 
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 1. The proposed procedure for fatigue crack 

prognosis provides a fast method for structure fatigue 

analysis with limited sensor data. 

 2. The proposed extrapolation process can 

effectively identify the dynamic response for the 

critical spot where direct sensor measures are not 

available  

 The research results evince that the proposed 

reconstruction process can effectively identify the 

dynamic response using the existed sensor data. 

However, some discussion and clarification in this 

aspect are needed. Firstly, the participation factor of 

modes should not be too small. Only the first several 

modes are detectable for more complicated structures. 

Secondly, signal-to-noise ratio may have influence on 

the accuracy of the extrapolation for realistic 

applications. Thirdly, the extrapolation results will have 

inconsistency with the theoretical solution for the 

region near t = 0, this phenomenon also is known as the 

end boundary effect for the EMD method and has been 

widely discussed in the literature (Huang et al., 1998). 

This difference will not affect the fatigue prognosis 

since the time history for fatigue loading is very long. 

Small difference at the beginning and ending of the 

signal will not change the RUL prediction much (e.g., 

2~3 cycles vs. one million cycles). 
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