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ABSTRACT
Most fault adaptive control research addresses the

preservation of system stability or functionality in the
presence of a specific failure (fault). This paper ex-
amines the fault adaptive control problem for a generic
class of incipient failure modes, which do not initially
affect system stability, but will eventually cause a catas-
trophic failure to occur. This risk of catastrophic failure
due a component fault mode is some monotonically in-
creasing function of the load on the component. Assum-
ing that a probabilistic prognostic model is available to
evaluate the risk of incipient fault modes growing into
catastrophic failure conditions, then fundamentally the
fault adaptive control problem is to adjust component
loads to minimize risk of failure, while not overly de-
grading nominal performance. A methodology is pro-
posed for posing this problem as a finite horizon con-
strained optimization, where constraints correspond to
maximum risk of failure and maximum deviation from
nominal performance. Development of the methodol-
ogy to handle a general class of overactuated systems
is given. Also, the fault adaptive control methodology
is demonstrated on an application example of practical
significance, an electro-mechanical actuator (EMA) con-
sisting of three DC motors geared to the same output
shaft. Similar actuator systems are commonly used in
aerospace, transportation, and industrial processes to ac-
tuate critical loads, such as aircraft control surfaces. The
fault mode simulated in the system is a temperature de-
pendent motor winding insulation degradation.

This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are
credited.

1. INTRODUCTION
This research examines the fault adaptive control prob-
lem for systems that may have multiple components
and multiple embedded controllers. An architecture is
developed, which generates diagnostic and prognostic
estimates on-line and operates on the system’s nomi-
nal control inputs to ensure that specifications on max-
imum allowable risk of failure and maximum deviation
from nominal performance are satisfied over a prognos-
tic horizon.

Enforcing the performance constraint in terms of max-
imum allowable adjustments to the system’s nominal
control requires knowledge of the physical relationship
between the output of the system and the inputs to each
of the constituent component controllers. This research
assumes an accurate model for the multi-component sys-
tem is known, but the approach could be extended to
handle models adapted online to capture changing sys-
tem dynamics during incipient failure conditions as in
(Zhank & Jiang, 2002).

Similarly, the prognostic constraint is enforced in
terms of a maximum allowable loading profile on each
of the system’s components, which requires inverting
the relationship between component loading and com-
ponent degradation. However, unlike the system model,
the prognostic model is assumed to have significant un-
certainty. This uncertainty is handled directly by using
probability density functions (pdfs) to represent fault es-
timates, the form of which will depend on the particular
fault mode being studied, uncertainty in the prognostic
model, and measurement uncertainty. The prognostic
model can be generated from data or heuristic approx-
imation. The only requirement is that the model trans-
lates an expected load on a component over the prog-
nostic horizon into a pdf estimate of component degra-
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dation at the end of the prognostic horizon. For sim-
ple systems, empirical degradation models may be used
as a basis for producing prognostic pdfs. For example
(Orchard, 2007) uses Paris’ Law to update pdfs for crack
growth. Other examples of online adaptation of prognos-
tic models are found in (Arulampalam, Maskell, Gordon,
& Clapp, 2002; Li, Kurfess, & LIANG, 2000; Brown,
Georgoulas, Bae, et al., 2009).

Assuming that satisfactory system and prognostic
models exist and control profiles can be found to sat-
isfy the performance and prognostic constraints, then the
fault adaptive control architecture will attempt to mini-
mize a given cost function that captures the relative im-
portance of minimizing risk and maximizing system per-
formance. This paper examines how the fault adaptive
control problem may be posed as a bounded optimiza-
tion for a general class of overactuated systems. First the
approach is described for a general system, then the im-
plementation of the control architecture is presented for
a specific application example.

The application example is an electro-mechanical ac-
tuator (EMA) consisting of three DC motors geared to
the same output shaft. In this system the load is shared
by three mechanically coupled motors, constituting an
active redundant arrangement. The active redundant mo-
tor arrangement in the EMA will simplify the control al-
location problem and allow a more easily understand-
able development of performance and prognostic met-
rics. However, the developed metrics are intended to
be extended to other overactuated systems, without ac-
tive redundancy. Also, demonstrating fault adaptive con-
trol development on an EMA is valuable in it’s own
right, because similar systems are commonly used in
aerospace and industrial processes, where system fail-
ure would be extremely costly and possibly dangerous.
Diagnostic and prognostic studies for similar systems
are discussed in (Brown, Georgoulas, Bole, et al., 2009;
Brown, Edwards, Georgoulas, Zhang, & Vachtsevanos,
2008; Zhang et al., 2008).

2. A HIERARCHICAL CONTROL
ARCHITECTURE

The proposed fault adaptive control architecture is in-
tended to supplement a nominal control system that per-
forms adequately under nominal operating conditions. A
control hierarchy is used to distribute the control effort
based on high level mission objectives and low level di-
agnostics and prognostics. A similar hierarchical control
methodology is presented in (Brown, Georgoulas, Bole,
et al., 2009). The hierarchical approach breaks down
the generic fault adaptive control task into sub-problems
with different scopes, enabling a more formalized treat-
ment of algorithm specifications.

The control hierarchy shown in Figure 1, is separated
into three levels: the high level acts on a collection of
subsystems, the middle level acts on a collection of com-
ponents within a subsystem, and the low level manages
individual components. This paper will analyze control
of a collection of components, or the middle level of the
control hierarchy. At the subsystem level, the fault adap-
tive control problem is identical for a wide range of ap-
plications: The subsystem is commanded to follow some
mission profile within performance and prognostic con-
straints. If the constraints turn out to be unsatisfiable,
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the “control effort” domain.
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• Produces prognostic estimates for 

each component

• Ensures component stability

Figure 1: Description of high, middle, and low levels of
the hierarchical fault adaptive control architecture

then the high level must analyze the overall objectives
of the system and perform mission adaptation, as de-
scribed in (Drozeski, 2005). If the constraints are sat-
isfiable then the middle level will attempt to find an op-
timal control effort assignment for the subsystem’s com-
ponents. These component control effort commands are
translated into set point modifications by the low level of
the fault adaptive control system; model predictive con-
trol is commonly used to this end, as in (Monaco, Ward,
& Bateman, 2004).

Figures 2 and 3 show block diagrams for a subsystem
under nominal control and for a subsystem with an adap-
tive hierarchical control, respectively; the symbols used
in these figures are defined in the Nomenclature section
at the end of the paper. The figure depicting the nominal
subsystem shows the basic structure assumed for the sub-
system under nominal control. Here, each component is
assumed to have an embedded controller that updates a
component control vector, ui, based on the difference
between the commanded state vector, θc, and a feedback
vector, θo. The mapping between the loads on each of
the system’s components, yi, and the total output force
exerted by the system on an external load, y, is repre-
sented by h(·). This physical mapping is assumed to be
known, however it is allowed to be dynamic and non-
linear. If the system is overactuated, then this mapping
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Figure 2: Shows the passing of control signals for a nom-
inally controlled subsystem.
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Figure 3: Shows the passing of control signals between high, middle, and low levels for the fault adaptive controller

will not be one-to-one, so there may be one or more de-
grees of freedom assigning load profiles to each of the
system’s components for a given desired system output.
As shown in Figure 3, the hierarchical controller solves
an optimal control effort distribution problem, where the
optimal subsystem control effort output, r̃, is selected
first, and then the optimal component control efforts, r̃i,
are selected.

3. CONTROL DISTRIBUTION AS A BOUNDED
OPTIMIZATION PROBLEM

For some systems the middle and low level control rou-
tines can be made such that the middle level is essentially
able to directly control component loads. This simplify-
ing assumption is written as, |yi − r̃i| ≤ ε, where ε is
sufficiently small. If this assumption is valid, then the
middle level control effort distribution problem can be
solved using standard optimal control allocation meth-
ods, as in (Harkegard & Glad, 2005; Oppenheimer, Do-
man, & Bolender, 2006; .M.Zhang & J.Jiang, 2002).

Figure 4 shows a reduced order subsystem model,
where the low level dynamics have been replaced with an
error term, δi. Specifications on δi and ε to ensure sys-
tem stability and model fidelity are maintained should be
developed on an application by application basis. With-
out loss of generality, δ and ε are set to zero to simplify
the notation in the derivation of the middle level opti-
mization problem, however adding nonzero parameters
to the equations is straightforward.

The optimization problem at the middle level is writ-
ten in terms of a cost function that penalizes performance
loss and component degradation. An example cost func-
tion profiles is:

J(y,yi) = Jp(y − r̃) + λ · Jd (p (di (τ) |yi (t))) (1)

where Jp(y − r̃) penalizes the expected performance
loss, Jd (p (di (τ) |yi (t))) penalizes the expected degra-
dation of components, and λ is a weight that captures the
relative importance of performance and reliability.

The performance inequality constraints are enforced
in terms of a maximum allowable deviation from the
state vector commanded by the mission profile,

|{θc(t)}i − {θo(t)}i| ≤ ∆i(t) (2)

where the constraint is enforced on each dimension of

k k kδ= +y r
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Low Level
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Load
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Figure 4: A reduced order system model obtained using
the assumption: yi = ri + δi, and |yi − r̃i| ≤ ε

the state vector independently. For example, if the mis-
sion profile is commanding roll, pitch, and yaw of an air-
craft as a function of time, then each of these dimensions
will have a maximum allowable error tolerance, ∆i.

This constraint is transformed into the control effort
domain to be used as a constraint for the middle level
control distribution routine,

|{y(t)}i − {r(t)}i| ≤ ∆̃i(t) (3)

The prognostic constraint, given below, places an upper
bound on the probability that a component will become
damaged by more than a specified amount,

p (di (τ) > φi (τ) |yi (t)) ≤ α (4)

where di (τ) is the degradation of component i at time τ ,
φi (τ) is the maximum allowable fault dimension at time
τ , and α is the upper bound on the probability that the
fault dimension of component i is larger than its maxi-
mum allowable value at time τ ,

The prognostic constrain is also able to handle specifi-
cations in terms of a minimum allowable time to failure
(TTF) or remaining useful life (RUL). Figure 5 (a) shows
how the RUL constraint could be verified directly by ex-
tending the prognostic pdf all the way to a failure con-
dition, however the uncertainty in predicting over long
time horizons may be very large. Another method for
incorporating the RUL constrains uses a specified max-
imum allowable fault growth curve and a finite horizon
prediction, shown in Figure 5 (b).
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Figure 5: Evaluation of component RUL constraint in
terms of long term predictions (a) and a finite horizon
predictions (b)

The performance and prognostic constraints, and the
cost function described in this section are used to set up
the middle level control distribution as a bounded opti-
mization problem. In the following sections, an applica-
tion example is used to demonstrate the process of set-
ting up and solving the bounded optimization problem
for a real system.

4. EMA APPLICATION EXAMPLE
An electro-mechanical actuator (EMA) consisting of
three DC motors geared to the same output shaft, is used
to demonstrate the implementation of the control distri-
bution architecture on an overactuated system.

4.1 EMA Model
A Simulink model for the nominal EMA system, which
includes embedded position controllers on each of the
three motors is given in Figure 6. Simulink models for
the motors and the coupling between motors and load are
shown in Figures 7 and 8, respectively. The correspond-
ing state equations for the nominal system are given in
Eq. (5) and Eq. (6). The coefficients in the EMA model
are defined in Table 1. External torque on the EMA is
included in the model with the variable: Q.

ẋ = A(x) +B(x)u, y = Cx

u = [ θr1 θr2 θr3 ]
T

x = [ i1 i2 i3 θM ωM θL ωL ]
T

(5)

Figure 6: Active redundant EMA model

Figure 8: Load model for EMA

A=



−kp1kp2θM−ω(kp1−ke)−Rti1
Ltt

−kp1kp2θM−ω(kp1−ke)−Rti1
Ltt

−kp1kp2θM−ω(kp1−ke)−Rti1
Lt

ωM
kt(i1+i2+i3)−3bMωM

3JM
− kS(θM−NMNLθL)

JMN2
M

ωL
3NLkSθM
NMJL

− (kL+3N2
LkS)θL−bLωL−Q

JL



B =



kP1kP2

Lt
0 0

0 kP1kP2

Lt
0

0 0 kP1kP2

Lt

0 0 0
0 0 0
0 0 0
0 0 0


C =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

]
(6)
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Figure 7: Motor model for EMA

Table 1: List of symbols used in EMA models
Sym Description Units Value
bL Load damping in·lbf/rad/s 2.5 × 10−1

bM Motor damping in·lbf/rad/s 1 × 10−4

iM Motor current A -
kS Coupling stiffness in·lbf/rad/s 1 × 105

ke Back-emf coef. V/rad/s 1.1 × 10−1

kL Load stiffness in·lbf/rad/s 2 × 10−3

kp1 Motor speed gain V/rad/s 1
kp2 Motor position gain s−1 1
kt Motor torque coef. in·lbf/A 1.01
JL Load inertia in·lbf·s2 2 × 10−3

JM Motor inertia in·lbf·s2 2 × 10−3

Lt Turn-to-turn induct. H 2 × 10−4

NL Load coupling - 1
NM Motor coupling - 8
ρ gearing ratio 8
Rt Turn-to-turn resist Ω 1.6 × 10−1

θL Load position rad -
θM Motor position rad -
ωL Load speed rad/s -
ωM Motor speed rad/s -

4.2 Interfacing Between EMA and Middle Level
Control Effort Distribution Routine

The middle level will take in a load speed command

|ωc − ωo| ≤ ∆(t) (7)

This speed command is transformed into a net control
effort output command and associated constraint, where
torque is used as the control effort variable:

|Tc − To| ≤ ∆̃(t) (8)

A low level controller is required to translate the middle
level control effort commands into the control inputs of
the embedded controllers; low level control was derived
for the EMA model using dynamic inversion in (Bole,
Brown, & Vachtsevanos, 2010). Assuming a low level
control exists such that there is negligible error between
middle level torque commands and actual motor torques,
then Eq. (5) and Eq. (6) can be rewritten in the reduced
form shown in Eq. (9) and Eq. (10).

ẋ = A(x) +B(x)u, y = Cx

x = [ θL ωL ]
T
, u = [ T1 T2 T3 ]

T

y = To

(9)

A(x) =

[
ωL

kLθL−bl−bMρ2ωL−Q
JL+3ρJM

]

B(x) = ρ
JL+3ρJM

[
0 0 0
1 1 1

]
C = [ ρ ρ ρ ]

(10)

The resulting reduced order middle level model uses mo-
tor torque directly as an input.

4.3 Prognostic Modeling
Winding insulation breakdown is a primary failure
mechanism for the EMA’s motors. The rate of motor
winding insulation breakdown is a function of wind-
ing temperature. The standard heuristic model for this
function is the ten-degree rule, introduced in 1930 by
Montsinger (Montsinger, 1930). This rule states that the
thermal life of insulation is halved for each increase of
10◦K in the exposure temperature. The insulation life
versus temperature curve used in our simulations is given
in Eq. (11),

LN (t) = αe−βTW (t) (11)

where LN is the expected remaining useful life (RUL)
for new insulation in seconds, TW (t) (◦C) is the winding
temperature at time t, α=1012 (s), and β=0.0693 (1/◦C).

The RUL estimate for a motor winding, L(t), is cal-
culated using Eq. (12),

L (t) = LN (t) ·
(

1− d (t)

100

)
(12)

where d(t) is the percentage of insulation lifetime used
prior to time t,

d (t) =

∫ t

0

dτ

L (τ)
(13)
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Figure 9: Addition of uncertainty pdf to the insulation
breakdown model

A probability distribution is added to the α coeffi-
cient in Eq. (11) to capture uncertainty in the prognostic
model. Figure 9 shows the resulting probabilistic insula-
tion life versus temperature model, where the pdf’s mean
corresponds to α = 1012, one standard deviation above
the mean is α = 1013, and one standard deviation below
the mean is α = 1011.

4.4 Thermal Model
The winding’s temperature is related to the power loss
in the copper windings. A first order thermo-electrical
model is used to track the winding-to-ambient tempera-
ture as a function of copper losses, as shown in Figure
10 (Nestler & Sattler, 1993). The differential equation
for the thermal model is

Ṫwa = − Twa(t)

RwaCwa
+
Ploss(t)

Cwa
(14)

where Twa is winding-to-ambient temperature, Ploss is
power loss in the copper windings, Cwa is thermal ca-
pacitance, and Rwa is thermal resistance.

Figure 10: Thermal model for motor windings

5. SOLVING FOR THE OPTIMAL CONTROL
This section examines the optimization problem for con-
trol effort distribution among the EMA’s three motors. A
cost function, defined in Eq. (15), penalizes the expected
deviation from the commanded output torque over the

prognostic horizon and expected component damage at
the end of the prognostic horizon.

J =

∫ t+τ

t

|Tc − ρ (T1 + T2 + T3)| dz

+ λ

3∑
i=1

p (di (t+ τ) > ψi (t+ τ) |Ti (t)) (15)

Example performance and prognostic constraints are
defined in Eq. (16) and Eq. (17), respectively.

0.8 · Tc ≤ To ≤ Tc/0.8 (16)

p (di (t+ τ) > φi (t+ τ) |Ti (t)) ≤ 0.02 (17)

5.1 Verifying Constraint Feasibility
If the maximum allowable torque on the EMA satisfy-
ing the prognostic constraint is sufficient to satisfy the
performance constraint, then the constraints are feasible.
The maximum allowable torque from each motor is de-
fined as,

T̃i = sup (Ti) , s.t. p (di (t+τ) > φi) ≤ 0.02 (18)

Equation (19) is used to verify that the performance
constraint is feasible,∣∣∣T̃ ∣∣∣ ≥ .8 |Tc| , where T̃ = ρ

(
T̃1 + T̃2 + T̃3

)
(19)

Arbitrarily precise approximations for the T̃i are eas-
ily found via a wide variety of numerical techniques,
given that p (di (t+ τ) > φi (t+ τ) |Ti (t)) is monoton-
ically increasing function of T̃i.

If the constraints are infeasible, then the motor torques
are chosen to satisfy the prognostic constraint and be
as close as possible to satisfying the performance con-
straint,

Ti = T̃i (20)

5.2 Optimizing The Cost Function Within
Constraints

The cost function is evaluated over a three dimensional
space. However if the series and parallel control distri-
bution problems are separated, as described earlier, then
each sub-problem will have reduced dimensionality. The
series control distribution routine has one degree of free-
dom in the choice of To, and the parallel control rou-
tine has two degrees of freedom in distributing the load
among the three motors. The parallel control distribution
in terms of T1, T2, and To is:

inf
T1,T2

Js (T1, T2) =

inf
T1,T2

2∑
i=1

p (di (t+τ)>ψi (t+τ) |Ti) (21)

6
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Figure 11: Plots of the parallel distribution cost function for To = 0.4T̃ (a), To = 0.6T̃ (b), and To = 0.7T̃ (c).

Eq. (21) is derived from the cost function defined in Eq.
(15) with T3 given implicitly in terms of T1, T2, and To:

T3 =
To
ρ
− T1 − T2 (22)

Figure 11 shows plots of the parallel distribution cost
function for low, moderate, and high load levels. Initial
estimates for the insulation insulation healths were as-
signed to be normally distributed with σ2

i = 1, µ1 = .05,
µ2 = .35, and µ3 = .55, where µi is the mean of the ini-
tial estimate for the health of motor i, and σ2

i is the cor-
responding variance. The surfaces shown in Figure 11
were created using these initial health estimates as well
as τ = 1500, and ψi = 0.7. As shown in the figure,
the optimal prognostic cost is monotonically increasing
with system load, and the healthier motors are assigned
a greater proportion of the load.

Using the optimal the parallel distribution cost, the
series control distribution routine will set the deviation
from nominal performance, |Tc − To|, to minimize the
sum of the performance and prognostic penalties. The
performance penalty is monotonically increasing with
performance degradation, and the the prognostic penalty,
which is found via the parallel distribution routine is
monotonically decreasing with performance degrada-
tion.

6. SIMULATION RESULTS
Simulation results are given using the initial winding
degradations described in the previous section. A very
demanding load speed profile is used, Figure 12, in or-
der to observe significant winding degradation.

Simulation results are shown in Figure 13 for the re-
ceding horizon optimal control problem defined in Eq.
(15) using the following parameters: τ =50 sec, λ =
500τ , and ψi (t+ τ) = (φi (t+ τ) + di (t)) /2. Also
the maximum fault growth curve, φi, is defined as a lin-
ear function from φi (t+ τ) = d(t) to φi (1500) = 0.9.

The results of this simulation provide some insight
into the nature of the receding horizon optimization ap-
proach. Qualitative remarks regarding the simulation re-
sults are given below.

0 500 1000 1500
-500

0

500

Time

S
pe

ed
 (

R
P

M
)

Commanded Load Speed vs. Time

Figure 12: Load speed profile for EMA

Observation 1: Using a relatively short prognostic
horizon, τ = 50 sec, causes the prognostic bound on mo-
tor torque, plotted in Figure 13 (a), to vary widely over
the run. It tends to be looser when the winding temper-
ature is low and tighter when the winding temperature is
high because the winding’s thermal capacitance protects
the system from sharp increases in temperature.

Observation 2: The performance constraint is vio-
lated during some of the more aggressive regions in the
load speed profile, and the system is operated at 100%
performance during the less aggressive parts of the cy-
cle. This problem can be corrected by manipulating the
maximum allowable fault growth curve; φi(t) is made
steeper during the more aggressive parts of the cycle,
and less steep during the less aggressive parts . Figure
14 shows results obtained using this type of piecewise
linear design for φi(t). As shown in the figure, this extra
degree of freedom enables a control to be found which
does not violate the performance constraint. Future work
is needed to create quantitative metrics for selecting this
parameter and others based on assumptions about the
fault growth model and mission profile.
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Figure 13: Simulation results using τ =50 sec, λ = 500τ , φi (t+ τ) = linear, ψi (t+ τ) = (φi (t+ τ) + di (t)) /2.
Plots show: motor torques (a), winding temperatures (b), insulation degradation pdfs (c) (lines represent mean and ±
2 standard deviations), and EMA performance (d).
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Figure 14: Plots of EMA motor torques (a) and performance (b) using piecewise linear constraint

7. CONCLUSION
A hierarchical architecture was discussed for setting up
fault adaptive control of a generic overactuated system
with embedded nominal controllers. A finite horizon
bounded optimization problem was developed to redis-
tribute load among a system’s components, where spec-
ifications on maximum risk of failure and maximum
degradation of nominal performance are used as con-
straints. The motivation for using a finite horizon op-
timization problem is that the cost function allows direct
specification of the relative importance of maintaining
nominal performance and minimizing risk. The develop-
ment of this approach for a system with active redundant
actuation was examined, and simulation results demon-
strated the nature of the optimization problem. Research
is underway to address computational issues and param-
eter selection for the finite horizon optimization prob-
lem. Future work will further explore the implemen-

tation of the presented architecture on EMA hardware,
as well as exploring implementations on new systems,
which may not not have active redundancy.
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NOMENCLATURE
θc Commanded state vector
θ̃c State vector commaned by high level control
θi State vector command seen by component i
θo Measured state vector
ui Control signal for component i
yi Component control effort output
y Net control effort output of subsystem
r Control effort commaned of the subsystem
σ Performance degradation term
r̃ Mid-level control effort command for subsystem
r̃i Mid-level control effort command for component i
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