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ABSTRACT 

Reliability is a key parameter for the 

development of safe and effective military 

vehicles with a reasonable life cycle cost.  One 

innovative technology that is being promoted 

in the Department of Defense is the use of 

Health and Usage Monitoring Systems and 

remaining life prognostics to improve 

reliability and availability.  The feasibility of 

using data collected from a limited set of 

existing and simple add-on sensors to make 

fatigue damage estimations on a complexly 

loaded component within a military wheeled 

vehicle system was investigated.  Methods for 

identifying the critical inputs for fatigue 

estimation are evaluated and compared.  A 

baseline physics of failure analysis was 

performed on an example component to 

evaluate the proposed HUMS algorithms and 

demonstrate the accuracy of resulting fatigue 

predictions. 
*
 

1 INTRODUCTION 

 In a fiscally conscious environment, reliability is 

always a critical consideration in the design and 

manufacture of products.  For many items designed to 

be used over a long time span, operation and support 

represents a larger proportion of the total cost than 

procurement.  Reliability directly affects the logistics 

burden associated with a particular piece of equipment 

and is a major driver for operations and support cost.  

This is the case for many military vehicles, but military 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

vehicle designers have additional incentive to design 

reliable equipment.  Failure of components or 

subsystems results in inconvenience for civilian users 

of products, but soldier safety and effectiveness are 

often dependent on the operability and performance of 

their vehicles.  Maintaining operation of the critical 

functions and subsystems is essential to the completion 

of the difficult and dangerous missions assigned to 

military personnel.     

 Even though reliability is typically assigned a high 

level of importance during the development and 

selection of Army equipment, the Government 

Accountability Office reports that some major systems 

still have reliability issues (Anonymous, 2003), 

(Brannon, 2010).  One technology that is being 

promoted in the Department of Defense is the inclusion 

of Health and Usage Monitoring Systems or HUMS 

within a vehicle platform (Rabeno and Bounds, 2009).  

HUMS can be practically defined as a system of 

sensors, processors and algorithms that give an 

indication of remaining component life.  These systems 

monitor the usage of individual vehicles and record the 

effect of the environmental factors on specific 

components.  Remaining life prognostics is the process 

of converting the usage data into predictions of the 

probability of failure for components.  The resulting 

predictions can be processed and provide information 

to operators, maintainers, and mission planning 

personnel as to which components should be serviced, 

what repair parts are likely to be needed at a 

maintenance facility, and which vehicles have the 

lowest probability of failure during a mission.  With 

good management, this information can be used to 

increase availability and reliability, while decreasing 

overall maintenance and system cost.  

 An often overlooked ancillary benefit of a 

successful health and usage monitoring system is that it 

can provide an indication of what the past usage of the 

vehicle has been.  During the development of a military 

vehicle system, designers often must use generalized, 
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qualitative descriptions to predict usage and load 

inputs.  Specific information on previous generation 

vehicles is often unavailable or infeasible to attain.  

Testing of these systems is based on estimations of 

previous vehicle usage and worst-case scenarios 

because more realistic estimates are unavailable.  Data 

collected for critical components from a HUMS over 

the lifetime of multiple vehicles would provide the 

information necessary to make statistically significant 

estimations of the likely usage of next generation 

vehicles.   

 The concept of a HUMS is not particularly novel.  

The costs associated with development and purchasing, 

along with the detailed information of the system 

necessary to perform health and usage monitoring, 

typically limit application to critical components within 

expensive systems that are subjected to relatively 

simple environmental and loading conditions and 

operated over long time spans.  Many of these 

applications have been for large static systems with a 

limited number of relevant loading conditions such as 

manufacturing and power facilities (Li and Ray, 1995), 

(Jarrell and Bond, 2006), bridges (Gandhi et. al., 2007), 

elevator systems (Yan and Lee, 2005), and computer 

servers (Schuster and Gross, 2004).  Applications of 

HUMS to military vehicles have been primarily on 

fixed-wing aircraft (Anonymous, 2004), (Hunt and 

Hebden, 2001), (Martin et. al., 1999), (Mourna and 

Steffen, 2006), (Trammel et. al., 1997) and rotorcraft 

(Bechhoefer and Bernhard, 2004), (Ellerbrock et. al., 

1999), (Evans, 2002), (Gordon, 1991).   

 The relevancy of the techniques and processes 

developed for these applications to a military ground 

vehicle is limited.  These examples are exposed to 

environments and loading conditions that have 

significantly less variation than those of a typical 

ground vehicle.  In order to address all the relevant load 

cases on a ground vehicle system, robust engineering 

models are needed to calculate damage accumulated.  

Use of air and rotorcraft techniques on a military 

ground vehicle is also a challenge due to the fact that 

the life cycle costs associated with these applications 

justify the development of complicated HUMS.  The 

development and unit cost of a HUMS applied to a 

military land vehicle would need to be much less.  The 

cost to develop a military ground vehicle system is 

often several orders of magnitude less than that of an 

aircraft, so expenditures for the development of a 

HUMS would have to be reduced by a relative 

proportion.  In addition, cost of the HUMS could not be 

a significant portion of the total vehicle cost.  Redesign 

of components or replacement of the entire system may 

be a preferred alternative if the unit cost of a HUMS is 

prohibitive. 

 Recently, work has been performed to address some 

of the inherent challenges in applying HUMS and 

remaining life prognostics to ground vehicle systems.  

HUMS for sensors and actuators for the commercial 

auto industry (Barone et. al., 2006), (Ng et. al., 2006) 

and rotating components within the turbine engine of 

an M1 Abrams tank (Greitzer and Pawlowski, 2002) 

have been a focus of ongoing research.   To address 

terrain induced fatigue, a general set of algorithms for 

the application of a HUMS to a military ground vehicle 

was developed (Heine and Barker, 2007), (Heine and 

Barker, 2008).   Durability and fatigue testing are often 

performed based on an anticipated usage on primary, 

secondary and off-road terrains because the loading on 

many of the components changes significantly for each 

terrain type.  These algorithms take advantage of the 

similarity of damage rates within each terrain type to 

estimate fatigue damage accumulated on individual 

components.  One of the major advantages of this 

system is that a very simple set of sensors and 

algorithms provide damage estimates for multiple 

components.  This effectively spreads the 

developmental and unit cost of the HUMS across many 

components.  Accuracy of fatigue damage predicted 

from the recommended terrain identification algorithms 

for sample components varied by a factor of 2.9 to 6.8 

of the damage predicted by high fidelity fatigue 

models.  These results are within the typical error of 

fatigue estimates for similar components subjected to 

widely varying vibration inputs, but accuracy was 

shown to be highly dependent on identifying a fatigue 

damage per exposure time scale factor that is 

representative for all conditions within a terrain type.  

This requires significant testing on multiple courses 

that would represent the full range of scenarios that a 

military vehicle would encounter.   

 The desire for a more accurate fatigue estimate and 

the ability to minimize required algorithm training data 

may justify more complex algorithms for critical or 

safety related components.  A model was developed 

that used vibratory inputs from an accelerometer to 

make component fatigue predictions on a military 

wheeled vehicle system (Heine and Barker, 2009).  

While this type of model requires significantly more 

computational power, it could work in concert with 

terrain identification algorithms to provide enhanced 

fatigue damage predictions and minimize the algorithm 

training data necessary.  Accuracy of fatigue damage 

predicted from the recommended algorithms for a 

sample component was shown to vary within a factor of 

1.0 to 1.4 of the damage predicted by a high fidelity 

fatigue model.  While these were significant gains in 

accuracy, the algorithms developed apply only to the 

special cases of simply loaded components where the 

measured acceleration has a waveform similar to the 

measured strain.  More computationally intensive 

algorithms may be required to perform remaining life 

prognostics on more complexly loaded components.  
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 The objective of this research is to investigate the 

feasibility of using data collected from a limited set of 

existing and simple add-on sensors to make fatigue 

damage estimations on a complexly loaded component 

of a military wheeled vehicle system.  Methods for 

identifying the critical inputs for fatigue estimation are 

evaluated.  While this research was meant to develop 

principles generally applicable to HUMS and 

remaining life prognostics for a multiaxial case, in 

order to better illustrate the principles, a demonstration 

vehicle and component were chosen. A baseline 

physics of failure analysis was performed on the 

demonstration component to evaluate whether the 

proposed HUMS algorithms are appropriate and to 

demonstrate the accuracy of the resulting fatigue 

predictions. 

2 DEMONSTRATION VEHICLE AND 

COMPONENT 

 An eight wheeled Army vehicle similar to the one 

shown in Figure 1 was utilized as the demonstration 

vehicle for this research.   Data were collected from 

candidate sensors for the HUMS.  These included 

accelerometers on the sprung mass of the vehicle, 

Global Positioning Satellite (GPS) data, J1708 bus data, 

and suspension position via the built-in Height 

Management System (HMS) sensor.  Data from a 

triaxial strain gauge rosette was also collected on an 

example component over multiple courses at the Yuma 

Proving Ground.  Course data collected were separated 

into distinct sets that could be used for training and 

testing of algorithms.  Each set included at minimum 

one test course described as primary, secondary and off 

road.   

 

 
Figure 1: Army Wheeled Vehicle 

 

  The primary failure mechanism for the example 

component was multiaxial fatigue due to a combination 

of terrain and powertrain induced loading inputs.  Two 

legs of the triaxial strain gauge rosette labeled Strain 1 

and Strain 2 were generally attributed to terrain induced 

loading through the suspension system.  The leg labeled 

Strain 3 was attributed to torque produced through the 

drivetrain.  Since time histories of the strain data were 

determined to be non-proportional, uniaxial fatigue 

models were deemed unsuitable for an accurate fatigue 

estimate.  A high-fidelity, critical plane based 

multiaxial fatigue analysis was performed using 

commercially available software on the strain data 

measured on the example component for each course.  

Results of the fatigue analysis were verified anecdotally 

based on failure rates.   

3 DIRECT STRAIN MODEL 

 Strain measurements are desirable as an input to 

fatigue damage estimation models.  However, the 

common method of measuring strain with adhesively 

bonded, electric resistance wire strain gauges is fraught 

with difficulties.  This type of strain gauge is sensitive 

to temperature variations, and bonding can be an issue 

if the gauge is expected to last the life of the 

component.  A preferable approach would be to use 

more rugged sensors to predict strain on the critical 

component.  Use of sensors already integrated within 

the vehicle is an ideal source from which to estimate 

strain.  These sensors typically have high reliability due 

to their use in other vehicle subsystems and the cost of 

integrating them within the HUMS is minimal in 

comparison with the cost of adding an additional 

sensor.  Sensors such as accelerometers and GPS units 

are robust, easy to apply and make a good alternate 

source if the integrated sensors do not provide data 

suitable for predicting strain.  In order to evaluate the 

candidate sensors based on their ability to make fatigue 

damage estimations on a complexly loaded component, 

two statistics are compared. 

3.1 Normalized Cross-Correlation 

Cross-correlation is a standard method for 

estimating the degree to which two signals are 

correlated.  The cross-correlation (rxy) of two series x(i) 

and y(i) is defined in equation 1 where x  and y are 

the means of the corresponding series and d is the time 

lag. 
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 The cross-correlation can be normalized by the 

auto-correlation which is simply the value of the cross-

correlation of a signal with itself under no time shift.  A 

normalized cross-correlation value of 1 would signify 

that the two signals were identical.  Normalized cross-
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correlation were calculated for each of the courses with 

no time shift.  Due to general vehicle symmetry and the 

interrelated nature of various systems, it was 

hypothesized that a signal on another part of the vehicle 

may give a good indication of the strain at the critical 

area.  Thus, the maximum normalized cross-correlation 

was also calculated within a time shift of 0.5 seconds.  

The average normalized cross-correlation for the 

training courses with zero and a maximum of 0.5 

second lag are listed in Table 1.  The candidate sensor 

with maximum values of average normalized cross 

correlation for the strains attributed to terrain induced 

loading (Strain 1 and Strain 2) and the drivetrain torque 

(Strain 3) were selected for fatigue damage estimations 

and are labeled in bold font.  Including a delay made 

relatively minor changes to the average cross-

correlation values, although the 0.5 second lag did 

result in the selection of a different input channel for 

Strain 3. 

A linear scale factor and offset for each of the 

training data sets were calculated such that the 

maximum and minimum values measured for the 

candidate sensor matched maximum and minimum of 

the measured strains.  The mean scale factor and offset 

across all the training data sets was then utilized to test 

the accuracy of the fatigue predictions.  It was 

previously demonstrated that scaling based on fatigue 

life was more accurate than maximum excursion for a 

uniaxial fatigue case, but for a multiaxial case the 

equations were indeterminate (Heine and Barker, 

2009).  Life predictions were made based on candidate 

sensor strain predictions utilizing the same fatigue 

analysis software and equations used in the high 

fidelity fatigue estimates.  Results from the training 

data sets were labeled 1-5 and the testing data sets were 

labeled A-D for the scaled candidate sensors.  Values 

were plotted and compared to the high fidelity fatigue 

model results in Figure 2.  

3.2 Coefficient of Determination of Root Mean 

Square 

A comparison of Root Mean Square or RMS 

values for linearity was used previously to determine if 

relative magnitude of individual time segments are 

proportional (Heine and Barker, 2009).  Relative 

magnitude of strain cycles are essential to calculating 

fatigue, so a process was developed to evaluate the 

linearity of the comparison. Strain and predictor 

channels were separated into five second blocks.  RMS, 

denoted as z in equation 2 below, was calculated for 

each time sample of the strain or predictor channel (xi) 

in the block. 


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The coefficient of determination (R
2
) was then 

calculated based on the RMS values (z), a least squares, 

linear fit of the sensor RMS blocks to the strain RMS 

blocks ( ẑ ) and the average sensor value ( z ). 
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Resulting coefficient of determination values for each 

sensor are listed in Table 2 with the maximum values in 

bold font.   

A linear scale factor and offset for each of the 

training data sets were calculated such that the 

maximum and minimum values measured for the 

candidate sensor matched maximum and minimum of 

the measured strains.  The mean scale factor and offset 

across all the training data sets was then utilized to test 

the accuracy of the fatigue predictions.  Life of the 

scaled candidate sensors were plotted and compared to 

the high fidelity fatigue model results in Figure 3.  

4 PHYSICS-BASED STRAIN ESTIMATION 

 As an alternate method to utilizing statistics to 

blindly select from a pool of candidate sensors to 

estimate strain at a critical location, a physics-based 

estimation could be made utilizing known 

characteristics of the vehicle subsystems.  Candidate 

sensors are not typically available that provide all the 

information desired for a highly accurate load model of 

critical components, nor is it feasible to run a highly 

complex model real-time on an inexpensive HUMS.  If 

a basic model using a limited set of sensors can be 

manipulated to provide the most critical aspects of 

loading, a physics-based load estimation may be 

justifiable.   

 To evaluate this method on the demonstration 

component used in this study, it was necessary to 

estimate the torque applied through the drivetrain 

subsystem in order to predict Strain 3 and the terrain 

induced loads through the suspension subsystem to 

predict Strain 1 and Strain 2.  A simplified drivetrain 

model was developed which utilized engine speed, 

vehicle speed and a simplified shift map to estimate 

engine load inputs.  Transmission output shaft speeds, 

component geometries, and material properties were 

used to estimate the resulting reaction torques and 

convert load information to strain at the critical area.  A 

simple suspension model was developed based on 

sprung and unsprung masses, sprung mass acceleration 
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near the example component and unsprung mass 

acceleration via differentiated HMS reading.  Strain 

predictions were implemented into the multiaxial 

fatigue model and compared to the high-fidelity fatigue 

predictions.  Physics-based predictions were shown to 

be significantly less accurate for the example 

component than the estimates made based on the blind 

sensor selection.  This may be attributable to the 

simplifications necessary to make the physics-based 

models run in real-time, the limited set of sensors, the 

locations from which the subsystem load predictions 

were made or the fidelity of the sensor data. 

5 HYBRID MODELS 

 To investigate the poor quality of the physics-based 

predictions, the average normalized cross-correlation 

and coefficient of determination of root mean square 

statistics were calculated for the physics-based strain 

predictions to determine which subsystem model 

resulted in the significantly less accurate fatigue 

predictions.  In general, the loading seen in Strain 1 and 

Strain 2 were attributed to the terrain induced loading 

through the suspension subsystem and Strain 3 was 

attributed to the drivetrain.  Results are shown in Table 

3.   

 Average normalized cross-correlation statistics 

suggest that the powertrain subsystem model was the 

cause of the poor predictions, while the coefficient of 

determination of root mean squares suggests the 

suspension model was the issue.  Two hybrid models 

were developed.  Hybrid Model A utilized the physics-

based suspension model to predict strains 1 and 2.  

Strain 3 was predicted based on the average normalized 

cross-correlation statistic without a time lag candidate 

sensor.  Hybrid model B utilized the physics-based 

powertrain model to predict strain 3 and the average 

normalized cross-correlation without lag statistic 

candidate for strains 1 and 2.  Both models showed 

improvement over the physics-based strain estimation 

model, but the Hybrid B model gave the most accurate 

fatigue predictions.  Life predictions based on the 

Hybrid B model were plotted and compared to the high 

fidelity fatigue model results in Figure 4.  

6 RESULTS 

 In order to compare the accuracy of various models, 

a representative usage made up of the available terrain 

types was necessary.  Requirements documents indicate 

a predicted usage in terms of primary, secondary and 

off-road courses for each variant of the demonstration 

vehicle.  Durability tests for army combat vehicles are 

commonly 20,000 miles in length.  Predictions of the 

fatigue damage accumulated over a 20,000 mile test 

following the expected terrain profile for the most 

common variant were made based on the testing data 

sets A-D for each model.   Results are listed in Table 4.  

As a point of comparison, the most accurate terrain 

identification models resulted in 20,000 mile damage 

accumulated of 1.79 to 3.00 for similar components 

(Heine and Barker, 2007), (Heine and Barker, 2008)    

 Normalized cross-correlation without time lag 

provided the closest estimate to the high-fidelity strain-

based damage of the direct strain estimate models.  

Allowing a maximum time shift of 0.5 seconds made 

no difference in the selection of sensors for strains 1 

and 2, but the time shift led to the selection of the 

instant fuel economy calculations rather than the left 

side, axle 3 HMS sensor for strain 3 predictions.  Close 

review of the instant fuel economy data showed that the 

data was clipped at a maximum value.  When this data 

was scaled based on the maximum excursion, all of the 

clipped cycles were equivalent to the maximum strain 

cycle.  This led to the significant under-prediction of 

life seen in Figure 2 and the over-prediction of damage 

seen in Table 4.  Although this was not readily apparent 

from the cross-correlation data alone, the R
2
 RMS 

showed significantly higher correlation between strain 

3 and axle 3 HMS sensor data.  If a direct strain model 

is selected for a component, it would be advisable to 

calculate both statistics in order to select the most 

appropriate candidate sensors.  An alternate method of 

determining the scaling and offset based on fatigue 

rather than the maximum excursion may also improve 

fatigue predictions for the direct strain models.   

 The physics-based model developed required 

significantly more computational power and had poor 

predictive capabilities due to the limited ability of the 

suspension model developed to predict strains 1 and 2.  

When the normalized cross-correlation without time lag 

model for predicting strains 1 and 2 was combined with 

the powertrain model for predicting strain 3 in the 

Hybrid B model, the damage estimate over the 20,000 

mile endurance test was much improved.  This 

demonstrates that the use of a physics-based model can 

improve fatigue damage predictions if the component 

monitored justifies the additional computational load.  

Failure of the suspension model is attributed to the lack 

of quality sensor data at the critical locations necessary 

to make a high fidelity strain prediction.  Sensor data 

may not be of the quality required to make accurate 

predictions in current vehicles, but inclusion of higher 

quality sensors at critical locations may be justifiable 

for future vehicles designed for use with HUMS and 

remaining life prognostics. 
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Table 1: Average Normalized Cross-Correlation with Strain 

Channel Strain 1 Average 

Normalized Cross-

correlation 

with, without lag 

Strain 2 Average 

Normalized Cross-

correlation 

with, without lag 

Strain 3 Average 

Normalized Cross-

correlation 

with, without lag 

Battery Voltage 0.01, 0.01 0.01, 0.01 0.01, 0.01 

Engine Temperature 0.01, 0.01 0.01, 0.01 0.01, 0.01 

Engine Speed 0.01, 0.01 0.02, 0.02 0.03, 0.03 

Instant Fuel Economy 0.16, 0.13 0.05, 0.04 0.36, 0.31 

Percent Accelerator Pedal 

Position 

0.09, 0.08 0.03, 0.03 0.23, 0.20 

Percent Engine Load 0.07, 0.07 0.03, 0.03 0.14, 0.13 

Transmission Oil Temperature 0.01, 0.01 0.01, 0.01 0.01, 0.01 

Transmission Output Shaft Speed 0.02, 0.02 0.02, 0.02 0.06, 0.05 

Fuel Rate 0.08, 0.07 0.03, 0.02 0.22, 0.19 

Vehicle Speed 0.04, 0.03 0.02, 0.02 0.07, 0.06 

Sprung Accel Front Left Side 0.14, 0.07 0.10, 0.05 0.14, 0.05 

Sprung Accel Rear Left Side 0.19, 0.19 0.17, 0.16 0.12, 0.10 

Sprung Accel Rear Right Side 0.22, 0.21 0.19, 0.18 0.15, 0.13 

HMS Axle 1 Left Side 0.33, 0.32 0.27, 0.26 0.36, 0.32 

HMS Axle 1 Right Side 0.21, 0.17 0.33, 0.31 0.21, 0.17 

HMS Axle 3 Left Side 0.32, 0.30 0.30, 0.28 0.36, 0.35 

HMS Axle 3 Right Side 0.18, 0.18 0.30, 0.29 0.16, 0.16 
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Figure 2: Life Estimate Using Cross-Correlation (CC) 

 

 



Annual Conference of the Prognostics and Health Management Society, 2010 

 7  

Table 2: Coefficient of Determination of RMS with RMS Strain 

Channel Strain 1 Average 

R
2
 RMS 

Strain 2 Average 

R
2
 RMS 

Strain 3 Average 

R
2
 RMS 

Battery Voltage 0.01 0.00 0.01 

Engine Temperature 0.01 0.03 0.03 

Engine Speed 0.04 0.04 0.06 

Instant Fuel Economy 0.03 0.01 0.07 

Percent Accelerator Pedal Position 0.02 0.01 0.03 

Percent Engine Load 0.10 0.06 0.07 

Transmission Oil Temperature 0.03 0.04 0.02 

Transmission Output Shaft Speed 0.05 0.05 0.16 

Fuel Rate 0.03 0.01 0.04 

Speed 0.04 0.05 0.14 

Sprung Accel Front Left Side 0.15 0.10 0.01 

Sprung Accel Rear Left Side 0.17 0.12 0.03 

Sprung Accel Rear Right Side 0.18 0.13 0.05 

HMS Axle 1 Left Side 0.10 0.11 0.16 

HMS Axle 1 Right Side 0.09 0.12 0.10 

HMS Axle 3 Left Side 0.11 0.11 0.19 

HMS Axle 3 Right Side 0.03 0.04 0.06 
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Figure 3: Life Estimate Using Coefficient of Determination of Root Mean Square   
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Table 3: Physics-Based Comparison 

Estimator Strain 1 Average  Strain 2 Average  Strain 3 Average  

Average Normalized Cross-

Correlation with Lag 

0.03 0.03 0.15 

Average Normalized Cross-

Correlation without Lag 

0.03 0.03 0.14 

R
2
 RMS 0.14 0.10 0.07 
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Figure 4: Life Estimate Using Hybrid B Model   

 

 

Table 4: 20,000 Mile Endurance Test Damage 

Model 20,000 Mile Damage 

Accumulated 

High Fidelity Strain  0.75 

Normalized Cross-Correlation without Time Lag 2.57 

Normalized Cross-Correlation with Time Lag 216.44 

R
2
 RMS 7.80 

Physics-Based 0.00 

Hybrid A 0.21 

Hybrid B 1.28 
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7 CONCLUSIONS 

 In order to utilize HUMS and remaining life 

prognostics to obtain the desired improvements in 

reliability and availability on military ground vehicles 

within a reasonable cost, durable sensors that provide 

loading information for fatigue sensitive components 

are critical.  Strain is often the desired input for fatigue 

calculations, but most common sensors used to measure 

strain including adhesively bonded electric resistant 

wire strain gauges, are neither rugged nor reliable 

enough for a military ground vehicle environment.  In 

addition, the sensors need to provide data for many of 

the components on a vehicle.  Components susceptible 

to fatigue damage that should be monitored using a 

HUMS are not clearly recognized during the design of 

a vehicle system, so sensors that indicate loading to a 

wide variety of components are preferred.  Use of 

sensors already integrated within the vehicle is an ideal 

source from which to estimate strain due to their high 

reliability and minimal additional cost.  Add-on sensors 

such as accelerometers and GPS units are robust, easy 

to apply and make a good alternate source for strain 

estimates.  For many modern military vehicles, the 

combination of integrated and add-on sensors make a 

large group of candidates available for use in a HUMS, 

but the best indicators of strain may not be clearly 

identifiable.  A method is needed to identify and select 

sensors that provide inputs suitable for fatigue damage 

models.   

 Two statistics were evaluated based on ability to 

identify data that provides accurate fatigue predictions 

for a complexly loaded component on a military 

wheeled vehicle.  Normalized cross-correlation without 

time lag provided the most accurate fatigue estimate of 

the direct strain calculations.  Allowing for time shift 

was shown to have a minor effect on the ranking of 

candidate components, but calculation of the coefficient 

of determination of root mean square statistics as an 

additional means of comparison are recommended for 

identifying the best candidate sensor.   

 As an alternate method to utilizing statistics to 

select sensors that indicate strain on a component, a 

physics-based estimation can be made from the sensor 

data available and known characteristics of the vehicle 

subsystems.  More complex physics-based subsystem 

loading models and geometry data were shown to 

improve the fidelity of fatigue predictions, but quality 

sensor data at critical locations is essential.  Generally 

an improvement in the accuracy of fatigue predictions 

was demonstrated as the HUMS and remaining life 

prognostics algorithms increase in complexity.   

Selection of the model to be used on a specific 

component requires a balance of the accuracy needed 

with the developmental and computational cost. 
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NOMENCLATURE 

d time delay 

R
2 

coefficient of determination 

rxy cross correlation 

x(i) generic sample of series x 

x  mean of series x 

y(i) generic sample of series y 

y  mean of series y 

z Root Mean Square (RMS) 

ẑ  least square linear fit of RMS 

z  Average sensor value 
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