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ABSTRACT 

Mechanical systems wear or change over time. 
Data collected over a system’s life can be 
input to statistical learning models to predict 
this wear/change. A research effort at The 
Boeing Company has modeled gas turbine 
engine exhaust gas temperature (EGT) as a 
function of other recorded parameters.  Our 
investigation chose gas turbines, but these 
techniques could also be used for other 
systems that slowly change (degrade) over 
time. Previous work trained a flexible 
empirical regression model at a fixed point of 
wear, and then applied it independently at time 
points over the life of an engine to predict 
wear.  However, wear typically occurs slowly 
and smoothly.   This paper describes the 
benefit of relating wear predictions over time 
using a dynamic linear model, which is an 
example of a state space method.  The 
combined model predicts wear with 
dramatically reduced variability over both our 
previous effort and a baseline method.  The 
benefit of reduced variability is that engine 
wear is more evident, and it is possible to 
detect operational anomalies more quickly.  In 
addition to tracking wear, we also use the 
model as the basis for a Bayesian approach to 
monitor for sudden changes and reject outliers, 
and adapt the model after these events. 
Experiments compare methods and give some 
guidance in applying the methodology.*  

                                                           
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

1 INTRODUCTION 

One goal of any integrated vehicle health management 
program for aircraft is to monitor engine health, in 
particular, engine wear. Wear affects engine 
performance.  For example, to get the same thrust 
output as the engine wears, the engine requires more 
fuel, and so the engine’s exhaust gas temperature 
(EGT) increases.  However, environmental, flight, and 
other engine parameters also affect EGT.  These other 
factors can affect EGT much more than wear for a 
given data point.  As seen in Figure 1, a time series plot 
of EGT over the life of an engine does not show an 
increasing trend, as would be expected due to wear.   
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Figure 1: Raw EGT measurements plotted over the 
lifetime of an engine.  The cyclical trend (possibly 
due to air temperature) obscures the increase in 
EGT trend due to wear. 
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Industry practice is to normalize, i.e. adjust EGT to a 
baseline set of environmental and flight conditions.  In 
plots of normalized EGT, the effect of wear on EGT is 
much more evident.  See Figure 2 for an example.  
When normalized EGT exceeds a threshold 
temperature, it could trigger a decision to schedule 
maintenance or take other corrective actions.    
 
Indeed, Figure 2 is a plot of margin: the threshold 
temperature minus normalized EGT.  Here, a trend is 
apparent that is lacking in Figure 1.  It is possible to 
identify several phases: break-in, prime performance 
life, and end.  However, there is more variability than is 
desirable to accurately determine whether the 
normalized EGT is close to a threshold temperature, or 
equivalently, the margin is close to 0, at which time the 
engine needs to be serviced.  The scatter is so large that 
there is little confidence in any one point.  Reducing the 
variability would save costs by enabling more accurate 
maintenance decisions.   Our goal is therefore to reduce 
variability in predicted wear.  
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Figure 2: OEM EGT margin over the same time 
period of the same engine.   Here, a trend is 
apparent that is lacking in Figure 1.   
 
This paper discusses a research effort at The Boeing 
Company, which is investigating a data driven 
approach to reduce the variability of normalized EGT 
by accounting for both (1) the effect of other variables 
and (2) time dependence.  The approach builds a data 
driven model using volumes of flight data that are 
increasingly collected routinely on modern aircraft.  
Such a data driven approach contrasts with a physics 
model approach developed using physics/engineering 
insight and test data. 
 

As a baseline for comparison, a Boeing customer 
provided normalized EGT.    For brevity, we denote 
this data by “OEM”.  A previous investigation (Basu et 
al., 2008a, b) showed that a data driven approach 
outperformed the OEM results in the sense that its 
predictions (using a random forest (Breiman, 2001a)) 
had a similar range for engine wear, but about 25% 
smaller variation.   
 
This paper discusses how coupling a state space 
approach with the random forest further reduces 
variability by accounting for time dependence.  This 
paper also presents preliminary work on a monitor 
based on the model.  The monitor is an important step 
toward fault detection and prognosis. 
 
Similar normalization problems occur in other contexts.  
One example is predicting tire pressure loss.  The 
ultimate goal may be to monitor wear or degradation as 
equipment is used, in order to repair or replace the 
equipment in a timely manner.   The common elements 
of our approach to such problems are to (1) adjust a 
quantity of interest for other influences, and (2) relate 
these adjustments over time. 
 
We start by briefly giving some technical background 
on adaptive nonparametric regression and state space 
methodology.    Next, we give the rationale for fitting a 
regression model to data collected at baseline 
conditions, producing residuals, and relating these over 
time using a dynamic linear model.  Several 
experiments show that using dynamic linear models 
(DLMs) to relate predictions over time dramatically 
improves a previously developed data driven approach 
(Basu et al., 2008 a, b), which itself improves upon the 
OEM approach.  Promising preliminary work employs 
a Bayes factor (similar to likelihood ratio) to detect 
outliers, monitor for sudden shifts, and automatically 
reject outliers and adapt the DLM to changes.  Finally, 
we discuss the generality of the solution for problems 
involving sequences of predictions, and suggest future 
work. 

2 TECHNICAL BACKGROUND 

2.1 Trees and Ensembles for Regression 

Focusing the discussion on regression, a variety of 
strategies relate a response variable y to a set of 
covariates x.  The classical approach is to postulate a 
parametric function to predict y at the point x.  
Harnessing increasingly powerful yet cheap computer 
resources is one alternative to assuming a parametric 
model.   
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Tree-based methods are an example of adaptive 
nonparametric statistical procedures (Breiman et al., 
1984).  Trees can capture non-linear relationships and 
interactions among predictors. The idea of tree-based 
regression is to partition covariate space into regions 
with homogeneous response variables.  A recursive 
partitioning algorithm starts by using a splitting rule to 
divide the training data into two groups.  This 
procedure is recursively applied to each group until the 
final groups contain only a few observations.  These 
terminal nodes form a partition of the covariate space 
which is conveniently represented as a binary tree. 
 
Ensembles 
 
Trees earn A+ on interpretability, but only B on 
prediction (Breiman, 2001b).  To raise the grade on 
prediction, a variety of techniques (e.g. bagging, 
boosting, random forests) grow an ensemble of trees, 
each fit to a perturbed version of the training set 
(Breiman, 1996; Breiman, L., 2001a; Bühlmann and 
Hothorn, 2007;  Shapire, 2003). 
 
These procedures are motivated by the observation that 
slight changes in the data can lead to different tree 
structures, but comparable error rates.  Fitting trees to 
deliberately perturbed training data produces a set of 
plausible models, each achieved by the greedy 
algorithm converging to different local maxima.  
Rather than choosing one best model and discarding the 
rest, the resulting set of plausible models are combined 
to achieve superior accuracy. 
 
The common method of perturbing data is to bootstrap, 
i.e. sample with replacement from the original data set.  
Bagging stands for Bootstrap Aggregation.  A tree 
model is fit to each of several bootstrapped samples.  In 
regression, predictions are obtained by averaging the 
predictions over the trees.  Just as an average has lower 
variance than a single measurement, bagging reduces 
variance.  This is especially effective when bagging 
unstable predictors like trees. 
 
Random Forests 
 
As with bagging, random forests use the bootstrap to 
perturb the data.  In addition, they introduce another 
random element into the tree construction.  At each 
node, a random set of predictor variables is chosen.  
The best split for the node is found by searching only 
over this set, and not over all predictor variables. This 
additional randomness allows variables to occur in the 
tree model that would not otherwise appear in greedy 
search approaches, and often helps achieve greater 
accuracy (Murua, 2002).   

2.2 State Space Models 

State space models provide a flexible yet relatively 
simple tool for analyzing dynamic phenomena and 
evolving systems, and extend classical statistical 
analysis to non-stationary processes.  Informally, a state 
space model consists of: 
 
• unobserved state variables whose dynamics are 

described by a Markov dependency 
• observations, which are independent conditional on 

the state variables. 
 
They allow interpreting a time series as the 
combination of several components, such as trend, 
seasonality, or regression.  State estimation and 
forecasting are solved by recursively computing the 
conditional distribution of the quantities of interest, 
given the available information, hence can naturally be 
treated within a Bayesian framework.   
 
Recursive Bayesian estimation 
 
The goal of recursive Bayesian estimation is to estimate 
an unknown probability density function over time 
using observations and a mathematical process model.  
A Bayes filter uses information about noise and system 
dynamics to reduce uncertainty from noisy 
observations.  The recursive algorithm consists of two 
steps at each time: predict and update, which involve 
state transition and observation equations.  The predict 
step uses the state estimate from the previous time to 
produce an a priori state estimate at the current time, 
which is then updated by combining with current 
observation information to produce an a posteriori state 
estimate. 
 
Dynamic Linear Model 
 
The specific model used in this work is an example of a 
Dynamic Linear Model (West and Harrison, 1997; Pole 
et al., 1994), which is a state space model that is linear 
and Gaussian.  Dynamic Linear Models (DLMs) offer a 
flexible framework to model both smooth and abrupt 
changes in time series, and accommodate subjective 
information.   In its simplest form, a DLM is estimated 
using a Kalman filter, although Markov Chain Monte 
Carlo (MCMC) and particle filtering are used for more 
complex versions (Petris et al., 2009).   
 
The observation equation of a DLM is a multivariate 
regression that relates the observation to trend, 
regressors, seasonality and other components.  A 
system equation describes the evolution of the 
regression coefficients (state parameters) through time. 
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3 DATA DRIVEN APPROACH   

Our approach includes preprocessing large amounts of 
recorded data, selecting suitable training data, applying 
a flexible regression method (random forest) to model 
EGT as a function of other variables, producing 
residuals that can be interpreted as engine wear plus 
error (Basu et al. 2008 a, b), and recursively tracking 
this wear using a state space approach.   The following 
sections discuss each of these in turn.   

3.1 Preprocessing 

Data may be collected many times per second over 
flight.  For the purposes of trending EGT over the life 
of an engine, we found it sufficient to choose a 
representative data point for each flight.   Our approach 
is to obtain the most stable engine operational point 
possible, ideally at or near the maximum engine 
operating point.  
 
During flight, stable operation occurs in two regimes: 
cruise and initial climb. Very stable engine data and 
aircraft parametric data may be recorded during aircraft 
cruise. However, the aircraft may not reach cruise 
during every flight (e.g. during training). Also, the 
engines may not reach maximum operation during 
cruise.  During initial climb, the engine operates near or 
at its maximum for a fixed amount of time, but aircraft 
parametric and other engine data may change.   A 
Boeing proprietary algorithm, not presented here, finds 
a window of data in which maximum EGT occurs.  For 
this investigation, to compare directly with OEM data, 
only initial climb data will be discussed. 

3.2 Select training set 

In order to normalize to a common baseline condition, 
it is important to ensure that the trained model 
represents a consistent reference point in the life of the 
system.   We select training data at a common 
temperature from the middle of engine life.  Ideally, 
EGT is constant for long enough so that the training 
data will contain flights diverse enough to represent a 
set of environmental, flight, and engine parameter 
conditions encountered in real operation.  Abnormal 
data are excluded for training the model.  

3.3 Model relationship between EGT and nuisance 
variables 

Assume that an observed EGT measurement at a time t 

is a function of other “nuisance” variables tX  (e.g., 

environmental, flight, and engine parameters): 

tttt WXfEGT ε++= )(  (1) 

where tε  is an error term consisting of measurement 

error, other variables that have not been measured, and 

possible model misspecification.  tW  represents wear.  

This approach assumes that the EGT sensor is working 
properly, and cannot distinguish engine wear from EGT 
sensor (bias) error.  
 
Previous work (Basu et al. 2008 a, b) estimated the 

function )(ˆ
tXf   using statistical regression.  To 

estimate the function, we experimented with linear, and 
various nonlinear parametric estimators.  What worked 
the best is a random forest, which is a tree ensemble 
method (Breiman, 2001a), as discussed in Section 2.1. 
 

The residuals tr  equal wear plus error: 

tttt XfEGTr ε+=−= t  W)(ˆ  (2) 

In previous work, we used the residuals as our estimate 
of wear.  However, the real goal is to estimate the wear 

tW .  tW  is unobserved, thus suggesting a state space 

approach. 

3.4 Applying Dynamic Linear Model 

As seen in Figure 2, margin over the life of a typical 
engine follows a roughly piecewise linear pattern: a 
break-in period, followed by a relatively flat section, 
followed by decreasing slope, possibly accelerating at 
the end.  This suggests using a locally linear model, and 
so we used a linear growth (or local linear trend, time 
varying slope) model, also known as a second order 
polynomial model (Petris et al., 2009). 
 
The DLM is defined by: 
 
Observation Equation: given by equation (2). 
 
State Evolution 
Local level:         

tttt dWW η++= −− 11  (3) 

Local growth rate: 

ttt dd ν+= −1  (4) 

The error terms tη  and tν  are assumed to be Normally 

distributed with mean 0 and covarianceΣ .  The wear at 

time t equals the wear at the previous time 1−tW  plus a 

local growth rate 1−td .  The local growth rate is a 
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random walk.  The goal is to estimate the state 

sequence tW . 

3.5 Software 

This work used several packages from the open source 
statistical software R (R Development Core Team, 
2009): randomForest (Liaw, A. and Wiener, M. 
(2002)) and dlm packages (Giovanni Petris, 2010).  
Petris et al. (2009) describes the dlm package. 

3.6 Implementation 

The methodology in a previous effort (Basu et al., 2008 
a, b) only requires the current data when predicting and 
generating residuals using a fitted random forest model.  
The random forest predicts each observation 
independently of the past.    
 
Here the dynamic linear model (DLM) relates 
predictions over time.  At each iteration, information 
about the past is encoded and saved as the parameters 
of the DLM from the previous iteration.  These 
parameters need to be stored for each aircraft/engine.  
If DLM estimates from the previous iteration do not 
already exist, then the program gets default starting 
values, which represent an aggregate model estimated 
from historical engine data.   
 
To estimate default starting values for the observation 
variance and state estimates, we fit a DLM model to the 
random forest residuals for each engine in the training 
data.  The default starting value for the observation 
variance is the median.   For the state estimates, we use 
the first 15 random forest residuals of each engine data 
series to estimate a linear regression.  The intercept and 
slope represent initial estimates for wear and growth for 
that engine.  The default starting value for the local 
level and growth rate are the medians.   
 
In this way, one set of starting values is used for all 
engines.  As shown below, this works well in practice.  
However, further research could investigate somehow 
clustering engines, and using separate sets of starting 
values.  Another possibility is to use a small set of data 
at the beginning of engine life to individually estimate a 
DLM for each engine.  This latter approach would 
mean that at the beginning of engine life, the program 
returns just the prediction from the random forest, 
without yet relating them in time. 
 
We set the evolution variances (i.e., the diagonal 
elements of  Σ  ) to large values.  This allows the data 
to “speak for themselves”, as is suitable when starting 
out.   The evolution variance is estimated in subsequent 

iterations using a discount factor = .9 (Pole et al., 
1994).  See Section 4.8. 

4 EXPERIMENTS 

This section discusses an experiment on data collected 
during initial climb.  The random forest (RF) model 
relates Maximum EGT (achieved during climb) to 
engine, flight, and environmental parameters. The 
residuals estimate wear (but also include noise as 
discussed above).  The Dynamic Linear Model (DLM) 
estimates wear, and further reduces variability by 
relating predictions (residuals) over time.   
 
The goal is to compare the performance of these data 
driven techniques – RF alone vs. RF + DLM -- and 
compare each to the OEM method.  Section 4.3 gives 
specific evaluation criteria. 

4.1 Data 

This investigation used customer Quick Access 
Recorder (QAR) data, provided from about 30 aircraft 
from the time the engine was installed to the time of 
this investigation. There are several years of data for 
each aircraft.  Although there are four engines on each 
aircraft, data does not always exist for all four engines. 
In total, there is data for about 100 engines.   A 
challenge is to develop a procedure that works for all 
engines in a fleet, for aircraft that fly in a variety of 
geographic locations and conditions. 
 
For each engine, the data consist of about thirty 
parameters collected during initial climb over many 
flights. The types of variables include aircraft 
environmental/operational data such as Mach number 
and engine parametric data such as engine spool 
speeds.   
 
OEM EGT normalization is used as a baseline for 
comparison.   This is expressed as margin, a threshold 
temperature minus the normalized EGT, and therefore 
decreases over engine life. 

4.2 Selecting Training and Test Sets 

Since the goal is to normalize to a fixed wear point, we 
collected QAR data from about 30 engines during time 
periods when the OEM margin values are a common 
frequently occurring temperature. This selection 
process yielded a set of 3305 observations to train the 
random forest model.  We then compared OEM and 
data driven procedures on 73 engines (the test set).   

4.3 Evaluation 

The goal is to reproduce the range of the OEM results, 
but with less scatter.  Range and scatter are defined  
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Figure 3: Bollinger plots comparing the OEM, RF, and RF+ DLM solutions for a randomly chosen engine.  
The ranges are comparable.  The RF solution reduces scatter over the OEM solution, but the RF + DLM 
dramatically reduces scatter even further. 
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below.  We measure these objectives using Bollinger 
bands as follows:   
 
• Choose a fixed window width  
• Calculate average, standard deviation (sd) for each 

window 
• Construct Bollinger bands as average + k * sd 

where k is a constant.  In our results, we choose k 
= 2, so that the bands roughly correspond to .95 
confidence bands under a Gaussian distribution 
assumption. 

 
Then calculate: 
 
• range as the maximum moving average minus the 

minimum moving average.  This is one value. 
• scatter as the  upper minus the lower Bollinger 

bands.  There is one value for each observation.   
 
To more easily compare our results with the OEM 
margin results, we transform our model outputs to start 
at the same maximum moving average as the OEM 
margin.  

4.4 Results 

The goal is to compare the performance of the data 
driven techniques – RF alone versus RF + DLM -- to 
the OEM method.  See Figure 3 for Bollinger plots 
comparing the OEM, RF, and RF+DLM solutions for a 
randomly chosen engine.  
 
Figures below summarize the results by showing 
histograms of range and median scatter for the engines 
in the test set.  Figure 4 compares the difference in 
range from OEM, and shows that most ranges are 
within +/- five degrees of OEM. Figure 5 shows the 
difference in median scatter from OEM.  These figures 
show that: 

• The RF predictions have comparable range, but 
reduced median scatter.  However, individual time 
series plots and histograms (not shown here) 
indicate that there can be extended periods with 
both higher scatter and lower scatter than the OEM 
solution.   Therefore, this tempers the conclusion 
of reduced median scatter.   

• Relating RF predictions over time using a DLM 
dramatically reduces median scatter over the OEM 
solution.  Moreover, improved performance is 
evident in individual plots (not shown here). 
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Figure 4:  Difference in Range from OEM 
approach.  The ranges are comparable for all 
approaches.  Most are within +/- 5 degrees.  A green 
dotted vertical line is drawn at 0 difference.    
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Figure 5:  Difference in median scatter from OEM 
approach.  The top plot shows that median scatter 
for the OEM is greater than for the data driven 
approach using RF-alone.  However, relating RF 
predictions over time using a DLM dramatically 
reduces median scatter over the OEM solution.  
Note that the median scatter for the OEM approach 
always exceeds that for RF + DLM by at least 8.  A 
green dotted vertical line is drawn at 0 difference.    
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4.5 MONITOR THAT DETECTS OUTLIERS 
AND SUDDEN SHIFTS 

The RF + DLM model above has shown improvement 
over both the OEM solution and our previous solution 
using just RF residuals.  In order to deploy this model 
in real life solutions, a working implementation should 
also reject outliers and adapt model parameters after 
structural changes such as a sudden EGT shift.  
  
The approach used here is based on the work by West 
(1986) and West and Harrison (1986).  A more 
complex approach would use simulation-based 
Bayesian inference.  However, as a first step, it seemed 
reasonable to apply this approach which is useful and 
practical in many situations, with the advantage that 
discount factors (described below) allow closed form 
calculations.  

4.6 Bayesian Model Monitoring 

Sequential Bayesian modeling analyzes observations in 
real time, updating inferences and predictive statements 
using newly obtained information and observations.  It 
assesses model fit using predictive distributions.  The 
idea behind monitoring is to compare the predictive fit 
of the standard model with an alternative model that 
specifies the nature of “unusual”.   The central problem 
is to construct suitable alternatives to the “standard” 
model used for analysis. In this work, the alternative 
model is similar in form to the standard, but allows for 
changes in the values of the parameters. 
  
Monitoring is based on the Bayes Factor, the ratio of 
likelihoods, which compares the predictive ability of 
the standard model versus the alternative model.   It 
detects discrepancies between the data and standard 
model predictions.  Examples of model failures include 
outliers and structural changes in the time series.  More 
formally, the Bayes factor at time t is defined as: 

)|()|( 11 −−= ttAttt DypDypH  (5) 

where 1−tD  is the data until time 1−t , and ty   is the 

current observation.  Small values of tH  indicate poor 

performance of the standard model relative to the 
alternative.  It is possible to put a threshold on 
(observation – forecast inconsistency): a Bayes factor > 
10 gives evidence for the standard model; >100 gives 
strong evidence.  A Bayes factor < 1/10 gives evidence 
for the alternative model; while < 1/100 gives strong 
evidence. 
 
The overall Bayes factor at time t is the product of the 
Bayes factors until that time, and gives a measure of the 
global fit.  However, the problem with such a global 

measure is that the greater weight of historical 
performance may mask local changes.   E.g., good 
historical performance of the model may swamp a 
small Bayes factor due to an outlier, which then goes 
undetected.    
 
In a practical monitoring application, the local changes 
are of greatest interest.  A cumulative Bayes factor is a 
product of the most recent k Bayes factors, and is 
sensitive to local model failure, and can indicate slow 
changes that may not be evident in a single Bayes 
factor. 

)1()( 111 −=⋅⋅⋅= −+−− kWHHHHkW ttktttt      (6) 

To focus on the most likely point of possible change, 
calculate the most discrepant group of recent, 
consecutive observations as: 
 

)(min1 kWV ttkt ≤≤=  (7) 

It turns out that when the cumulative evidence at time t 

favors the standard model, so that 11 ≥−tV , then  

tt HV =  (8) 

and decisions about possible inadequacies are based on 

the current observation ty   alone.  If the Bayes factor  

tH  is small enough, then ty  may be an outlier or the 

beginning of a structural change.   
 
On the other hand, if the evidence before time t is 

against the standard model, so that 11 <−tV , then the 

cumulative Bayes factor is multiplied bytH : 

1−= ttt VHV  (9) 

In this way, the monitor detects either gradual or abrupt 
changes.   

4.7 Automatically Adapting to Model Change 

When changes in parameter values are the primary 
cause of standard model failure, an additional goal is to 
automatically adapt to the onset of change.  
Incorporating increased uncertainties into the model 
leads naturally to more rapid adaption by allowing 
future data to more heavily influence the updating of 
posterior distributions.  In this way, models self correct 
after structural changes.  However, the automatic 
procedure must also distinguish an outlier from a 
structural change. 
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The following scheme (West and Harrison, 1986; West, 
1986) isolates and rejects outliers, and in cases of 
structural change, automatically increases uncertainty 
about the parameters to rapidly adapt to new data. 
 

A. If τ≥tH , then ty  is consistent with standard 

model.  But assess possibility of change before this 
time by proceeding to (B) 
 

B. If the cumulative Bayes factor τ≥tV , proceed to 

(D) (update as usual).   Else change is indicated. 
Proceed to (C).  
   

C. Reject ty as providing no useful information at time 

t  about the standard model parameters.   Do not update 

model using ty  (equivalently, treat ty  as missing).  

Moreover, allow for change by increasing the 
uncertainty about the parameter vector, leading to more 
rapid adaptation to new data 
 
D. Standard update: standard model is satisfactory.  
Update as usual to the posterior and thence to the prior 
for time t + 1. 

4.8 Discount Factors 

Specifying the state evolution covariance matrix is a 
crucial step.  The values control the stochastic variation 
in the evolution of the model, and determine the role of 
past observations.  A key problem is that one 
covariance is typically not suitable for all times.  
Moreover, it is difficult to specify the covariance 
elements. 
 
In the system equation, the covariance leads to an 
increase in uncertainty, or equivalently a loss of 
information, about the state vector between successive 
times.  This idea is natural, and leads to specifying the 
posterior covariance as a fraction δ/1 of the prior 
covariance, and therefore the state evolution covariance 
as δδ /)1( −  of the prior covariance.  The degree of 

adaptation to new data increases as the discount factor 
becomes smaller. 
 
The RF + DLM model uses a discount factor of .9.  In 
the monitor, there are two other uses of the discount 
factor.  First, the alternative model uses a discount 
factor of .05.  Second, the monitor enables the model to 
adapt after a structural change by increasing the 
discount factor to .1. 

4.9 Preliminary Evaluation 

A preliminary evaluation first looked at the monitor 
alerts and the detected outliers for the same data set 
shown in Figure 3.  Figure 6 shows how the algorithm 
alerts to changes for a threshold of .135 on the Bayes 
Factor.  This corresponds to a weight of evidence 
against the standard model of roughly 2. These plots 
give some insight into how the monitor works, and 
shows that it generally alerts when the slope changes 
direction or there is a shift.   
 
Next, we ran a simple experiment whose goal is to 
begin to understand what magnitude shift the monitor 
can detect, and how long the detection takes.  We 
introduced a shift in the last 300 points by incrementing 
the data by 10, 15 and 20 degrees.   
 
The threshold on the Bayes factors affects the size of 
the shift that the algorithm can detect.  For a threshold 
= .2, the monitor detects a shift of 20 degrees, but not a 
15 degree shift.   It takes 15 observations to detect the 
20 degree shift.   But for a threshold of .3, the monitor 
detects a shift of 15 degrees after 25 observations.  This 
would appear to be good performance because as 
Figure 7 of the raw Max EGT shows, the 15 degree 
shift is not very noticeable. Deciding on the appropriate 
threshold depends on what magnitude shifts the user 
wants to detect, and also the sensitivity to other 
changes.  Smaller threshold values decrease sensitivity 
to slower, less marked changes.   
 
This has been a preliminary investigation of how the 
monitor works.  More experimentation is needed to 
more fully explore the impact of the discount factors 
for the state evolution matrix, the starting values, and 
the thresholds on the Bayes factors.  Future 
experiments should consider more data sets, gradual 
ramping of increases and other realistic changes, as 
well as real shift occurrences in the data. 

5 CONCLUSION 

This paper deals with a general problem of relating a 
sequence of predictions over time using state space 
modeling.  We focus specifically on predicting engine 
wear for aircraft.   
 
In the prediction task, the observed exhaust gas 
temperature (EGT) depends on both wear and other 
factors.  After suitable preprocessing the data, we fit a 
flexible empirical model (random forest) to relate EGT 
to other factors at a baseline wear point.   When we 
predict new data using the model, the residuals 
represent wear plus error.  Using a state space modeling  
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Figure 6: The top plot shows Max EGT.  In the middle plot, which shows the random forest residuals, the 
blue line indicates the estimates of wear using RF+ DLM and red line indicates the monitor.  Differences 
between the wear estimates are subtle in this plot, but are more apparent in the bottom plot.  These 
differences are due to the monitor ignoring potential outliers and allowing the model to self correct after an 
alert.   The detected outliers are indicated by green *s; and the alerts are indicated by vertical lines.  The 
alerts are based on a threshold of .135 on the Bayes Factor thresholds.  This corresponds to a weight of 
evidence against the standard model of roughly 2. 
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Figure 7: The top plot introduces a shift of 15 degrees at the end of the Max EGT series.  The shifts are shown 
as red *’s.  The shift is barely discernible in the Max EGT plot.  The middle plot shows the monitor output, 
and an immediate sharp increase in estimated wear.  The dotted purple line indicates the beginning point 
where the data is shifted. The monitor alerts 25 time points after the shift.  It uses a threshold of .3 on the 
Bayes Factor.  Note that the monitor alerts more often than when the threshold = .135, including a change in 
slope at the end that it missed in the previous plot.  The bottom plot shows that the monitor differs the most 
from the RF+DLM just after the shift. 
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framework, we estimate the unobserved state (wear) 
using a dynamic linear model fit using a Kalman filter.    
 
Experiments show that predicting engine wear using a 
dynamic linear model to relate regressions over time 
dramatically reduces the variability of predictions from 
both the OEM approach and our previous approach, 
which independently generated predictions at each time 
using random forest regression (Basu et al., 2008 a, b).   
 
This RF + DLM model forms the basis of a Bayesian 
approach to monitor for sudden changes and reject 
outliers, and adapt the model after these events.  More 
investigation on the monitor is needed, but preliminary 
work shows that the monitor can detect shifts in 
temperature that are barely discernible in the originally 
observed EGT. 
 
Future work on this application includes: 
 
• Investigate the Bayesian monitor in greater depth, 

including detection and false alarm rates, and the 
effect of starting values, discount factors, and 
thresholds on the Bayes factors. 

• Incorporate a seasonal component. 
• Go beyond linear Gaussian models fit with a 

Kalman filter, to more general nonlinear models fit 
using particle filters (Doucet et al., 2001). 

• Exploit the fact that on each aircraft, there are four 
engines, which operate in the same operational and 
environmental conditions. This fact might be used, 
for example, to distinguish between shifts in rates 
of wear -- due to common changing conditions --
from sudden EGT shifts on any one of the engines 
due to a fault. Accomplishing this may involve 
using a hierarchical model: engines within aircraft.  

 
In this particular application, because the goal is to 
normalize EGT data to one wear point, the problem is 
simplified because we only fit the regression 
relationship once.  However, more general applications 
require updating the regression or classification models 
over time.  Challenges include developing real time 
algorithms.  In order to continue using tree ensemble 
regression, a possible solution is to use ensembles as 
incremental learners (Parikh D. and Polikar R., 2007).  
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