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ABSTRACT

Mechanical systems wear or change over time.
Data collected over a system’s life can be
input to statistical learning models to predict
this wear/change. A research effort at The
Boeing Company has modeled gas turbine
engine exhaust gas temperature (EGT) as a
function of other recorded parameters. Our
investigation chose gas turbines, but these
techniques could also be used for other
systems that slowly change (degrade) over
time. Previous work trained a flexible
empirical regression model at a fixed point of
wear, and then applied it independently at time
points over the life of an engine to predict
wear. However, wear typically occurs slowly
and smoothly. This paper describes the
benefit of relating wear predictions over time
using a dynamic linear model, which is an
example of a state space method. The
combined model predicts wear with
dramatically reduced variability over both our
previous effort and a baseline method. The
benefit of reduced variability is that engine
wear is more evident, and it is possible to
detect operational anomalies more quickly. In
addition to tracking wear, we also use the
model as the basis for a Bayesian approach to
monitor for sudden changes and reject outliers,
and adapt the model after these events.
Experiments compare methods and give some
guidance in applying the methodology.

" This is an open-access article distributed unidertérms of
the Creative Commons Attribution 3.0 United Stadte®nse,
which permits unrestricted use, distribution, aegroduction
in any medium, provided the original author andrseuare
credited.

1 INTRODUCTION

One goal of any integrated vehicle health managémen
program for aircraft is to monitor engine health, i
particular, engine wear. Wear affects engine
performance. For example, to get the same thrust
output as the engine wears, the engine requireg mor
fuel, and so the engine’s exhaust gas temperature
(EGT) increases. However, environmental, flighd a
other engine parameters also affect EGT. Theser oth
factors can affect EGT much more than wear for a
given data point. As seen in Figure 1, a timeesepiot

of EGT over the life of an engine does not show an
increasing trend, as would be expected due to wear.
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Figure 1: Raw EGT measurements plotted over the
lifetime of an engine. The cyclical trend (possipl
due to air temperature) obscures the increase in
EGT trend due to wear.
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Industry practice is tmormalize, i.e. adjust EGT to a As a baseline for comparison, a Boeing customer
baseline set of environmental and flight conditioris provided normalized EGT. For brevity, we denote
plots of normalized EGT, the effect of wear on EGT this data by “OEM”. A previous investigation (Basu
much more evident. See Figure 2 for an exampleal., 2008a, b) showed that a data driven approach
When normalized EGT exceeds a thresholdoutperformed the OEM results in the sense that its
temperature, it could trigger a decision to schedul predictions (using a random forest (Breiman, 2001a)
maintenance or take other corrective actions. had a similar range for engine wear, but about 25%
smaller variation.
Indeed, Figure 2 is a plot ahargin: the threshold
temperature minus normalized EGT. Here, a trend isThis paper discusses how coupling a state space
apparent that is lacking in Figure 1. It is poksito approach with the random forest further reduces
identify several phases: break-in, prime perforneanc variability by accounting for time dependence. sThi
life, and end. However, there is more variabilitgn is  paper also presents preliminary work on a monitor
desirable to accurately determine whether thebased on the model. The monitor is an importasp st
normalized EGT is close to a threshold temperature, toward fault detection and prognosis.
equivalently, the margin is close to 0, at whichdithe
engine needs to be serviced. The scatterisge that  Similar normalization problems occur in other cotge
there is little confidence in any one point. Rédgeche  One example is predicting tire pressure loss. The
variability would save costs by enabling more aatair ultimate goal may be to monitor wear or degradatisn
maintenance decisions. Our goal is thereforedoice equipment is used, in order to repair or replace th
variability in predicted wear. equipment in a timely manner. The common elements
of our approach to such problems are to (1) adjust
quantity of interest for other influences, and (@late
these adjustments over time.

70
1

We start by briefly giving some technical backgrdun
on adaptive nonparametric regression and stateespac
methodology. Next, we give the rationale fotiriig a
regression model to data collected at baseline
conditions, producing residuals, and relating thessr
time using a dynamic linear model. Several
experiments show that using dynamic linear models
(DLMs) to relate predictions over time dramatically
improves a previously developed data driven apgroac
(Basuet al., 2008 a, b), which itself improves upon the
OEM approach. Promising preliminary work employs
a Bayes factor (similar to likelihood ratio) to det

{ T T T w outliers, monitor for sudden shifts, and automéjca
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0 1000 2000 3000 4000 reject outliers and adapt the DLM to changes. IRina
Time we discuss the generality of the solution for peots
involving sequences of predictions, and suggesiréut
Figure 2: OEM EGT margin over the same time work.
period of the same engine. Here, a trend is
apparent that is lacking in Figure 1. 2 TECHNICAL BACKGROUND

This paper discusses a research effort at The Boein2.1 Trees and Ensembles for Regression

Company, which is investigating a data driven . . . . .
approach to reduce the variability of normalizedTEG FOC“S'F‘Q the discussion on regression, a variety of
by accounting for both (1) the effect of other wates strategies relate a response varlable_ y to a set of
and (2) time dependence. The approach builds a dralf:O\""‘r""‘te_S X. Th.e classical a_pproach IS to pd&j{uia
driven model using volumes of flight data that arep‘"‘r""me'[rIC functlor} to predict y at the point x.
increasingly collected routinely on modern aircraft Harnessmg increasingly powerful yet qheap computer
Such a data driven approach contrasts with a physic'€SOUrces is one alternative to assuming a parametr
model approach developed using physics/engineerinénOdel'

insight and test data.
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Tree-based methods are an example of adaptiv@.2 State Space Models
nonparametric statistical procedures (Breiman et al
1984). Trees can capture non-linear relationships
interactions among predictors. The idea of treetlas
regression is to partition covariate space intdoresg
with homogeneous response variables. A recursiv
partitioning algorithm starts by using a splittinge to
divide the training data into two groups. This . .
procedure is recursively applied to each groupl timti ~ ° unobsgrved state variables whose dynamics are
final groups contain only a few observations. TEhes descrlbe_:d by a Markov erendency .
terminal nodes form a partition of the covariatac ° observations, which are independent conditional on

which is conveniently represented as a binary tree. the state variables.

State space models provide a flexible yet relagivel
simple tool for analyzing dynamic phenomena and
evolving systems, and extend classical statistical
gnalysis to non-stationary processes. Informallstate
Space model consists of:

They allow interpreting a time series as the
combination of several components, such as trend,
seasonality, or regression. State estimation and
pnforecasting are solved by recursively computing the

Ensembles

Trees earn A+ on interpretability, but only B on
prediction (Breiman, 2001b). To raise the grade o e S OV . X
prediction, a variety of techniques (e.g. bagging conditional distribution of the quantities of intst,
boosting, random forests) grow ansemble of trees, 9IVeN the_ aya|lable mf_ormatlon, hence can natyrad
each fit to a perturbed version of the training setlréated within a Bayesian framework.

(Breiman, 1996; Breiman, L., 2001a; Bihlmann and . . .

Hothorn, 2007; Shapire, 2003). Recursive Bayesian estimation

t The goal of recursive Bayesian estimation is toveste

slight changes in the data can lead to differeae tr &0 Unknown probability density function over time
structures, but comparable error rates. Fittiegdrto  YSiNg observations and a mathematical process model

deliberately perturbed training data produces aoget A Bayes filter uses information about noise andesys
plausible models, each achieved by the greedyynamics to reduce uncertainty from noisy
algorithm converging to different local maxima. observations. The recursive algorithm consistswof

Rather than choosing one best model and discatbing StePS at each time: predict and update, which wevol

rest, the resulting set of plausible models arelined state transition and obsgrvatlon equations. .Tbellqr

to achieve superior accuracy. step uses the state estlmate.from the previous time
produce an a priori state estimate at the curriems,t

which is then updated by combining with current

observation information to produce an a postestaie

estimate.

These procedures are motivated by the observdiatn

The common method of perturbing data is to boqgtstra
i.e. sample with replacement from the original degt
Bagging stands for Bootstrap Aggregation. A tree
model is fit to each of several bootstrapped sasple
regression, predictions are obtained by averagdireg t
predictions over the trees. Just as an averagmowas
variance than a single measurement, bagging reduc
variance. This is especially effective when baggin
unstable predictors like trees.

Dynamic Linear Model

adhe specific model used in this work is an exanuple
Dynamic Linear Model (West and Harrison, 1997; Pole
et al., 1994), which is a state space model théésr

and Gaussian. Dynamic Linear Models (DLMs) offer a
flexible framework to model both smooth and abrupt
changes in time series, and accommodate subjective
As with bagging, random forests use the bootsteap t INformation. In its simplest form, a DLM is estted
perturb the data. In addition, they introduce hapt USiNg @ Kalman filter, although Markov Chain Monte
random element into the tree construction. At eachC@ro (MCMC) and particle filtering are used for o
node, a random set of predictor variables is choserFomMplex versions (Petris et al., 2009).

The best split for the node is found by searchinty o
over this set, and not over all predictor variablHsis

Random Forests

The observation equation of a DLM is a multivariate

additional randomness allows variables to occuhen  'égression that relates the observation to trend,
tree model that would not otherwise appear in greed "€9ressors, seasonality and other components. A

search approaches, and often helps achieve greatSYSt€m equation describes the evolution of the
accuracy (Murua, 2002). regression coefficients (state parameters) throug.
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3 DATADRIVEN APPROACH where &, is an error term consisting of measurement

Our approach includes preprocessing large amounts arror, other variables that have not been measaretl,
recorded data, selecting suitable training datalyaly  possible model misspecificationVV represents wear.

a flexible regression method (random forest) to ehod . . .
This approach assumes that the EGT sensor is vgprkin

EGT as a function of other variables, producing P .
residuals that can be interpreted as engine weaar pl properly, and cannot distinguish engine wear fraBiTE
sensor (bias) error.

error (Basu et al. 2008 a, b), and recursivelykirag
this wear using a state space approach. Thewfioltp . .
sections discuss each of these in turn. Previous work (Basu et al. 2008 a, b) estimated the

function f(X,) using statistical regression. To
3.1 Preprocessing estimate the function, we experimented with lineaq

Data may be collected many times per second oveYarious nonlinear parametric estimators. What wdrk
flight. For the purposes of trending EGT over lifie  the best is a random forest, which is a tree enkemb
of an engine’ we found it sufficient to choose amethod (Bl’eiman, 20018.), as discussed in Sectibn 2.
representative data point for each flight. Ouysrapch

is to obtain the most stable engine operationahtpoi The residuald, equal wear plus error:

possible, ideally at or near the maximum engine

operating point. r, = EGT, - f(Xt) =W, +¢ (2

During flight, stable operation occurs in two regsgn In previous work, we used the residuals as oumedé
cruise and initial climb. Very stable engine dateda of wear. However, the real goal is to estimateviear
aircraft parametric data may be recorded duringrait  \\/ . \\/ is unobserved, thus suggesting a state space
cruise. However, the aircraft may not reach cruise
during every flight (e.g. during training). Alsohet approach.
engines may not reach maximum operation during . o
cruise. During initial climb, the engine operatesr or 3.4 Applying Dynamic Linear Model

at its maximum for a fixed amount of time, but eaft  As seen in Figure 2, margin over the life of a tabi
parametric and other engine data may change.  Angine follows a roughly piecewise linear pattean:
Boeing proprietary algorithm, not presented herels  break-in period, followed by a relatively flat sed,
a window of data in which maximum EGT occurs. Forfollowed by decreasing slope, possibly accelerating
this investigation, to compare directly with OEMtala the end. This suggests using a locally linear mauatel

only initial climb data will be discussed. so we used a linear growth (or local linear tretiie
varying slope) model, also known as a second order
3.2 Select training set polynomial model (Petris et al., 2009).

In order to normalize to a common baseline conaljtio
it is important to ensure that the trained model
represents a consistent reference point in theofifie . L .
system. We select training data at a commor.ObserVatlon Equation: given by equation (2).
temperature from the middle of engine life. Idgall
EGT is constant for long enough so that the trgnin

The DLM is defined by:

State Evolution

data will contain flights diverse enough to représa Local level:

set Qf environmental, fI.ight, and engine parameter W =W_, +d,_, +7, 3)
conditions encountered in real operation. Abnormal

data are excluded for training the model. Local growth rate:

3.3 Model relationship between EGT and nuisance d =d_ +v, 4)

variables

Assume that an observed EGT measurement at a timeT'[he error termgj, andV, are assumed to be Normally

is a function of other “nuisance” variable){t (e.q., distributed with mean 0 and covariarkce The wear at

environmental, flight, and engine parameters): time t equals the wear at the previous tiW., plus a

EGT, = f(X)+W+g @

local growth ratel, ;. The local growth rate is a
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random walk. The goal is to estimate the stateterations using a discount factor = .9 (Pole et al
sequenc¥V, . 1994). See Section 4.8.

4 EXPERIMENTS

. This section discusses an experiment on data tetlec
Th's. vyork used several packages from the open G’Ourcduring initial climb. The random forest (RF) model
statistical software R (R Development Core Team’relates Maximum EGT (achieved during climb) to
2009): randomForest (Liaw, A. and Wiener, M. : ; ;

(2002)) anddim packages (Giovanni Petris, 2010). engine, flight, and environmental parameters. The

. . residuals estimate wear (but also include noise as
Petris et al. (2009) describes the dim package. discussed above). The Dynamic Linear Model (DLM)

estimates wear, and further reduces variability by
relating predictions (residuals) over time.

3.5 Software

3.6 Implementation

The methodology in a previous effort (Bagwal., 2008

a, b) only requires the current data when predictind  The goal is to compare the performance of thesa dat
generating residuals using a fitted random foresdeh  driven techniques — RF alone vs. RF + DLM -- and

The random forest predicts each observationcompare each to the OEM method. Section 4.3 gives
independently of the past. specific evaluation criteria.

Here the dynamic linear model (DLM) relates 4.1 Data

predictions over time. At each iteration, inforioat This investigation used customer Quick Access
a?otuht thSLpMaStf's en(t:ﬁ ded an.d Sav.?d ats. the p_?_rhamet??ecorder (QAR) data, provided from about 30 aitcraf
0 € rom the previous ieration. €S€ from the time the engine was installed to the tiofie
parameters need to be stored for each aircraftiengi this investigation. There are several years of data
If DLM estimates from the previous iteration do not each aircraft. Although there are four enginesach
already ex!st, then the program gets default 9@”' aircraft, data does not always exist for all fongiaes.
values, which represent an aggregate model estdmatqn total, there is data for about 100 engines. A

from historical engine data. challenge is to develop a procedure that worksafbr
engines in a fleet, for aircraft that fly in a \etsi of

To estimate default starting values for the obg@wma geographic locations and conditions.

variance and state estimates, we fit a DLM mod¢héo
random forest residuals for each engine in theitrgi
data. The default starting value for the obseovati
variance is the median. For the state estimatesjse
the first 15 random forest residuals of each endmta
series to estimate a linear regression. The ieptrand
slope represent initial estimates for wear and gndor
that engine. The default starting value for thealo
level and growth rate are the medians.

For each engine, the data consist of about thirty
parameters collected during initial climb over many

flights. The types of variables include aircraft

environmental/operational data such as Mach number
and engine parametric data such as engine spool
speeds.

OEM EGT normalization is used as a baseline for
comparison. This is expressed as margin, a tblésh
temperature minus the normalized EGT, and therefore
V\gzlecreases over engine life.

In this way, one set of starting values is useddibr
engines. As shown below, this works well in preeti
However, further research could investigate someho
clustering engines, and using separate sets dfnstar
values. Another possibility is to use a smallcfetata
at the beginning of engine life to individually iesite a  Since the goal is to normalize to a fixed wear poire
DLM for each engine. This latter approach would collected QAR data from about 30 engines duringetim
mean that at the beginning of engine life, the pgog  periods when the OEM margin values are a common
returns just the prediction from the random forest,frequently occurring temperature. This selection
without yet relating them in time. process yielded a set of 3305 observations to tren
random forest model. We then compared OEM and
We set the evolution variances (i.e., the diagonaldata driven procedures on 73 engines (the test set)
elements of 2 ) to large values. This allows the data
to “speak for themselves”, as is suitable whentis@r 4.3 Evaluation
out. The evolution variance is estimated in sgheat

4.2 Selecting Training and Test Sets

The goal is to reproduce the range of the OEM tssul
but with less scatter. Range and scatter areatkfin
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Figure 3: Bollinger plots comparing the OEM, RF, amn RF+ DLM solutions for a randomly chosen engine.
The ranges are comparable. The RF solution reducescatter over the OEM solution, but the RF + DLM
dramatically reduces scatter even further.
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below. We measure these objectives udBafinger OEM - Random Forest
bands as follows:

Then calculate:

20

Choose a fixed window width
Calculate average, standard deviation (sd) for eac

'I_—:requency
0 5 10

1 |

window : \ :

Construct Bollinger bands as average + k * sd -10 5 0 5 10
where k is a constant. In our results, we choose k
= 2, so that the bands roughly correspond to .95
confidence bands under a Gaussian distribution
assumption.

OEM - RF/DLM

!—P—l—’—r%—!

|

|

i

[ T I T 1
-10 -5 0 5 10

Figure 4: Difference in Range from OEM

20

Frequency

range as the maximum moving average minus the
minimum moving average. This is one value.

scatter as the upper minus the lower Bollinger
bands. There is one value for each observation.

0 5 10

To more easily compare our results with the OEMapproach_ The ranges are comparable for all
margin results, we transform our model outputsténts  approaches. Most are within +/- 5 degrees. A gree
at the same maximum moving average as the OEMjotted vertical line is drawn at 0 difference.

margin.

4.4 Results OEM - Random Forest

y

The goal is to compare the performance of the data &
driven techniques — RF alone versus RF + DLM --to £ ¢
the OEM method. See Figure 3 for Bollinger plots
comparing the OEM, RF, and RF+DLM solutions for a . []

randomly chosen engine. ! ‘ ‘ ‘
0 5 10 15

Frequenc

Figures below summarize the results by showing
histograms of range and median scatter for thenesgi
in the test set. Figure 4 compares the differeince OEM - RF/DLM
range from OEM, and shows that most ranges are
within +/- five degrees of OEM. Figure 5 shows the
difference in median scatter from OEM. These figur
show that:

20

Frequency

0 5 10

* The RF predictions have comparable range, but
reduced median scatter. However, individual time
series plots and histograms (not shown here)
indicate that there can be extended periods with
both higher scatter and lower scatter than the OEM
solution. Therefore, this tempers the conclusion
of reduced median scatter.

Figure 5. Difference in median scatter from OEM
approach. The top plot shows that median scatter
for the OEM is greater than for the data driven
approach using RF-alone. However, relating RF

predictions over time using a DLM dramatically

» Relating RF predictions over time using a DLM

reduces median scatter over the OEM solution.

dramatically reduces median scatter over the OEM Note that the median scatter for the OEM approach

solution. Moreover, improved performance is

evident in individual plots (not shown here). green dotted vertical line is drawn at O difference

always exceeds that for RF + DLM by at least 8. A
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4.5 MONITOR THAT DETECTS OUTLIERS measure is that the greater weight of historical

AND SUDDEN SHIFTS performance may mask local changes. E.g., good
historical performance of the model may swamp a
small Bayes factor due to an outlier, which theesgyo
undetected.

The RF + DLM model above has shown improvement
over both the OEM solution and our previous sohutio
using just RF residuals. In order to deploy thisdel

in real life solutions, a working implementationositd
also reject outliers and adapt model parameteer aft
structural changes such as a sudden EGT shift.

In a practical monitoring application, the locakolges

are of greatest interest. duimulative Bayes factor is a
product of the most recerk Bayes factors, and is
nsitive to local model failure, and can indicsitav
anges that may not be evident in a single Bayes
factor.

The approach used here is based on the work by We%ﬁ
(1986) and West and Harrison (1986). A more
complex approach would use simulation-based
Bayesian inference. However, as a first stepeénsed W (K)=H,H,_ OMH, ., =HW_(k-1) ()
reasonable to apply this approach which is usefdl a

practical in many situations, with the advantagatth To focus on the most likely point of possible chang
discount factors (described below) allow closedrfor calculate the most discrepant group of recent,
calculations. consecutive observations as:

4.6 Bayesian Model Monitoring .

_ _ _ . Vi = miny, . W (k) (7)
Sequential Bayesian modeling analyzes observations
real time, updating inferences and predictive stat@s |t turns out that when the cumulative evidenceraett

using newly obtained information and observatiolts. favors the standard model, so tay =1, then
assesses model fit using predictive distributioi$ie ' a1

idea behind monitoring is to compare the predicfite V. = H
of the standard model with an alternative modet tha t t
specifies the nature of “unusual”. The centralgbem
is to construct suitable alternatives to the “stadd
model used for analysis. In this work, the altermat
model is similar in form to the standard, but akofer H
changes in the values of the parameters.

(8)

and decisions about possible inadequacies are lased
the current observatioty, alone. If the Bayes factor

¢ is small enough, thery, may be an outlier or the
beginning of a structural change.

Mor!'to””g IS b_ased on the Bayes Fac_:to_r, the _rgflo On the other hand, if the evidence before time t is
likelihoods, which compares the predictive abildfy )

the standard model versus the alternative modéf. ~ adainst the standard model, so Mat <1, then the
detects dlsprgpan0|es between the datq and _Sta”daéGmulative Bayes factor is multiplied by, :

model predictions. Examples of model failures tidd

outliers and structural changes in the time serMsre V. =HV (9)
formally, the Bayes factor at time t is defined as: t il

In this way, the monitor detects either graduahlmmupt
Ht = p(yt |Dt—l)/ pA(yt |Dt—l) (5) Changesy g p

where D, , is the data until time—=1, and ¥, is the 4.7 Automatically Adapting to Model Change

current observation. Small values bf, indicate poor When changes in parameter values are the primary

performance of the standard model relative to thecause of standard model failure, an additional gotd

alternative. It is possible to put a threshold onautomatically adapt to the onset of change.

(observation — forecast inconsistency): a Bayeofae  Incorporating increased uncertainties into the rhode

10 gives evidence for the standard model; >100sgiveleads naturally to more rapid adaption by allowing

strong evidence. A Bayes factor < 1/10 gives evige future data to more heavily influence the updatirig

for the alternative model; while < 1/100 gives B0 posterior distributions. In this way, models safrect

evidence. after structural changes. However, the automatic
procedure must also distinguish an outlier from a

The overall Bayes factor at time t is the product of the structural change.

Bayes factors until that time, and gives a meastitbe

global fit. However, the problem with such a glbba
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The following scheme (West and Harrison, 1986; West4.9 Preliminary Evaluation
1986) isolates and rejects outliers, and in cades
structural change, automatically increases uncgytai
about the parameters to rapidly adapt to new data.

A preliminary evaluation first looked at the momito
alerts and the detected outliers for the same seta
shown in Figure 3. Figure 6 shows how the algarith
) ) ) alerts to changes for a threshold of .135 on thgeBa
A IfH 2T, then Y, is consistent with standard Factor. This corresponds to a weight of evidence
model. But assess possibility of change before thiagainst the standard model of roughly 2. Thesesplot
time by proceeding to (B) give some insight into how the monitor works, and
shows that it generally alerts when the slope chang

B. If the cumulative Bayes factdV, > T, proceed to  direction or there is a shift.

(D) (update as usual).

Else change is indicatedneyt e ran a simple experiment whose goal is to
Proceed to (C).

begin to understand what magnitude shift the monito
_ o _ _ _ can detect, and how long the detection takes. We
C. Rejecty, as providing no useful information at time introduced a shift in the last 300 points by incestng

t about the standard model parameters. Do nottepdathe data by 10, 15 and 20 degrees.

model using y; (equivalently, treaty, as missing). The threshold on the Bayes factors affects the sfze
Moreover, allow for change by increasing the the shift that the algorithm can detect. For @shpld
uncertainty about the parameter vector, leadingdce = 2, the monitor detects a shift of 20 degreesnotia
rapid adaptation to new data 15 degree shift. It takes 15 observations toafete

20 degree shift. But for a threshold of .3, thenitor
D. Standard update: standard model is satisfactorygetects a shift of 15 degrees after 25 observatidinss
Update as usual to the posterior and thence tpribe  ould appear to be good performance because as

fortime t + 1. Figure 7 of the raw Max EGT shows, the 15 degree
. shift is not very noticeable. Deciding on the ajppiate
4.8 Discount Factors threshold depends on what magnitude shifts the user

wants to detect, and also the sensitivity to other
changes. Smaller threshold values decrease séysiti
to slower, less marked changes.

Specifying the state evolution covariance matrixais
crucial step. The values control the stochasti@atian

in the evolution of the model, and determine tHe of
past observations. A key problem is that one
covariance is typically not suitable for all times.
Moreover, it is difficult to specify the covariance
elements.

This has been a preliminary investigation of how th
monitor works. More experimentation is needed to
more fully explore the impact of the discount fasto
for the state evolution matrix, the starting valuasd

In the system equation, the covariance leads to que t_hresholds on the_ Bayes factors. Future
increase in uncertainty, or equivalently a loss Ofexpenments.should consider more d?‘t?‘ sets, gradual
information, about the state vector between suagess '@MPINg of increases and other realistic changes, a
times. This idea is natural, and leads to spewfghe eIl as real shift occurrences in the data.

posterior covariance as a fractidh/ O of the prior
covariance, and therefore the state evolution ¢anee
as (L-0)/J of the prior covariance. The degree of This paper deals with a general problem of relating

adaptation to new data increases as the discoatarfa sequence of predictions over time using state space
becomes smaller modeling. We focus specifically on predicting erai

wear for aircraft.

5 CONCLUSION

The RF + DLM model uses a discount factor of .8. |
the monitor, there are two other uses of the distou
factor. First, the alternative model uses a distou
factor of .05. Second, the monitor enables theehtd
adapt after a structural change by increasing th
discount factor to .1.

In the prediction task, the observed exhaust gas
temperature (EGT) depends on both wear and other
factors. After suitable preprocessing the datafitve
élexible empirical model (random forest) to rel&&T

to other factors at a baseline wear point. When w
predict new data using the model, the residuals
represent wear plus error. Using a state spacelingd
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Figure 6: The top plot shows Max EGT. In the middé plot, which shows the random forest residuals, th

blue line indicates the estimates of wear using RAHPLM and red line indicates the monitor. Differenes
between the wear estimates are subtle in this pldbut are more apparent in the bottom plot. These

differences are due to the monitor ignoring potentl outliers and allowing the model to self correcafter an

alert. The detected outliers are indicated by gren *s; and the alerts are indicated by vertical lies. The
alerts are based on a threshold of .135 on the Bag/Eactor thresholds. This corresponds to a weigluf
evidence against the standard model of roughly 2.
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ax EGT; last 300 points shifted by 15 degrees
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Figure 7: The top plot introduces a shift of 15 degees at the end of the Max EGT series. The shiftge shown
as red *'s. The shift is barely discernible in theMlax EGT plot. The middle plot shows the monitor aitput,
and an immediate sharp increase in estimated weafThe dotted purple line indicates the beginning pait
where the data is shifted. The monitor alerts 25 the points after the shift. It uses a threshold of3 on the
Bayes Factor. Note that the monitor alerts more ¢&n than when the threshold = .135, including a chrge in
slope at the end that it missed in the previous plo The bottom plot shows that the monitor differsthe most
from the RF+DLM just after the shift.
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framework, we estimate the unobserved state (wearand running experiments comparing the original
using a dynamic linear model fit using a Kalmatefil procedure to OEM.

Experiments show that predicting engine wear using REFERENCES

dynamic linear model to relate regressions oveetim Basu, S. and Farner, S. and Schimert, J. and Widgela
dramatically reduces the variability of predictidnem A. (2008a)."Statistical Methods for Modeling and
both the OEM approach and our previous approach, predicting Maximum Engine Exhaust Gas
which independently generated predictions at eiacé t Temperature (EGT): First Analysis Using Climb
using random forest regression (Basal., 2008 a, b). Data from a Single Aircraft". Networked Systems

) . . Technology Technical Report (NST-08-001)
This RF + DLM model forms the basis of a Bayesian Basu, S. and Farner, S. and Schimert, J. and Wfidel

approach to monitor for sudden changes and reject A. (2008b). "Regression Based Method for
outliers, and adapt the model after these evehltsre P.redicting .Engine Wear from Exhaust Gas

investigation on the monitor is needed, but preigmny . .
work shows that the monitor can detect shifts in Temperature”, Prognostics and Health Management
Conference, Denver, CO.

temperature that are barely discernible in theimaity Breiman, L. and Friedman. J. and Olshen, R. andeSto

observed EGT. . .
C. (1984), Classification and Regression Trees,
Wadsworth, Monterey, CA.
Breiman, L. (1996), "Bagging predictors", Machine

« Investigate the Bayesian monitor in greater depth, ~Learning, volume 26,I!3ages 123—140. § _
including detection and false alarm rates, and thedreiman, L. (2001a), "Random Forests”, Machine

effect of starting values, discount factors, and Learning, volume 45, number 1, pages 5-32.
thresholds on the Bayes factors. Breiman, L. (2001b), "Statistical modeling: The two

e Incorporate a seasonal component. cultures (with discussion)”, Statistical Science,

« Go beyond linear Gaussian models fit with a volume 16, number 3, pages 199—231.

Kalman filter, to more general nonlinear models fit Buhimann, P. and Hothorn, T. (2007). Boosting

using particle filters (Doucet al., 2001). algorithms: regularization, prediction and model
« Exploit the fact that on each aircraft, there arerf fitting. Statistical Science, 22(4):477-505.

engines, which operate in the same operational an&oucet, A. (Editor) and de Freitas, N. (Editor) and

environmental conditions. This fact might be used, Gordon, N. (Editor), (2001). "Sequential Monte

for example, to distinguish between shifts in rates  Carlo Methods in Practice, Springer.

of wear -- due to common changing conditions --Hall, D.L. and McMullen, S.AH. (2004).

from sudden EGT shifts on any one of the engines “Mathematical Techniques in Multisensor Data

due to a fault. Accomplishing this may involve  Fusion”, Artech House Information Warfare

using a hierarchical model: engines within aircraft Library.

Friedman, J.H (2001), "Greedy function approxinatio
In this particular application, because the goalois A gradient boosting machine”, Annals of Statistics,
normalize EGT data to one wear point, the problem i \qjume 29, pages 1189—1202.
simplified because we only fit the regression A and Wiener, M. (2002). Classification and
relationship once. However, more general appbcati Regression by randomForest. R News 2(3), 18--22.
require updating the regression or classificatiatets Liggins, M. E., Hall, D. L., Llinas, J (Editorsﬁé009)
over time. Challenges include developing real time "Har’1db.ooI.<’Of Mijltiéeﬁ,sor Dat,a Ilzusion' Theory and
algorithms. In order to continue using tree endemb Practice " 2nd Edition. CRC Press NeW York
regression, a possible solution is to use ensenddes ’ e ’ )
incremental learners (Parikh D. and Polikar R., 72200 Murua, A (2002)’_ Upper bqund_s for “error .fa‘es
associated to linear combination of classifiers”,

ACKNOWLEDGMENT IEEE Transactions on Pattern Analysis and Machine

This work has been funded primarily under an iraern _ INtelligence.

research and development (IR&D) project funded byParikh D. and Polikar R. (2007), "An Ensemble based
the NET domain, and then applied to data under incremental learning approach to data fusion”, IEEE
another IR&D project funded by the Integrated Vehic ~ Transactions on Systems, Man and Cybernetics —
Health Management (IVHM) group within the Support ~ Part B: Cybernetics, vol. 37, No. 2.

and Services domain. Thanks to Boeing colleague$siovanni Petris (2010). dim: Bayesian and Likelidoo
Dragos Margineantu and Tomas Singliar for helpful ~ Analysis of Dynamic Linear Models. R package
discussions, and Nancy Gove for selecting traisiets version 1.1-1.

Future work on this application includes:

12



Annual Conference of the Prognostics and Healthddament Society, 2010

Petris, G. and Petrone, S. and Campagnoli, P. {20099ames Schimertreceived his Ph.D. in statistics from
"Dynamic Linear Models with R", Springer. University of Washington, Seattle, Washington in

Pole, A. and West, M. and Harrison, J. (1994). Agpl 1992. He is an Advanced Computing Technologist in
Bayesian Forecasting and Time Series Analysisthe Network Systems Technology group, Boeing
Chapman & Hall. Research and Technology, The Boeing Company,

R Development Core Team (2009). R: A language andellevue, Washington. His research interests telu

environment for statistical computing. R Foundation [OPICS in data mining and machine learning inclgdin
for Statistical Computing, Vienna, Austria. 1ISBN 3 €€ ensembles and anomaly detection, in applitatio

900051-07-0, URL http://www.R-project.org. including vehicle Health Management. Previously, h

Schapire, R.E. (2003). The boosting approach toWorked in the Research group at Insightful Corp.,

machine learning: An overview. In D. D. Denison where he served as consultant and as principal
M. H. Hansen, C. Holmes, B. Mallick, B. Yu, investigator on NIH and NSF SBIR funded research

dit Nonli Estimai d Classificati efforts to develop commercial software for advanced
editors, Nonlinear Estimation an assification. g rictical computing.
Springer.

Schwabacher, M. and Kai Goebel, K. A Survey of ot \wineland received his Bachelor of Science Degree
Artificial Intelligence for Prognostics. NASA Ames i, Mechanical engineering from The University of

Research Center. MS 269-3. Toledo, Toledo Ohio in 1985. He is a Principle
http://ic.arc.nasa.gov/people/schwabac/FS02SchwalEngineer in the Propulsion Systems Engineering grou
acherM.pdf. in Long Beach, California. His primary responstiés

Sinhaa, A. and Chenb, H. and Danua, D. G. andire in engine health and diagnosis.
Kirubarajana, T. and Farooqc, M. (2008),
"Estimation and Decision Fusion: A Survey,"
Neurocomputing Volume 71, Issues 13-15, pages
2650-2656,

West, M. (1986). Bayesian Model Monitoring”,
Journal of the Royal Statistical Society, Series B,
volume = 48, pages= 70—78.

West, M. and Harrison, J. (1986). “Monitoring and
Adaptation in Bayesian Forecasting Models",
Journal of the American Statistical Association,
Vol. 81, No. 395, pages 741-750.

West, M. and Harrison, J. (1999). “Bayesian
Forecasting and Dynamic Models", Springer.

13



