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ABSTRACT 

This paper introduces a method to determine the 

tool wear by measured cutting force in Ball-nose 

End Milling. The features will be extracted from 

the measured cutting force with different flank 

wear. As the adaptive window width in wavelet 

transform is an advantage for analyzing and 

monitoring the rapid transient of small amplitude 

of cutting force signals when cutting engagement 

changes along the sculptured surface tool path, 

wavelet transform (WT) is more effective than FFT 

monitoring index for ball-nose end milling. In this 

research, cutting force signals will be analyzed in 

time-frequency domain to explore sensitive 

monitoring features in ball-nose end milling slope 

surfaces. As a supervised method, support vector 

machines (SVM) was developed for the 

classification problem to take advantage of prior 

knowledge of tool wear and construct a hyper-

plane as the decision surface. In this paper, SVM 

will be formulated into regression problem to 

estimate tool wear rather than decision maker.* 

1. INTRODUCTION 

In mould and die production, the ball-nose end milling 

process is a critical machining operation due to the 

complex geometry of workpiece, high requirements on 

surface quality and high accuracy. On-line tool 

condition monitoring systems are required from 

industry to reduce production cost and improve product 

quality. According to ISO 8688-2, flank wear is the 

change in shape at tool flank, which is caused by the 

progressive loss of tool material during cutting. As 

there is no direct way to measure tool wear online, 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

Artificial Intelligence (AI) techniques have to be 

adopted to estimate tool wear from cutting force signals 

measured during machining process. The method 

comprises data acquisition, signal processing, feature 

extraction, feature selection and tool wear estimation 

by regression method.  

 In order to estimate tool wear in milling 

applications, requirements for tool wear model are: 

 

 1) The model shows non-linear relations between 

the input features and tool wear. 

 2) Input of the model includes the cutting 

parameters such as spindle speed and feed rate. 

 

 In recent researches, neural network applications are 

proposed for decision making system to map the 

features (input) to tool wear level (output) by training 

via examples. Neural network approaches have been 

widely used in tool wear estimation because of their 

learning capability. Li et al. (2009) used a fuzzy neural 

network (FNN) approach to establish tool wear 

reference models in ball nose end milling process. 

Ghosh et al. (2007) developed a neural network-based 

sensor fusion model for tool wear estimation in face 

milling. Different features were extracted from RMS of 

cutting forces, spindle current, and spindle voltage. 

Zhou et al. (Zhou et al. 2009) proposed a recursive least 

squares (RLS) method to build a tool wear regressive 

model. They developed a dominant feature selection 

method to reduce feature space. In the work of 

Bhattacharyya et al. (2007), multiple linear regression 

(MLR) models were developed to estimate the tool 

wear in face milling process. They used different signal 

processing techniques to extract features from cutting 

force signals. Isotonic regression and exponential 

smoothing techniques are used to process the extracted 

features. 

 As a supervised method, support vector machines 

(SVM) was developed for the classification problem to 

take advantage of prior knowledge of tool wear and 

construct a hyper-plane as the decision surface (Sun et 
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al., 2006). In recent publication, Cho et al. (2005) 

applied support vector machines for regression (SVR) 

to model the power and maximum cutting force in an 

end milling application. In their investigation, the SVR 

approach was better than multiple variable regression 

(MVR) approach. Dong et al. (2006) implemented two 

neural network methods to estimate tool wear in face 

milling applications. In their work a nonlinear 

regressive model is proposed to describe the 

dependence of flank wear (VB) on cutting force feature 

vector. They compared the performance of Bayesian 

multilayer perceptrons (BMLP) and Bayesian support 

vector machines for regression (BSVR), and found that 

BSVR method is more accurate than BMLP in 

estimating flank wear. So far, SVR for on-line tool 

wear estimation solutions in ball-nose end milling are 

still lacking. Therefore, in this paper, SVM will be 

explored to formulate into regression problem to 

estimate tool wear. 

2. FEATURE EXTRACTION  

Due to the complexity of the ball-nose end milling 

process, the cutting force signals may not indicate the 

cutting conditions directly. We need to process the 

cutting force signals to identify the tool condition. As 

tool-workpiece contacts in milling process have 

periodic nature, cutting forces can be analyzed and 

processed in frequency domain and time-frequency 

domain to find some reliable signal patterns indicating 

the tool states (Prickett and Johns, 1999). Since Fast 

Fourier Transform (FFT) needs a certain time window 

on the signal to fulfill the resolution of the frequencies 

in the power spectrum, it is only suitable for near 

constant engagement conditions. 

 To determine the tool wear by measured cutting 

forces, the feature will be extracted from the measured 

cutting forces with different flank wear. As the 

engagement condition of sculptured surface always 

changes, time-frequency monitoring index, such as 

wavelet transform (WT), is more effective than FFT 

monitoring index. Wavelet transformation requires 

smaller time window than FFT, but it can still analyze 

frequency pattern of the periodic cutting force signal. 

The adaptive window width in wavelet transform is an 

advantage for analyzing and monitoring the rapid 

transient of small amplitude of cutting force signal 

when cutting engagement changes along the sculptured 

surface tool path. In this research, cutting force signals 

will be analyzed in time-frequency domain to explore 

sensitive monitoring features in ball-nose end milling 

sculptured surfaces. 

 According to Mallat pyramidal algorithm (Hong et 

al., 1996), original signal f(x) can be decomposed to 

different frequency bands by discrete approximation 

component and discrete detail components. Wavelet 

analysis can be considered as a series of band pass 

filters. It extracts information from the original signal 

f(x) by decomposing it into a series of approximations 

A and details D distributed over different frequency 

bands. Given the sampling frequency fs, the frequency 

of the signal f(x) is 0.5 fs. The bandwidths of the 

approximation A and detail D at the level l 

are
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 According to the observation by Choi et al. (2004), 

the approximations in wavelet coefficients will reflect 

tool wear in end milling process. After the signal is 

decomposed through wavelet transform, the signal 

energy is represented by the approximation 

coefficients. Therefore, the measured cutting forces can 

be processed through wavelet transform to obtain 

sensitive feature vectors using approximation 

coefficients.  

  

Table 1: Features for tool wear estimation 

Index Definition 

X1 Maximum Approximation Coefficients at X direction  

X2 Maximum Approximation Coefficients at Y direction 

X3 Maximum Approximation Coefficients at Z direction  

X4 Average Approximation Coefficients at X direction  

X5 Average Approximation Coefficients at Y direction  

X6 Average Approximation Coefficients at Z direction  

X7 Average Energy at X direction  

X8 Average Energy at Y direction  

X9 Average Energy at Z direction  

X10 Feedrate  

X11 Spindle speed  

  

 Since Daubechies wavelets perform well in 

separating the frequency bands during signal 

decomposition, they are selected for feature extraction 

in this research. The wavelet transformation on each 

data block was conducted using a Daubechies wavelet. 

The wavelet transformation was repeated two times to 

obtain the coefficients. The vector of wavelet 

approximations of the measured force signals are used 

for feature extraction. Three kinds of measurements are 

used in this work: 

 

 1) Maximum Approximation Coefficients. 
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 2) Average Approximation Coefficients. 

 3) Average Energy of Approximation Coefficients. 

 

 For tool wear estimation, the cutting conditions such 

as the feed rate and spindle speed are also used as 

features related to tool wear. Table 1 shows the features 

that are used as inputs of SVR to monitor the tool wear. 

Among these features, feedrate and spindle speed are 

cutting conditions. The others are energy related 

features. These features have been evaluated by 

correlation coefficients. As cutting forces are measured 

in X, Y and Z direction, a total of eleven features are 

used to train and test the SVR model. 

3. TOOL WEAR ESTIMATION USING 

SUPPORT VECTOR REGRESSION (SVR)  

Support vector machines for regression (SVR) is based 

on statistical learning theory (Haykin 1999). As a 

supervised method, SVR takes advantage of prior 

knowledge and performs well for generalization. It also 

guarantees the local and global optimal solutions are 

exactly the same (Widodo and Yang 2007).  

 SVR is a good alternative to traditional multiple 

variable regression (MVR) approach. According to Cho 

et al. (2005), the SVR performs higher accuracy than 

MVR with a tight threshold value to tool breakage 

determination. 

 Compared with artificial neural networks (ANN), 

SVR has better generalization and high accuracy for a 

smaller number of samples. It also overcomes the over-

parameterization and non-convergence problems 

(Bhattacharyya and Sanadhya 2006). 

3.1 Theory of Support Vector Machines for 

Regression (SVR)  

In this work a nonlinear regressive model is proposed 

to describe the dependence of flank wear (VB) on 

cutting force feature vector (x):  

VB = f(x) + v                               (1) 

where v is noise term which is independent of feature 

vector x. 

 For a given set of training data N

iii d
1

),(


x , where 

m

i Rx is a sample value of the input feature vector x 

and di is the corresponding tool wear value in model 

output VB. Support vector machines for regression 

(SVR) is to provide an estimate of the dependence of 

VB on x: 

(2) 

   

where w is the weight vector, )(x denotes a set of 

non-linear transformation from the input space into the 

feature space of dimension m1. 

The estimate is constructed to minimize the cost 

function: 
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ii 1
 and N

ii 1
 are two sets of slack variables. 

Using the method of Lagrange multipliers, we may now 

state the dual problem for nonlinear regression using a 

support vector machine as follows: 

 Given the training sample N
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where C is a user-specified constant. 

3.2 SVR Model Building  

As a supervised method, support vector machines 

(SVM) will be formulated into regression problem to 

estimate tool wear rather than decision maker. In the 

training phase, training datasets are used to build SVR 

model for the estimation of the tool wear.  Firstly, the 

training datasets are used to tune the model parameters 

by k-fold cross validation method. Secondly, the 

training datasets are used to obtain the weights of the 

estimation function by optimization algorithm. After 
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the SVR model has been built, the regression accuracy 

can be tested by the test datasets. 

 In the objective function, the kernel function,  

),( jiK xx , is to map the feature data from the 

original space into the high dimensional space. In this 

work, Gaussian kernel is chosen as the kernel function: 
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 According to (4) and (5), for different problem, the 

penalty parameter C, the error tolerance threshold ε and 

the value of σ from the kernel function have to be tuned 

to achieve good performance with SVR models. The 

optimum parameters for a given problem are found by 

grid search method using cross-validation. The 

prediction accuracies for cross-validation are compared 

in terms of the averaged absolute estimation error: 
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 The generalization error is estimated by using k-fold 

cross validation:  

 1) Divide the training data set into k subsets (the 

folds) randomly. The subsets are mutually exclusive 

approximately equal size. 

 2) Train the SVR using k-1 subsets. 

 3) Test the SVR using the remaining 1 subset and 

obtain the error. 

 4) Repeat (step 2 and 3) k times to ensure that each 

subset has been used to test SVR once. 

 5) Estimate the generalization error by averaging all 

the test errors over the k tests. 

 In this way, each data of the whole data set has been 

predicted once for calculating the generalization error. 

In this work, 5-fold cross-validation on the training set 

is used to find the optimum parameters.   

4. RESULTS AND DISCUSSION 

4.1 Experimental Set-up  

Milling a slope surface is a representative experiment 

for analyzing the sensor signals in ball-nose end milling 

applications. The presented experiments (shown in 

Figure 1) will focus on milling a slope surface with a 

fixed angle at different spindle speed and feed rate. 

 

 

 

Figure 1: Ball-nose end milling a slope surface  

 

 The experiments were conducted on a 3-axis milling 

machine. The workpiece material was hardened Stavax 

mould steel and the hardness is 45 HRc. 10mm insert 

based carbide ball nose end mills with 30° helix angle 

were used in the experiments. The cutting force was 

measured by a Kistler quartz 3-component platform 

dynamometer. The dynamometer was mounted 

between the workpiece and machining table. The 

cutting forces in the X, Y and Z directions were 

sampled by PC208AX Sony data recorder. The tool 

wear was measured by Olympus microscope. 

 The milling process in the experiments is to create 

an oblique plane surface on a workpiece by ball-nose 

end milling operation. The geometric form is created by 

means of the tool path, not the cutter shape.  

 The target of this experiment is to mill a 45° sloping 

surface. The tool moves forward to create one 

horizontal cut on the sloping surface. The horizontal 

cuts were repeated at fixed pitch and depth of cut. The 

experiments were performed at different feed rate and 

spindle speed. The tool wear was measured at a fixed 

interval. Then the cutting was repeated again until the 

severe tool wear happened. The cutting forces in the X, 

Y and Z directions were sampled with 3,000Hz 

sampling rate. 

4.2 Energy Distribution 

The inputs of SVR model are feature vectors extracted 

from cutting force signals. Feature extractions are 

conducted based on the wavelet signal processing 

techniques. After the cutting force signals are 

decomposed by Discrete Wavelet Transform, the 

energy distribution can be described by Parseval’s 

theorem (Gaing, 2004): 

 (7) 
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Figure 2: Energy distributions of cutting force in X, Y 

and Z direction  

 Figure 2 shows the energy distributions of cutting 

force in X, Y and Z direction. As the sampling rate is 

3000Hz in this experiment, the frequency band in the 

figures are A6: [1 Hz, 23 Hz], D6: [24 Hz, 46 Hz], D5: 

[47 Hz, 93 Hz], D4: [94 Hz, 187 Hz], D3: [188 Hz, 375 

Hz], D2: [376 Hz, 750 Hz], D1: [751 Hz, 1500 Hz]. It 

can be seen that the energy level of the low frequency 

band (1-375Hz) is much higher than middle and high 

frequency band. The reason is that the energy of the 

cutting force signal is concentrated at tooth passing 

frequency and its low frequency harmonics. 

 Therefore, the wavelet transformation was repeated 

two times to obtain the coefficients. Through wavelet 

transformation, the experimental cutting force signal 

can be decomposed into the constituent parts at 

frequency band [1 Hz, 375 Hz], [376 Hz, 750 Hz] and 

[751 Hz, 1500 Hz], respectively. The vector of wavelet 

approximations of the simulated force signal and 

measured force signal are used for feature extraction. 

4.3 Tool Wear Estimation  

In the experiments, a total of 60 measurement samples 

(22500 data in every sample) corresponding to various 

tool wear value were collected, when tool wear 

experiments were conducted to train and test the SVR 

model.  

Table 2: Cutting conditions 

Spindle speed  

(rpm) 

Feed rate  

(mm/min) 

800 40 

800 80 

800 100 

800 120 

1000 50 

1000 75 

1000 100 

1000 125 

1000 150 

 

 In addition to cutting force features, cutting 

conditions are also used as feature inputs for the SVR 

model. In this way, SVR model is suitable for various 

cutting conditions. Table 2 shows the cutting conditions 

being used in training data sets. To perform the 

generalization tests, the training data sets incorporate 

different cutting conditions used in this experiment. 

The remaining data sets are used for testing.  

 

 

 
 

 

Figure 3: Tool wear estimation results (spindle speed 

800 RPM, feed rate 80 mm/min) 

  

 Figure 3 shows a result of a tool life test which was 

conducted using a set of typical cutting condition. As 

this set of cutting condition is not used in training, the 

result shows the generalization performs well in this 

method. 

 To improve the performance of the SVR model, 

wavelet selection is an important factor. The family of 

Daubechies wavelets is chosen as the basis functions in 

most of the fault diagnostics applications. Daubechies 



Annual Conference of the Prognostics and Health Management Society, 2010 

 6  

wavelets are classified according to the number of 

vanishing moments. To investigate the influence of 

number of vanishing moments, typical wavelets, db4, 

db8 and db20, are used to process cutting force signals 

for feature extraction. (In some literatures, db4, db8 and 

db20 are named as db2, db4 and db10 respectively.) 

The same testing set was used for comparison on the 

performance of tool wear estimation by different 

wavelets. Table 3 shows some typical SVR results for 

different wavelets. In these results, the performance is 

indicated by averaged absolute estimation errors 

(AAEE).  

 

 

Table 3: Comparison of SVR results using different 

wavelet and kernel function 

Number of 

vanishing 

moments 

Kernel Function AAEE 

db4 Gaussian kernel 6.6 μm 

db8 Gaussian kernel 10.0 μm 

db20 Gaussian kernel 13.6 μm 

db4  Polynomial kernel 6.9 μm 

db4 Sigmoid kernel 14.8 μm 

db4 Spline kernel 34.1 μm 

  

 Another factor that affects the SVR performance is 

the kernel function. The kernel function is used for 

nonlinear mapping the input features into a higher 

dimensional feature space, and thus linear regression in 

the feature space is feasible. The optimal kernel 

(including the type of kernel and kernel parameters) is 

needed to get the high generalization performance to 

estimate tool wear. The polynomial kernel, Gaussian 

kernel, Sigmoid kernel and spline kernel are explored 

in this study to estimate the tool wear for the same data 

set and same feature extraction methods. 

 The polynomial kernel function is 

 

(8) 

 

   

 The Gaussian kernel function is 

 

(9) 

 

                                                                            

 The Sigmoid kernel function is 

 

(10) 

 

  

 The spline kernel is 

 

(11) 

 

                              

 Table 3 shows that the performances are quite 

different when four kinds of kernel are used for tool 

wear estimation applications. From the results we can 

observe that kernel selection will affect the tool wear 

estimation performance. 

5. CONCLUSION 

A tool wear estimation method is proposed to monitor 

ball-nose end milling process. Cutting force signals are 

processed using wavelet techniques. Features are 

extracted using approximation coefficients and cutting 

conditions. Support vector machines for regression 

(SVR) are trained by the feature vectors to build a tool 

wear estimation model to on-line predict tool wear. The 

experiment results showed that the model based 

approach is feasible and effective. 

 There are some further works to improve this 

method: 

 1) To improve the quality of the extracted features, 

we need extract comprehensive, relevant and non-

redundant information.   

 2) To build an efficient regression model for tool 

wear estimation, kernel selection methodologies will be 

explored to find optimal kernel including the type of 

kernel and kernel parameters.  

 3) To design a practical sculptured milling 

experiments to evaluate the model-based tool wear 

estimation methodologies. 
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