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ABSTRACT 

 As a consequence of the recent deregulation 

in the electrical power production industry, new 

private entrepreneurs with no prior experience in 

the power plant operation have entered into the 

power generation business. They hedge the 

business risks by outsourcing the operation and 

maintenance activities to third party service 

providers with whom they share risks/rewards of 

plant performance. The main maintenance 

providers are the original equipment 

manufacturers, who are responsible for the 

majority of the cost associated with unplanned 

outages. With the cost-benefit of preventing such 

unplanned outage as a  gas turbine compressor 

failure hovering around the twenty million 

dollars mark, techniques for detecting failure 

precursors to avoid or limit the number of 

systems catastrophic failure are necessary.  In 

this paper, a methodical process is proposed to 

detect precursory events that lead to catastrophic 

systems failure. The wavelet packet transform is 

used to perform multi-resolution analysis of gas 

turbines health, condition and vibration sensors 

data to extract their signal features. Then the 

probabilistic principal component analysis is 

utilized to fuse them into a few uncorrelated 

variables. Next a one-dimensional signal 

representing the multi-variables data is 

computed. After that the statistical process 

control techniques is applied to set the anomaly 

threshold. Finally, a Bayesian hypothesis testing 

method is applied for abnormality detection to 

the monitored signal. As a proof of concept, the 

proposed process is successfully applied to a gas 

turbine compressor failure precursor detection.
*
 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

1 INTRODUCTION 

As a consequence of the recent deregulation in the 

electrical power production industry, there has been a 

shift in the traditional ownership of power plants and 

the way they are operated. Many new private 

entrepreneurs with no prior experience in power plant 

operation have invested into the power plant business. 

Thus, to hedge their business risks, those private 

entrepreneurs enter into long-term service agreement 

(LTSA) with third parties for their operation and 

maintenance (O&M) activities. Thereby, the original 

equipment manufacturers (OEMs) become the natural 

choices as third party O&M providers because they 

know and understand their designed products best and 

will be willing to guarantee their operations. Each of 

these main gas turbine OEMs (together they represent 

about 94% of the global market (Thaler 2006)) has its 

own set of definitions and foreseeable benefits to the 

plant owners of their LTSA offerings. Thus, the major 

OEMs have invested huge amounts of money to 

develop preventive maintenance strategies to minimize 

the occurrence of the normally costly unplanned 

outages resulting from failures of equipment covered 

under LTSA contracts. 

The high potential for cost benefits to gas turbine 

OEMs when failures can be prevented raises the 

importance of techniques for detecting faults in gas 

turbines.  In this paper, a systematic process is proposed 

that can successfully detect failure precursory events. 

The remaining of the paper is organized as follow: 

Section 2 sets the context and background regarding 

power plant O&M and the background for the problem 

addressed. Section 3 presents the steps of the proposed 

approach to detect catastrophic failure precursors. Then 

an illustrative example of application to a gas turbine 

compressor failure problem is presented in Section 4, 

followed by a brief conclusion in Section 5. 

                                                                                           
which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 
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2 POWER PLANT O&M BACKGROUND 

Typically, the LTSA contracts work like insurance 

policies where the manufacturer guarantees a given 

level of power output and/or efficiency over several 

years. Also they may provide repair, replacement, and 

upgrade parts to the degrading power plant. Overall, it 

is supposed to be a “win-win” partnership for both 

parties, wherein they share the operational risks as well 

as the rewards of extra performance generated by the 

power plant. Another advantage of entering into LTSA, 

it is well accepted in the power generation field that 

LTSA contracts raise the plant re-sale value while, for 

the OEM, the equipment under contract provides 

unprecedented access to “a live laboratory” that should 

allow the OEM to learn from eventual design 

shortcomings of previous gas turbine designs in order to 

improve upon future designs, ultimately giving them a 

competitive advantage.  

2.1 Power plant operation and maintenance  

The O&M expenditures of a typical power plant are an 

important part of the total life cycle cost consisting of 

15% to 20%, while equipment maintenance costs 

account for approximately 10% to 15% (Stoll 2001).  

To be clear, there is always a cost associated with an 

outage whether it is planned or unplanned. However, 

costs involved with planned outages are typically 

predetermined and planned for within the O&M budget 

whereas those related to the unplanned ones are not, 

therefore represent losses. Thus, to make the LTSA 

contracts profitable, the providers need to reduce the 

number of unplanned outages because the consequence 

of such unplanned outages can be expensive. Typically 

under a LTSA contract, the provider has to pay the 

plant owners a liquidated damage for each forced 

outage.  In general, the liquidated damage cost for a 

forced outage includes: the loss of production cost, the 

repair cost, the cost of buying the equivalent power to 

meet the quantity that the forced outage plant was 

dispatched for at usually higher prices, and eventual 

regulatory penalties. 

2.2  Problem Background 

With the steep cost of potential liquidated damage 

associated with not meeting the reliability and 

performance requirement, LTSA providers need to 

develop strategies so that the revenues from the 

contracts exceed the cost of the involved risks.  In fact, 

according to a report of the Electric Power Research 

Institute (EPRI), the cost benefit from preventing a 

General Electric gas turbine 7FA and 9FA technology 

compressor failure is estimated to be ten to twenty 

million dollars (EPRI 2008).  

Thus, OEMs have been investing huge amounts of 

money to develop strategies to avoid unplanned plant 

outages.  For example, OEMs like GE Energy created a 

Power Answer Center in Atlanta, GA, where all power 

plants under its LTSA contract are continuously 

monitored using installed sensors on gas turbine. The 

illustrative Figure 1 shows the GE Power Answer 

architecture wherein the on-site monitor compares the 

actual unit performance with baseline predictions and 

provides the first level of anomaly detection and 

notification. 

 

Figure 1:  GE Monitoring & Diagnostics concept 

(Thaler 2006). 

Major OEMs like GE have the ability to monitor 

hundreds of units throughout the world in real time in 

order to establish knowledge to detect faults before they 

can develop into failure. This is both challenging and 

can yield some advantages toward sustaining the 

technological competitive advantage of an OEM in the 

long run. Despite all of the effort to avoid forced 

outages, there are still undetected failure precursors that 

led to catastrophic failure as reported by EPRI in its 

2007 updated report (EPRI 2007).  

3 DETECTION OF FAILURE PRECURSORS 

Though in recent years, there have been new and 

improved techniques such as condition-based 

monitoring (CBM) to help detect anomalies in their 

early stages of development, currently, the new 

techniques have not allowed to totally resolve the issue 

of missed detections of all the anomalies.  Although 

their merit is well accepted, their practical 

implementation is still inefficient because these 

techniques tend to be theoretical, difficult, and/or 

expensive to apply to real world problems. Therefore, 

the method proposed herein intends to take advantage 

of the monitoring sensors to capture catastrophic failure 

precursors. 
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In general, the health and condition of power plants are 

monitored using two types of sensors: the static or 

process-related sensors (used to measure temperature, 

pressure, and flow), and the sensors characterized by 

their high-bandwidth used for high-frequency signals 

like the vibration measurements. Although, there are 

many time-frequency techniques reported in the 

literature such as the Wigner-Ville distribution, the 

Choi-Williams distribution, the short time Fourier 

transforms; the wavelet transform is the best one to deal 

with short lasting anomalies and sharp discontinuities 

(Graps 1995).  The following subsections provide a 

brief overview of the wavelet transform followed by a 

presentation of a step-by-step explanation of the 

proposed approach. 

3.1 Wavelet transforms overview 

The time-frequency analysis techniques are appropriate 

when dealing with identifying anomalies in time series 

signals because more information can be extracted 

about small variations of a signal in the combination of 

the time and the frequency domains than can be 

extracted in the time domain alone.  The Fourier 

transform is the most popular frequency domain 

analysis technique because of its ability to decompose 

an energy limited signal f(t) so as to analyze the signal 

in the time domain for its frequency contents F(ω) as 

defined by Eqs 1 and 2:   

f (t) =
1

2π
F (ϖ )

−∞
∞∫ eiωtdω  (1) 

F (ω) = f (t)eiωtdt
−∞
∞∫         (2) 

However, the Fourier transform provides only the 

global information on the frequencies of a signal, it 

cannot provide local information if the spectral 

composition of a signal changes rapidly with time 

(Misrikhanov 2006).  In other words, once a signal is 

Fourier transformed, all the time domain information is 

lost, while the wavelet transform conserves both the 

time and the frequency information. Thus, the wavelet 

transform is an improvement over Fourier transforms 

for time-frequency analysis in that context. Wavelet 

transforms decompose a given signal through two 

filters: a low-pass filter that provides a low frequency 

part which trends and smoothes the original signal (i.e., 

approximation), and a high-pass filter that provides the 

high frequency part (i.e., details) which reveals local 

properties such as anomalies. 

3.1.1 Mathematical overview of Wavelet Transforms  

There are plenty of literature on the theory of wavelet 

transforms and its applications (Chui 1992; Daubechies 

1992).  Just like the Fourier transforms, the wavelet 

transform can be defined for any square-integrable 

function L
2
(ℜ) (Wu and Du 1996).  But instead of 

using the harmonics, e
iωt

, the wavelet basis, ψ, called a 

mother wavelet function, is used and defined as:   








 −
=

a

bt

a
tba ψψ

1
)(,  (3) 

Where a is the dilation or scaling parameter and b is the 

time location or translation parameter. Thus the wavelet 

transform of a signal f(t) is computed as follows (Chui 

1992): 

W f (a,b) = f (t)ψa,b (t)dt
−∞
∞∫       (4)                  

3.1.2 Wavelet Packets 

The standard wavelet transforms has limitations 

because it can only decompose the low-frequency part 

of a signal. To remedy that limitation, the wavelet 

packet transform was introduced. It has the ability to 

decompose both the approximation part as well as the 

detail part.  The wavelet packet transform decomposes 

a signal into more detailed components than the 

standard wavelet transform could, thereby yielding 

more information about the signal.  For that reason, it is 

more advantageous to use the wavelet packet transform 

to realize the multi-resolution analysis (MRA) by 

decomposing both the low frequency and high 

frequency components of a signal into subspaces so as 

to obtain finer and adjustable resolution (Jiang and 

Adeli 2004).  Figure 2 illustrates a wavelet packet 

decomposition of a signal S. 

 

Figure 2: Wavelet packet decomposition (Matlab 1999-

2009) 

3.2 Steps for failure precursor detection 

As mentioned above, the proposed approach intends to 

take advantage of monitoring sensors to capture 

catastrophic failure precursors.  Figure 3 shows a 

flowchart of the proposed methodology for intelligent 

failure precursor detection using multi-resolution 

analysis.  A step-by-step explanation of each block in 

the flowchart is presented in the subsections below. The 

different steps of the proposed approach have been 

explained in (Diallo and Mavris 2010) 
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Raw sensors data 

Time Series

Data Pre-Processing

DWPT Signal De-noising 

(variables)

Multi-resolution Analysis

Wavelet packet transform

Data Fusion

Anomaly Detection 

Decision  

Figure 3: Intelligent failure precursor detection 

3.2.1 Raw time series data collection 

The systems health and operating condition parameters 

are continuously monitored and collected using 

installed sensors and stored for potential post-

processing. The installed sensors for heavy-duty gas 

turbines typically include the two types mentioned 

previously, static or process-related sensors (used for 

pressure, temperature, and flow rate measurements) 

and high-bandwidth sensors used to measure high-

frequency measurements (e.g., vibration measurement).  

3.2.2 Data Pre-Processing 

The pre-processing of the raw data is a necessary step 

for a couple of important reasons. First, the OEMs will 

not want to share their proprietary data on equipment 

malfunctioning because that may affect their 

competitive advantages due to risk of possibility of 

reverse engineering. Secondly, the sensors monitor 

different health parameters (e.g., temperature, pressure, 

vibration, etc) that are recorded in different units and 

more importantly in different orders of magnitude.  For 

instance, a typical normal base load operation of GE’s 

7FA+e gas turbine technology can have a compressor 

discharge temperature measurement in the range of 600 

to 800 degrees Fahrenheit, while the vibration sensor 

measurements could be on the order of 1/10 of an inch 

per second.  Therefore, an analysis with the raw 

measurement could be artificially skewed towards the 

variables with higher absolute values. Thus, the pre-

processing step consists of normalizing each measured 

parameter value by the mean value of that variable 

measurement, and eliminating the visual outliers that 

would misrepresent the finding and affect the accuracy 

of the conclusion. 

3.2.3 DWPT signal de-noising   

 The de-noising step is essential because a sensor 

measurement signal is always tainted by noise.  In 

(Jiang, Mahadevan et al. 2006) the authors presented a 

de-noising technique that adequately removes the noise 

by combining the discrete wavelet packet transform 

(DWPT) and Bayesian thresholding.  The result is the 

removal of just the noise without the drawbacks of 

many other de-noising algorithms that either remove 

useful information along with the noise or remove too 

little noise thus leaving some noise in the signal. 

3.2.4 Multi-resolution analysis using discrete 

wavelet packet decomposition 

In this step, the de-noised signal is decomposed at an 

appropriate level (3-level) of resolution (as in Figure 2) 

to get the approximation and the detail components. 

The content of each component resulting from the 

decomposition can be analyzed.  Once the decomposed 

tree is obtained, the energy content of the scaling 

function (approximation) and the wavelet functions 

(details) representing the nodes of the tree is calculated 

as:  

E j,n = W j,n,k (dt)( )2dt =−∞
∞∫ W j,n,k

2

k

∑               (5) 

Where: Wj,n,k is the wavelet packet transform 

coefficient, j is the level, k is the translation, and n is 

the modulation parameter (approximation or detail).  

The energy content of each node will then be used as 

the signal features. 

3.2.5 Data Fusion using PPCA 

 The goal of the data fusion step is to combine 

pieces of information from a system that has potentially 

correlated multi-sensory data set into fewer 

uncorrelated variables that allow for drawing a more 

adequate conclusion than one could get from each 

individual sensor. Thus, the probabilistic principal 

component analysis (PPCA) is used to merge the 

information from the sensors of interest.  To perform 

the PPCA, the steps of the principal components 

analysis are executed, then the notion of maximum 

likelihood and the variance of the reduced data is 

calculated using matrices, where only the most 

significant weights obtained from the standard PCA are 

used as entries in a maximum likelihood matrix. The 

PPCA is an improved version of the standard PCA as it 

has the advantage of taking into account data 

uncertainty (Tipping and Bishop 1999).  
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3.2.6 Anomaly detection decision 

The procedure for anomaly detection decision is done 

in a multi-steps approach. 

After completion of the PPCA step, the different 

principal components of the signal as obtained from 

PPCA are converted into a one-dimensional signal 

calculated as follows: 

)(*

1

iRS k

n

i

kΦ=∑
=

λ                    (6) 

n: le number of retained principal components (PC) 

kλ : The contribution of the k
th

 Eigenvalues  

)(* ikΦ : The signal corresponding to the k
th

 principal 

component of the data matrix 

RS: reconstructed signal     

Statistical Process Control for threshold 

Step1: The obtained reconstructed signal RS is 

decomposed using the discrete Wavelet packet 

decomposition. Then, the energy content of each node 

is calculated (similar to the multi-resolution analysis 

step) using equation 5.  

Step 2: Calculate damage indicators SAD and SSD to 

be monitored instead of directly monitoring the change 

of the energy content  (Sun 2002).  SAD and SSD are 

defined (Sun and Chang 2004) as: 

Sum of absolute difference (SAD) and computed as: 

refEkEkSAD −= )()(              (7) 

Square Sum of Difference (SSD) and computed as: 

( )2)()( refEkEkSSD −=            (8) 

With: 

refE  is the reference signal energy content over a 

healthy period before the monitoring period. 

)(kE : the energy content of the RS at the monitoring 

time step k 

Step 3: Apply SPC (statistical Process Control) 

The X-bar control chart concept (Montgomery 1996) is 

used to established the threshold of damage indication. 

Thus Ang et al. suggest the following threshold 

calculation for a one-sided upper (1-α) upper 

confidence limit for the damage indicator SAD (a 

similar formula is calculated for SSD) (Ang and Tang 

1975) 











+=

q
ZUL SAD

SADSAD

σ
µ α

α
                   (9) 

Where:  
α
SADUL  : Upper Confidence Limit 

SADµ : is the value toward which the mean value of the 

parameter SAD converges  

 αZ : is the value of standard normal distribution with 

zero mean and unit variance, so that the cumulative 

probability is 100*(1-α)  

SADσ : is the value toward which the standard deviation 

of the parameter SAD converges 

q: interval of monitoring time  

Then, X-bar control chart upper limit is used to monitor 

of the damage indicators over a given period of time. 

The different statistical parameters are obtained after 

the system stabilized (see section 4. illustration) 

Modified threshold calculation 

In general, the control charts are effective in defect 

prevention (Montgomery 1996) when use in the context 

of manufacturing for example. However the authors 

have found that there is an overshoot in the value of the 

statistical parameters before converging for gas turbine 

application (see figure 8 for example) that is the use of 

the mean value of the SAD ( SADµ ) and the standard 

deviation of SAD ( SADσ )  directly may lead to an 

arbitrary higher number of false-positive alarms . 

Consequently, it is proposed to use the average of the 

10 or so highest value of SADµ  as the mean value.  

That consideration appears to reduce considerably the 

number of false alarms. Therefore the modified upper 

confidence limit for the damage indicator SAD is 

defined as: 











+=

q
ZUL SAD

MXSADMXSAD

σ
µ α

α
__            (10) 

Bayesian Hypothesis for monitoring time 

The Bayesian evaluation method is applied to the 

modified threshold value
αε MXSADUL _= . 

Thus, the Bayesian evaluation method for hypothesis 

testing is conducted with a binary outcome over a given 

period of monitoring time.  The anomaly function is 

defined as H(t), which is the vector of the Bayesian 

hypothesis testing result with a null and an alternative 

hypothesis defined as follows: 

• Null hypothesis H0: 

  ( ) ( ) 1, =≤ tHtSAD ε                             (11)    

• Alternative hypothesis H1:   
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( ) ( ) 0, => tHtSAD ε                               (12)  

The function H(t)  has values of 1 or 0 and can be 

plotted over time for visualization.  Thus H(t) value of 

1 is a healthy state and a H(t) value of 0 is an abnormal 

one.  Therefore, the appearance of the value of H(t) = 0 

can be considered as a sign  of  failure precursor. 

It is important for practical purposes to recalculate the 

threshold value (i.e. all the parameters used to calculate 

the threshold) after any exterior performance change as 

offline compressor water-wash, or installation of new 

parts or components 

 

Type I and type II errors calculation 

Recall that the probability of type I error or false-

positive is defined as: α = P{reject H0|H0 is true}; 

That is the probability of detecting a failure precursor 

while there is no defect. Whereas, the type II error or 

false-Negative is defined as β = P{fail to reject H0|H0 

is false}, that is the probability of missing a defect 

while one is present. In the proposed process the 

statistical confidence level or type I error is an input 

decided by the system operator; it has a probability of 

100*(1-α)%.   

To compute the type II error we assume H0 is false and 

H1 is true, and that the difference between mean values 

of the H0 distribution and the H1 distribution is δ .  

The type II error is the probability that the test statistic 

will fall between 2/αZ−  and 2/αZ  under H1 being 

true, as illustrated in figure 4. A more detail explanation 

of the concept of determination can be seen in 

(Montgomery 1985).  

 

 

Figure 4: Graphical representation of type II Error  

The type II error can be calculated using:    











−−Φ−










−Φ=

σ
δ

σ
δ

β αα
n

Z
n

Z 2/2/  (13) 

Where:  

Φ  : is the cumulative standard normal distribution 

δ : is the difference between the mean value used to 

calculate the threshold value and the mean value of the 

monitored interval of time of the damage indicator SAD 

and SSD. 

σ : is the standard deviation 

n:  is the sample size 

Another interesting statistical parameter is the process 

power defined as 1–β = P{reject H0|H0 is false}; it is 

the probability of correctly rejecting H0. 

 

4 ILLUSTRATION  

4.1 Test unit background 

The proposed process is applied to a gas turbine 

compressor failure problem. 8 of the test unit sensors 

are considered and summarized in Table 1.  The test 

unit failed on June 24, 2006 at 18:18.  The gas turbine 

manufacturer found through a post compressor failure 

analysis that there was a failure precursor event 

(artificially big increased in sensor data) on June 20, 

2006 at 23:30. Also, the manufacturer indicated that the 

operated hours of the unit were about one half the 

number hours required for inspection and that there 

were no major events prior to the compressor failure. 

Table 1: Gas turbine health monitoring sensors 

Sensors Description 

X1 Compressor health parameter 1 

X2 Compressor health parameter 2 

X3 Inlet guide vane (operating condition) 

X4 Gas turbine output (system condition) 

X5 Compressor seismic vibration 1 

X6 Compressor seismic vibration 2 

X7 Turbine seismic vibration 3 

X8 Comp. inlet temp.(operation condition) 

 

4.2 Methodology steps 

Step 1: 

The sensor measurements for the 8 sensors of interest at 

5-second intervals from June 19, 2006 at 00:00 to June 

25, 2006 at 00:00 are obtained and presented in this 

study because there were no prior noticeable events.  

Step 2: 

The raw data is normalized using the mean value of 

each variable (sensor).  The normalized sensor readings 

are within the same order of magnitude with a mean 

value of 1 for each variable. Besides ensuring a 

concealment of the manufacturer proprietary data, 

another reason for normalizing the sensors 

measurement is to allow the analysis to not arbitrary be 

skewed toward variable with higher absolute values.  

Step 3:  

All normalized raw sensor data is de-noised using 

DWPT. 
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Step 4: 

Each variable signal is decomposed into a 3-level tree 

as shown on Figure 4 using the DWPT and the 

“Daubechies 4” wavelet mother function (Chui 1992; 

Daubechies 1992).  The energy content of each of the 8 

nodes representing each wavelet component of the level 

3 is calculated and serve as the signal feature 

characteristic.  It observed that each of the 8 sensors has 

over 99.9% of its energy content at the approximation 

node, which is the node (3, 0) in Figure 4.  Therefore, 

the approximation will be used as a representative of 

the actual signal in the subsequent steps. 

Tree Decomposition

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

2000 4000 6000
2.76

2.78

2.8

2.82

2.84

2.86

2.88
data for node: (7) or (3,0).

 

Figure 5: Tree decomposition of signal of variable X1 

Step 5: 

The standard PCA steps are executed to determine the 

principal components (PC) which are the eigenvectors 

corresponding to the most significant eigenvalues of the 

covariance matrix formed with the sensor data. As 

shown on Figure 6, to maintain at least 95% of the 

original information in the model, the first 3 PCs 

representing 99.326% of the original information 

should be retained.   

 
Figure 6: Pareto chart of eigenvalues contribution 

Then the PPCA parameters are calculated with the 

maximum likelihood weight matrix first by setting to 0 

any PC weight that is less than 0.1 as shown in table 2.  

Next the remaining PPCA parameters are computed 

(i.e. the isentropic noise covariance, the prediction error 

unique to response, the data matrix and the variance of 

reduced dimension). 

Table 2: Maximum likelihood weight matrix 

  3 Principal Components for 99.3% 

Variables PC1 (75.1%) PC2 (18.9%) PC3 (5.3%) 

X1 0 0 0 

X2 0 0 0 

X3 0 0 0 

X4 0 0 0 

X4 0.59281 0.7203 -0.35998 

X6 0.46975 0 0.88042 

X7 0.65235 -0.69038 -0.30792 

X8 0 0 0 

Step 6:  

This step deals with the anomaly detection:  

• Computation of reconstructed signal 

Since only the 3 most important principal components  

are kept, the reconstructed 1-dimensional signal is 

obtained as: 

 

)()()()( *

33

*

22

*

11 ttttRS Φ+Φ+Φ= λλλ         (14) 

With 1λ =75.1%, 2λ =18.7% and 3λ =5.3%, which are 

the percentage of total information content in the 3 

major eigenvalues. 

 

6/19/2006  5:57:00 AM 6/20/2006  4:28:00 PM 6/21/2006  11:50:00 AM 6/22/2006  9:11:00 PM 6/23/2006  10:16:00 PM
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Reconstructed 1-d Signal

 

Figure 7: Reconstructed 1-d signal 

The remaining analysis is based on the reconstructed 1-

dimensional signal (RS), which is a representation of 

the original 8 sensors. The RS in turn is decomposed 

using the DWPT up to the level-3 decomposition, since 

higher level of decomposition did not yield any 

additional information 

• Threshold calculation  

To compute the damage indicators SAD and SSD, Eref 

needs to be established first. Eref is calculated as the 

mean value of the energy of the approximation node (3, 

0) (representing more that 99.9% of the RS energy 

content) from the decomposed tree on figure 5 of the 

signal  over one hour period using a 5-seconds time 

interval. Thus a value Eref=1.1328 is obtained.   
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Next, the mean and standard deviation values of SAD 

and SSD are needed to calculate the anomaly threshold. 

Therefore, SAD(k) is calculated at each time step and 

its value is added to a set in order to compute the mean 

and standard value of that set. Similar to the Eref 

calculation, E(k) represents the energy content of the  

node (3,0) (3 –level of decomposition) at each time step 

k. The calculation is repeated over time until the mean 

value and standard deviation of the set SAD values 

converge towards SADµ  and SADσ  respectively as 

shown on figure 8.  

 

0 6/19/2006  6:38:00 AM 6/19/2006  8:10:00 AM 6/19/2006  1:07:00 PM 6/19/2006  2:31:00 PM
0

0.05

0.1

mu SAD

0 6/19/2006  6:38:00 AM 6/19/2006  8:10:00 AM 6/19/2006  1:07:00 PM 6/19/2006  2:31:00 PM
0

0.02

0.04

sigma SAD

0 6/19/2006  6:38:00 AM 6/19/2006  8:10:00 AM 6/19/2006  1:07:00 PM 6/19/2006  2:31:00 PM
0

5
x 10

-3 mu SSD
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Figure 8: Convergence of mean and standards 

deviations of SAD & SSD 

After the statistical parameters convergence, the 

modified mean value of SAD=0.1332 is obtained. And 

the threshold of SAD is calculated as ε =0.1337. In a 

similar way the parameters for SSD are obtained.  

The remaining parameters to calculate the threshold are 

α and q. In the case of this illustration, values of α=0.02 

and q=12000 which corresponds to a monitoring time 

of over 16.6 hours (green curve on figure 9) are used. 

 

The idea is that, once the threshold (red dash line) is 

set, a system operator monitors the SAD (or the SSD) 

signal (green curve) instead of the original 8 sensors, 

and any time the value of SAD goes above the 

calculated threshold, it is considered an anomaly.  

The figure 9 below shows the threshold, the magnitude 

and length of anomalies and the point of the 

catastrophic failure.  
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Figure 9: SAD parameters with detected anomalies 

• Bayesian Hypothesis Testing  

The final step is the Bayesian hypothesis testing. The 

result is the binary function H(t) with entry values of 

“1” and “0”.  As shown on the figure 10, there are four 

abnormal events during the almost 17 hours of 

monitoring. In a post-processing analysis, the gas 

turbine manufacturer established that the initial 

indication of a precursory event that led to the 

compressor failure was on 06/20/2006 at 23:30.  

Indeed, the proposed not only successfully detected that 

event but found it started precisely at 23:13 (that 17 

minutes before the OEM time). More importantly, the 

proposed approach is capable of capturing that severity 

and length of anomalies. Furthermore, the proposed 

process has detected three other less severe and short 

lasting defects as marked on figure 10 missed by the 

gas turbine manufacturer’s procedure, the first of which 

was more than 24 hours before the manufacturer’s first 

detect anomaly. 
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Figure 10: Result Bayesian hypothesis testing 

 

Finally, the errors associated with the precursor 

detection are calculated. Since the probability of false-

positive is an input that is decided but the analysis and 

it represent 2% in this example, the probability of type 

II error or false-negative is calculated to be less than 

10e-4 that is much smaller; which meets the goal of a 
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practical process that to be implemented has to have a 

much smaller type II error for given type I error. 

5 CONCLUSION 

The LTSA market can be a very lucrative one if the 

level of liquidated damage is managed to a minimum 

cost.  In this paper, a systematic approach is offered to 

detect precursory anomalies that could lead to 

catastrophic gas turbine compressor failure in an effort 

to reduce or even eliminate unplanned power plant 

outages. The proposed approach is very promising as it 

has successfully detected previously known failure 

precursory anomalies as well as the ones missed by the 

manufacture analysis.  

The proposed approach can be easily implemented 

unlike other techniques that rely on the use of neural 

network, where a high fidelity mathematical model is 

required. Furthermore, the process appears to be robust 

with few false alarms and a much lower false-negative 

probability for given rate of false-positive. 

Additionally, the use of the statistical approach allowed 

the handling practical issues of heavy duty gas turbines 

such as machine-to-machine variation and the wide 

variation in operation condition. Importantly, the 

proposed methodology has the ability to not only detect 

an anomaly, but also its severity and its length which 

can help trained technicians make the right decisions.   

Overall the proposed approached is a novel one as it is 

based on the fusion of information from both health 

parameter sensors as well vibration sensors, whereas 

current industry standard relies solely on vibration 

sensors. Consequently any defect that has no vibration 

signature would be missed by the current OEM’s 

analysis. Thus in the illustrative example, the first sign 

of a malfunction is detected about five full days before 

the actual machine catastrophic failure, which is more 

than enough time needed to avoid the failure. 
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