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ABSTRACT  

In this study, a Bayesian framework is outlined for the 
parameter estimation that arises during the uncertainty 
quantification in the numerical simulation as well as in 
the prognosis of the structural performance. In the 
framework, the parameters are estimated in the form of 
posterior distribution conditional on the provided data. 
Several case studies that implement the estimation are 
presented to illustrate the concept. First one is an 
inverse estimation, in which the unknown input 
parameters are inversely estimated based on a finite 
number of measured response data. Next one is a 
metamodel uncertainty problem that arises when the 
original response function is approximated by a 
metamodel using a finite set of response values. Third 
and fourth one are a prognostics problem, in which the 
unknown parameters of the degradation model are 
estimated based on the monitored data. During the 
numerical implementation, Markov Chain Monte Carlo 
(MCMC) method is employed, which is a modern 
computational technique for the efficient and 
straightforward estimation of parameters. Once the 
samples are obtained, one can proceed to the posterior 
predictive inference on the response at the unobserved 
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points or at the future time in the form of confidence 
interval. 
Key Words : Bayesian framework, inverse estimation, 
metamodel uncertainty, prognostics and health 
management (PHM), Markov Chain Monte Carlo 
(MCMC). 

1. INTRODUCTION 

There are many circumstances that require parameter 
estimation either in the structural analysis at the design 
stage or in the health management of the existing 
structures. At the design stage, material parameters, 
which significantly affect the validity of the analyses, 
need to be estimated based on the direct or indirect 
measurements. During the costly structural analysis, 
metamodel is often introduced to save computational 
cost, in which the associated parameters, e.g., 
regression coefficients, are estimated using a finite set 
of response data. In the health management, 
degradation parameters of underlying physical model in 
the deteriorating structures are estimated using the 
monitoring data over times for the prognostics of 
remaining useful life (RUL). 
 Common practice for parameter estimation is that 
the parameters are measured directly by appropriate lab 
tests or inversely estimated from the data taken by the 
field inspection. Whichever they are, these parameters 
can't be determined in a deterministic manner but be 
treated with stochastic way due to the various 
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uncertainties arising from the measurements, inherent 
material defects and manufacturing processes. In the 
simplest terms, the parameters are determined via 
classical regression technique using the given data. In 
view of uncertainty management, however, the 
Bayesian approach is recently gaining considerable 
attention, which provides a logical framework for 
inference of the parameters in light of the observed data 
while incorporating the prior knowledge. As more data 
are collected, the process is repeated with updated prior, 
and the parameters converge toward the real values 
providing more confidence. 
 In this study, Bayesian framework is outlined in the 
context of parameter estimation, in which the unknown 
parameters are estimated in the form of posterior 
distribution which is proportional to the likelihood of 
the observed data multiplied by the prior distribution. 
During the numerical implementation, Markov Chain 
Monte Carlo (MCMC) method (Andrieu et al., 2003) is 
employed, which is a modern computational technique 
for the efficient and straightforward estimation of 
parameters, which draw samples of parameters having 
complex distribution. Once the samples are obtained, 
one can proceed to the posterior predictive inference on 
the response at the unobserved points or at the future 
time in the form of confidence interval.  
 Four case studies are presented to illustrate the 
concept of the Bayesian application and the power of 
MCMC technique. First one is an inverse estimation, in 
which the unknown input parameters are inversely 
estimated based on a finite number of response data. A 
mathematical problem is addressed, followed by a more 
practical example, which is a parameter identification 
of creep behavior of a solder joint in microelectronics 
package under a thermal cycle. The estimated 
parameters can be used with more reliability to predict 
the response at the unobserved points or for a new 
design. Next one is a metamodel uncertainty problem 
that arises when the original response function is 
approximated by a metamodel using a finite set of 
response values. A mathematical problem is addressed 
to exemplify the concept. Third and fourth one are a 
prognostics problem, in which the unknown parameters 
of the degradation model are estimated based on the 
monitored data. Progressive wear in a revolute joint in 
motion and crack growth in an aircraft fuselage are 
addressed to illustrate the concept. Using the 
determined parameters, the degradation behavior at the 
future time as well as the RUL is predicted, which 
plays very useful roles in the condition based 
maintenance (CBM). 

2. BAYESIAN INFERENCE TECHNIQUE FOR 
PARAMETER ESTIMATION 

 

For the Bayesian parameter estimation, Bayes’ rule is 
used (Bayes, 1763):  

 ( ) ( ) ( )| |y yθ θ θp L p∝         (1) 

where ( )|y θL  is the likelihood of observed data y  

conditional on the given parameters θ , ( )θp  is the 

prior distribution of θ , and ( )| yθp  is the posterior 
distribution of θ  conditional on y . The equation states 
that our degree of belief on the parameter θ  is 
expressed as posterior PDF in light of the given data y . 
As more data are provided, the posterior distribution is 
again used as a prior at the next step, and the values are 
updated to more confident information. This is called 
Bayesian updating. The procedure to obtain posterior 
distribution ( )| yθp  consists of proper definition of 
probability distribution for the likelihood and prior 
respectively. 
 Once the expression for posterior PDF is available, 
one can proceed to sample from the PDF. MCMC 
simulation is an effective solution to this end since it 
easily produces posterior distribution with any 
complexity including no closed form expressions. As 
an example of MCMC, in Figure 1 is shown the 
sampling result of fictitious PDF given as (Andrieu et 
al., 2003) 

( ) ( ) ( )( )220.3exp 0.2 0.7exp 0.2 10p x x x∝ − + − −   (2) 

With only 5,000 iterations, the sampling result follows 
the distribution quite well. 
 Once the samples of θ  are obtained, one can obtain 
the predictive distribution of the response function at 
new points using the formula:  

 ( ) ( ) ( )| | |y y y yθ θ θp L p d= ∫   (3) 

where the symbol ∼  represents the prediction, 
( )|y yp   is the predictive distribution of y  conditional 

on y , ( )| yθp  is the posterior distribution of θ  from 

Eq. (1), and ( )|y θL   is the likelihood to obtain y  
conditional on θ . Although the expression is in the 
form of integration, y  distribution are obtained in 
practice by drawing samples from ( )|y θL  , given each 
value of drawn samples θ . 
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Figure 1: Results of MCMC simulation 
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3. INVERSE PARAMETER ESTIMATION 

In this section, inverse parameter estimation is 
addressed that determines inversely some unknown 
parameters in the input variables by using a finite 
number of observed response data. During the 
procedure, the inherent (aleatory) uncertainty 
associated with the measurements and statistical 
(epistemic) uncertainty due to the limited data are 
accounted for using the Bayesian approach.  
The experimental observation of the response function 
is assumed as 

( ) ( )|e cy y ε= +x x t                     (4) 

where ey is the experimental measurement cy  is the 
computer model, ε  is the white noise error with 

( )20,N σ , x  is the explanatory variable, and t  is the 
unknown parameters to be calibrated conditional on the 
observed data ey . Suppose we have n  experimental 

observation 1 ,..., 'e e
e ny y =  y  at a set of points 

1 ,..., 'e e e
nD  =  x x . Then the likelihood of the 

observation error at the points is defined as  
( )

( )( ) ( )( )2

| ,

1exp , ,
2

y t

y x t y x t

e

n e c e c e

L

y y

σ

σ
σ

−  ′∝ − − − 
 

    (5) 

In this case, the unknowns to be estimated are the 
parameters t  and error variance 2σ . Multiplying prior 
PDF’s for these parameters, which are assumed non-
informative in this case, one obtains the posterior PDF 
of the parameters.  
 As a first example, a math model is considered as 
follows. 

( ) ( )1.5 3.5exp 1.7y x x= + − ; [ ]0,3x ∈         (6) 
Assume that we have measured data for this model with 
the error ( )~ 0,0.6Nε which are given as black stars 
in Figure 2 (a). Suppose we have no prior knowledge 
on this model, the response function is assumed to be 
expressed as 

 ( ) ( )| 5expcy x t tx= −                        (7) 
where t  is the unknown parameter to be estimated 
conditional on the observed data ye . After running 
MCMC, unknown parameters ,t σ  where σ  denotes 
the standard deviation of the measurement error are 
obtained in the PDF form as in Figure 2 (b). Using the 
parameters, one can predict the response function 
values at an arbitrary point in the probabilistic manner, 
and the results are given in a confidence band as in 
Figure 2 (c). 
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Figure 2: Results of mathematical example 

  
 Next example is to inversely estimate creep 
parameters of the solder joint in a microelectronics 
package conditional on the observed data under a 
thermal cycle which is given by Figure 3 (a). A special 
specimen (Pollack, 2003) as shown in Figure 3 (b) is 
used to measure the deformation via Moiré 
interferometry, of which a case at 125℃ is given in 
Figure 3 (c). Finite element model shown in Figure 3 
(d) is created to conduct viscoplastic analysis. Material 
properties are given in Table 1. Anand model (Anand, 
1985) is employed for characterizing the solder 
material, which is expressed by 9 parameters: 

1/

0 * *

*

exp sinh
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ˆ exp

m
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n
p

QA
RT s

s ss h sign
s s

Qs s
A RT

σε ξ

ε

ε

    = −        
   = − ⋅ − ⋅  

   

  =   
  







           (8) 

ANOVA is carried out to identify the most influential 
ones over the range of the parameters, from which 

0 , / ,S Q R ξ and m  are found whereas the others are 
presumed insignificant. These parameters as well as σ  
of the measurement error are the unknowns to be 
determined. Since the finite element analysis is 
computationally expensive, a response surface 
employing fourth order polynomial in terms of the 
temperature and the four Anand parameters is 
constructed, and replaced into the original cy . After 
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MCMC, their posterior PDFs are obtained by the 
likelihood of three data – displacements at A, B, and 
strain at C. From their posterior PDFs, the predictive 
distribution of the displacements as well as the strain at 
the same points are obtained in the form of confidence 
bands as shown in Figure 4. 
 

 

 
a) thermal cycle 

 
b) special specimen 
 

 

 
c) Moiré fringe 
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d) finite element model 

Figure 3: Illustrations of creep parameters estimation 

 

Table 1: Elastic properties used for the steel, copper 
and solder 

 Elastic 
Modulus(GPa) 

Poisson's 
ratio 

CTE 
(ppm/°C) 

STS630 275 0.22 5.3 
Copper 130 0.344 17.8 
Sn37Pb 32 0.38 24.7 
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Figure 4: Confidence bands of predictive response model 

 
 

4. METAMODEL UNCERTAINTY PROBLEM 

Metamodel uncertainty arises when the original 
response function is approximated by a metamodel 
using a finite set of response values. In this section, 
Kriging metamodel is considered which is popular in 
the design analysis of the computer experiments. Due 
to the limited data, however, there is statistical 
uncertainty with the response in between the points. 
Let us try to approximate a function using a finite 
number of responses [ ]1,..., 'my y=y  at a set of DOE 

points [ ]1,..., 'mX= x x  with m  number. For this 
purpose, Gaussian random function is introduced as 
follows. 

( ) ( ) ( )ŷ Z= +x f x xβ                         (9) 
where 

( ) ( )2~ 0 , , , , , 1,...,m i jZ N R i j mσ = =I R R x x    (10) 
In the equation, ^ denotes the surrogate representation, 

( )f x β  is the normal linear model, [ ]1,..., kf f=f  and 

[ ]1,..., kβ β ′β =  are k  number of the trial functions 
and associated parameters, respectively, Z  is a 
Gaussian stochastic process with zero mean and 
variance 2σ , mI  is the m m×  identity matrix, and R  
is a correlation function between xi  and x j  which is 
represented by  

 ( )
2

, exp
x x

x x i j
i jR

h

  −  = −     

         (11)                                              

where h  is a correlation parameter that controls 
the degree of smoothness of the function. If the h  
gets higher, the model becomes smoother, but the 
singularity is encountered in the correlation matrix 
if it is too high. In most Kriging studies, h  is 
treated as a constant that is determined by the 
method of maximum likelihood estimate (MLE). 
However, MLE method is not only 
computationally expensive which requires 
additional optimization process, but also the 
quality of the obtained parameter is questionable. 
In this study, h  is considered as an unknown 
parameter as well to avoid this.  Assuming the 
computed outputs follow multivariate normal 
distribution, the joint posterior distribution of the 
parameters is given by 

( ) ( ) ( ) ( ) ( )

2

12
2 122

2

, , |

1exp
2X X

y

R y F R y F

β

β β
m

hσ

σ
σ

+ −− −

∝

 ′− − − 
 

 (12) 
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where ( ) ( )1 ,..., 'm=   F f x f x  is m k×  dimensional 

matrix of trial functions at the DOE points. In the 
equation, the non-informative priors are assumed 
for the unknown parameters, i.e., ( )2 2, ,f hσ σ −∝β . 
Consider a mathematical function (O'Hagan, 2006) 

 ( ) ( )3sin / 2g X X X= +                    (13) 

With the trial functions [ ]1,f x= , the posterior 
distributions of the unknown parameters 1 2,β β , σ , 
and h  are obtained using MCMC. 90% prediction 
intervals due to the metamodel uncertainty are shown 
in Figure 5 (a) and (b) for the case of 4 points and 6 
points respectively. It is observed that the uncertainty is 
reduced as more data are provided. 
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b) the case of 6 points 

Figure 5: Confidence bands of predictive response 
function due to the metamodel uncertainty 

5. PROGNOSTICS PROBLEM 

Prognostics is to predict the remaining useful life 
(RUL) of a structural parts due to the degradation by 
measuring and monitoring the associated response 
during the use of the part. Physics based degradation 
model should be available for this, in which the 
associated parameters determines the exact form of 
degradation behavior. Using the Bayesian approach, the 
parameters are obtained in the posterior PDF 
conditional on the measured responses. Then the RUL 
can be estimated in the form of predictive distribution, 
which is very important information for the condition 
based maintenance. In this section, progressive wear in 
a revolute joint in motion and crack growth in an 
aircraft fuselage are addressed to illustrate the concept. 

5.1 Progressive Wear  

Wear is a gradual removal of material from contacting 
surfaces in relative motion, which eventually causes 
failure. Prediction of wear volume and its service life is 
important in this regard. Among various wear models, 
Archard’s wear model (Archard, 1953) is the most 
widely used one which is given by 

0
( )d

s

n

Vk
F s s

=
∫

                              (14) 

where k  is the wear coefficient, V  is the wear volume 
up to current moment, nF  is the applied normal force, 
and s  the slip distance. In order to estimate the 
unknown wear coefficient k , a crank-slider test 
apparatus (Mauntler et al., 2007) is used as shown in 
Figure 6, in which the revolute joint is connected by a 
pin with high hardness whereas the bushing at the 
follower link is worn out. Capacitance probes are 
inserted into the follower link as in the figure to 
measure the pin displacements, from which the wear 
volume can be calculated. Forces are measured via a 
load cell built into the pin. The measured wear volumes 
and forces are given at 6 sets of number of cycles as 
given in Table 2. Denoting the set of wear volume data 
as V , the likelihood of the volume for is assumed to 
follow normal distribution: 

( ) ( )| , ,L k Nσ µ σV                     (15) 
where µ and σ are the mean and standard deviation of 
the wear volume. Recalling the eq.(7), the mean wear 
volume is given by 

1
i

n

n i
i

kC F sµ
=

= ∆∑                            (16) 

where C  is the number of cycles. This equation means 
that the mean is only a function of k while the other 
terms are given from the measurement.  Then the 
unknown parameters are k  and  σ  which should be 
estimated conditional on the observed wear volume V . 

 
a) the layout of slider-crank mechanism 

 

 
b) capacitance probes 
measure the location of 
the pin from fixed 
locations on the follower 
link 

 

 
c) instrumented steel pin load 
cell for measuring joint force 

Figure 6: Illustrations of wear measurement in a 
revolute joint 
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Employing non-informative prior for the parameter k , 
the posterior PDF’s of k  and  σ  are obtained using the 
MCMC.  As a validation study, the wear volume at the 
future 6th cycle is predicted using the coefficient 
estimated using the first 5 set of data, and compared 
with the realized data. The result is in Figure 7, which 
shows excellent prediction of wear volume. 
 

Table 2: Wear coefficient calculation 

Cycles Force Volume Slip 
distance k x 104 

1 64.41 1.59 0.06 4134.80 
100 62.80 2.57 5.99 68.25 

1000 63.17 8.10 59.85 21.44 
5000 64.77 24.48 299.24 12.63 

10000 62.65 46.21 598.47 12.32 
20585 59.96 93.90 1232.00 12.71 

 
 
 

40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

Wear volume [mm3]

P
D

F

 

 

Predicted wear vol.
Exp. result: 92.73 mm3

 
Figure 7: Result of wear volume prediction 

 
 

5.2 Crack Growth in Aircraft Fuselage 

Prognosis of crack growth is addressed for an aircraft 
fuselage panel in which a through-the-thickness crack 
grows through cycles of pressurization and 
depressurization (Coppe et al, 2010). A simple damage 
growth model, Paris model, is employed to this end  
(Paris, 1999): 

( )mda C K
dN

= ∆                              (17) 

where a  is the crack size, N  the number of cycles, 
/da dN  the crack growth rate, and K∆ the range of 

stress intensity factor. In this equation, the unknown 
parameters to be estimated are C  and m . Accurate 
estimation of these parameters is important in the 
prediction of RUL of the panel in terms of the 
condition based maintenance. Based on the Figure 8 for 
the fuselage panel and the crack, the crack size Na  

after N  cycles of fatigue loading grown from the 
initial size 0a  is expressed as: 

( )
2

21
2

01
2

m mm

N
ma NC aσ π

−−  = − ∆ +  
  

       (18) 

where ( ) /p r tσ∆ = ∆  denotes the range of hoop stress 
due to the pressure differential. The panel is regarded 
as failure when Na  reaches a critical crack size Ca  
which is given by: 

2

IC
c

K
a

σ π
 

=  
∆ 

                           (19) 

where ICK  is the fracture toughness of the panel. Based 
on the information given in Table 3, ca  is given by 
46.3 mm  in this study.  
The objective is to identify the two parameters C  and 
m  using the inspected crack sizes over intervals of 
cycles. Since no actual data are available, the crack 
growth data are made by fictitious simulation by 
including the effect of bias and noise of the 
measurement. Using the true values of the parameters 

101.5 10trueC −= ×  and 3.8truem = , 25 data are generated 
at every 100 flights beginning from the initial crack 
size 0 10a mm= up to 2500 flights, which is given in 
Table 4. In the data, the bias and the noise are assumed 
as 1 mm  and ( )1.5,1.5U mm−  respectively.   
 The posterior distribution of the C  and m  is 
determined by combining the likelihood to observe the 
actual crack size with the error following iid normal 
distribution and the prior PDFs given by Table 3. Using 
the MCMC for this distribution, the 30000 samples of 
C  and m  are drawn. These are used to obtain the 
predictive distribution of the crack growth as given in 
Figure 9. In the figure, the black curve is the true model 
and the symbol • denotes the measured crack size by 
the simulation. At the early stage like Figure 9 (a) 
which underwent 500 cycles, the predictive band is 
very wide due to the few number of data. The lower 
bound of the cycles with 90% CI to reach the critical 
level is found at about 1400 cycles, which means that 
the corresponding RUL is approximately 1400-500 = 
900 cycles. As can be seen in subsequent figures, the 
band gets narrower as more data are added, and the 
curve becomes closer to the true model.  
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Figure 8: Through the thickness crack illustration 

 
 

Table 3: Geometry, loading and fracture parameters of 
7075-T651 Aluminum alloy 

Pressure, Δp (MPa) 0.06 
KIC (MPam1/2) 30 

Fuselage radius, r (m) 3.25 
Fuselage thichness, t (m) 0.00248 

Par is law exponent, m U(3.3,4.3) 
Damage parameter , C U(5 x 10-11,5 x 10-10) 

 
 

Table 4: The synthetic measurement data 

cycles 
meas. 

crack size 
(mm) 

cycles 
meas. 

crack size 
(mm) 

cycles 
meas. 

crack size 
(mm) 

0 10.00 900 16.44 1800 25.48 
100 10.59 1000 16.17 1900 27.27 
200 10.63 1100 17.93 2000 29.78 
300 12.70 1200 18.78 2100 30.86 
400 11.60 1300 17.23 2200 34.71 
500 13.49 1400 20.59 2300 39.15 
600 12.69 1500 21.15 2400 43.47 
700 15.17 1600 22.68 2500 48.13 
800 13.87 1700 24.29 ac 46.30 
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a) prediction based on upto 5th data 
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b) prediction based on upto 10th data 
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Figure 9: Estimated crack size  
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6. CONCLUSION 

A Bayesian framework is addressed for the parameter 
estimation that arises during the analysis and prognosis 
of the structural performance. In the framework, the 
degree of belief on the parameters is expressed via a 
posterior probability distribution in light of the 
observed data combined with the prior knowledge. The 
distribution is obtained using the MCMC simulation, 
which is used to obtain the posterior predictive 
distribution, hence, the predictive bounds, of the 
performance at the unobserved points or at the future 
time. As more data are added, the bounds may be 
reduced, giving more confidence to the estimation. As a 
result of the case studies, the Bayesian approach is 
proved to be useful means for the uncertainty 
quantification of the unknown parameters in the finite 
element analysis of electronics package. The method is 
also found useful in the prognostics problems of the 
progressive wear in the revolute joint in motion and the 
crack growth in an aircraft fuselage. 
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