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ABSTRACT 

When it comes to identifying model parameters such as 

damage growth parameters in Paris law for example, 

Bayesian inference is a popular method. However, it 

involves substantial computational cost, especially with 

increasing number of parameters. When the prior 

distribution for the parameters is not narrow, non-linear 

regression may provide almost all the benefits of 

Bayesian updating at a small fraction of the 

computational cost. In this paper we apply this 

approach to the identification of damage growth 

parameters. As a first step we simplify the problem to a 

single parameter in order to compare it with the same 

problem solved using Bayesian inference. We then 

discuss the issues related to uncertainty quantification 

in the case of a highly non-linear problem.
*
 

1 INTRODUCTION 

Aircraft structures are designed under the damage 

tolerance concept in which small damage are allowed 

to exist as long as they are stable and grow slowly 

(Gallagher et al., 1984). In this design concept, it is 

important to predict when damage become unstable and 

require maintenance. In the conventional preventive 

maintenance (Thomas, 1986), it has been practiced that 

a very small size of damage threshold, as small as 0.1", 

is used because inspection cannot be performed 

frequently, and there are many uncertainties involved in 

the process, including uncertainty in damage growth 

parameters, initial damage size, operating conditions, 

environment, etc. Due to the overly conservative 

replacement schedule, many airplanes are inspected 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

even if they do not have any damage, and many 

insignificant damages are removed. 

 Recently, it has been shown that structural health 

monitoring (SHM) systems can be used instead of 

manual inspection to detect damage (Giurgiutiu, 2008). 

SHM-based maintenance is more effect as only those 

airplanes that are in danger will be sent for maintenance 

(condition-based maintenance). SHM may have 

significant impacts on increasing safety as well as 

reducing the operating and maintenance costs of 

structures by providing an accurate quantification of 

degradation and damage at an early stage to reduce or 

eliminate malfunctions. Furthermore, Coppe et al. 

(Coppe, 2010) showed that SHM can not only provide 

damage diagnosis but also predict the remaining useful 

life (RUL) by identifying damage growth parameters. 

They used Bayesian inference (Coppe, 2009) to reduce 

uncertainty in the damage growth parameters using 

measured damage size information. 

 Bayesian inference is a powerful method of 

quantifying uncertainty in the model parameters. It can 

take into account the prior knowledge on the unknown 

parameters and improve it using experimental 

observations. However in the case of SHM the 

advantage of the prior information can be overpowered 

by the amount of data available. That is, the effect of 

prior information becomes insignificant when 

numerous SHM data are used in Bayesian inference. In 

addition, when many parameters are updated 

simultaneously, Bayesian inference becomes 

computationally expensive due to multi-dimensional 

integration.  

 On the other hand, the traditional linear least square 

method (Lawson and Hanson, 1995) can be used to 

identify deterministic parameters when the model is a 

linear function of the parameters. This method is in 

particular powerful when many data are available, 

which is the case for SHM data. Different from 

Bayesian inference, this method does not require prior 

information. By assuming that the noise in the 
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experimental data is Gaussian, it is possible to estimate 

the uncertainty in the identified parameters, which is 

also Gaussian.  

 When the physical model is a nonlinear function of 

model parameters, it is not straightforward to apply for 

uncertainty quantification in the linear least square 

method. As will be shown in the number examples, the 

damage growth in aircraft structures is governed by a 

nonlinear equation whose parameters need to be 

identified. In this paper, we proposed a linear 

perturbation concept to quantify uncertainty in the 

nonlinear least square method. First, nonlinear 

mathematical programming problem is solved to find 

the model parameters that minimize error between the 

model and experiment. Then, the nonlinear model is 

linearized with the identified parameter values, from 

which the uncertainty quantification in the linear least 

square method can be used. This approach can 

introduce two errors into the estimate of the 

uncertainty: (1) linearization error and (2) error 

associated with assumption of Gaussian noise. In 

addition, it is assumed that noises at different 

experiments are uncorrelated.  

 This paper presents a nonlinear least square method 

to identify damage growth parameters using a through-

thickness crack in an aircraft fuselage panel which 

grows through cycles of pressurization. A simple 

damage growth model, with two damage growth 

parameters is utilized. We present here two least square 

fits identifying one or three variables. The objective is 

to examine the accuracy of uncertainty quantification 

using nonlinear least squares. The uncertainty is 

derived analytically and compared to a Monte Carlo 

estimate to examine its accuracy for both problems 

presented. For the one-variable problem it is then 

compared to the uncertainty obtained using Bayesian 

inference. 

 The paper is organized as follows. In Section 2, the 

derivation of the uncertainty quantification for the 

general least square methods, linear and non linear is 

presented. In Section 3 the one variable identification 

problem is discussed, showing the derivation of the 

analytical uncertainty quantification, as well as results 

comparing that uncertainty to the one obtained using 

Monte Carlo simulations. In Section 4 the three 

variable problem is discussed and used to introduce the 

issues related to the uncertainty estimation resulting 

from potentially correlated variable and highly non-

linear problems. Concluding remarks are presented in 

Section 5. 

2 UNCERTAINTY QUANTIFICATION IN 

NON-LINEAR LEAST SQUARE 

The least square method is commonly used for 

identifying unknown parameters of a physical model 

using experimental observations, which normally 

include random noise. Thus, if the experiment is 

repeated, it is likely that different values of the 

parameters may be identified. In this section, a method 

of calculating the distribution of the identified 

parameters in the nonlinear least square method will be 

introduced.. In order to make the presentation easy to 

understand, estimation of parameter uncertainty in the 

linear least square method is discussed first, followed 

by that of the nonlinear least square method. 

2.1 Uncertainty in the Linear Least Square Method 

In regression, the response function ( )y t  is 

approximated by a function ˆ( , )y t   with vector of 

parameters   whose dimension is dim( )n   : 

 ˆ( ) ( , )y t y t    (1) 

where   is the approximation error. The objective of 

regression is to estimate the parameters   based on 
yn  

data, which are given in the form of ( , ), 1, ,i i yt y i n  

that may contain measurement noise. In regression the 

parameters are estimated by minimizing the sum of the 

squares of the discrepancies between the measurements 

and ˆ( , )y t  . The regression model is called linear when 

the approximate function is a linear function of  , as 

 
1
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i
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  (2) 

where ( )i t  are basis functions. In general, the exact 

values of   can only be found when the number of 

experimental data is infinity. With finite 
yn , the values 

are only estimate, which will be denoted by b  in this 

paper. 

 The vector of errors (discrepancies) can be written 

as 
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 (3) 

Or, symbolically, 

   e y X b  (4) 

The parameters b  are estimated by minimizing the 

root-mean-square error defined as 

 T

RMS

1

y

e
n

 e e  (5) 
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After substituting Eq. (4) into Eq. (5) and minimizing 

the root-mean-square error, the following linear 

regression equation is obtained: 

 T T X X b X y  (6) 

which can be solved for the estimate b  of parameters. 

 Because the experimental data includes random 

noise, the estimated parameters will be different for 

different sets of experimental data. The objective is to 

estimate the uncertainty in the estimated parameters 

due to the random noise in the experimental data.  

 The uncertainty in the parameters can be found 

assuming that the random noise has a Gaussian 

distribution with standard deviation (STD) of  ; i.e., 
2(0, )v N  , and that the noise at different 

measurements is uncorrelated. An unbiased estimate of 

the standard deviation can be obtained from 

 
T

2ˆ
yn n

 


e e



 (7) 

 The sensitivity of estimated parameters with respect 

to small differences in data can be calculated using the 

covariance matrix of b  defined as 

   
T

( ) ( )E E  
b

b b b b  (8) 

where ( )E b  is the expected value  of b . Using Eq. (6), 

the covariance matrix can be obtained as 

 
1

2 T


   b
X X  (9) 

The diagonal components of 
b

  is the square of 

standard deviation of b , which represents a measure of 

the sensitivity of estimated parameters with respect to 

the noise. Since the standard deviation of the noise is 

unknown in advance, its estimate in Eq. (7) can be 

used. Thus, the standard error(SE) of parameter 
ib  can 

be obtained by 

 
1

ˆSE( ) T

i ii
b 



   X X  (10) 

The above standard error is indeed the estimate of the 

standard deviation of ib .   

2.2 Uncertainty in the Nonlinear Least Square 

Method 

Different from a linear regression problem, the physical 

model cannot be represented as a linear combination of 

unknown parameters as in Eq. (2). Thus, instead of 

solving a linear regression Eq. (6), a nonlinear 

optimization problem is solved to minimize the root-

mean-square error in Eq. (5). In this paper, Matlab 

lsqnonlin function is used to solve the nonlinear 

regression problems. The identified parameters are 

denoted by 
*

b . In the following, the nonlinear equation 

will be linearized with respect to the identified 

parameters in order to estimate the uncertainty in the 

parameters. 

 In order to linearize the problem, the first-order 

Taylor series expansion method can be used for ˆ( , )y t b  

where 
* b b b . By ignoring higher-order terms, we 

have   

    * ˆ
ˆ ˆ( , ) , , * i

ii

y
y t y t t b

b





b b b  (11) 

By moving *ˆ( , )y t b  to the left-hand side, the equation 

for residual can be defined as 

    * ˆ
ˆ ˆ , , *

i

i

i

y
r y y t t b

b


  


b b  (12) 

Equation (12) can be considered as a linear least square 

problem with unknown parameters b , and the 

gradients ˆ / iy b   becomes the basis vector 
i  in Eq. 

(2). Thus, the uncertainty in parameters b  can be 

calculated using the same procedure described in 

Section 2.1. For that purpose, the vector of basis 

functions can be written as 
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X







 (13) 

Then, Eq. (10) can be used to estimate the standard 

error of b , which can also be considered as the 

standard error of 
*

b  if the problem is linear.  

 Due to the nonlinearity, the standard error of b  

will be different from that of 
*

b . However, if the 

nonlinearity is small, or if the uncertainty in 
*

b  is 

small, them the difference between them will be small. 

 In order to verify the proposed uncertainty 

quantification method of nonlinear least square method, 

Monte Carlo simulation can be used to estimate the 

uncertainty in the identified parameters. In this 

approach, it is assumed that the experiments are 

repeated many times, and the parameters are identified 

for each experiment, from which the distribution of 

identified parameters can be estimated.  
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 In the following two sections we respectively 

illustrate how the uncertainty resulting from least 

square fit compares to the one obtained using Bayesian 

inference using a one variable problem and how the 

uncertainty quantification behaves in the case of a 

multi-variable, highly non-linear problem. 

3 IDENTIFICATION OF SINGLE 

PARAMETER 

The problem we are looking into here is identifying a 

damage growth parameter using damage size 

estimation. We want to fit a damage growth law, in this 

case Paris’ law (Paris, 1999) to a set of damage size 

measurement, the variable to be identified is the Paris’ 

law exponent m. 

  
mda

C K
dN

   (14) 

where a is half the damage size, N the number of 

cycles, C Paris law parameter and ΔK is the range of 

stress intensity factor. Using Paris law (14) the damage 

size at the i
th

 cycle can be derived as 

  
2

21
2

01
2

m mm
model

i

m
a iC a 

  
    

  
 (15) 

In the above damage growth model, several unknown 

parameters are involved. First, the damage growth 

parameters, C and m, need to be identified. In addition, 

the initial damage size, 
0a , is often unknown, and 

needs to be identified too. Coppe et al. (Coppe, 2009) 

used Bayesian inference to identify the unknown 

parameters with measure damage growth. However, 

due to computational challenge in Bayesian inference, 

they only identify the unknown damage growth 

parameter, m, by assuming all other parameters are 

known. In this section, uncertainty quantification of 

nonlinear least square method is used to identify the 

uncertainty in m, and compared it with that of Bayesian 

inference. 

 If we define 
measa  as the measured data, the least 

square fit problem can then be stated as minimizing the 

L2-norm of r, 

 meas model

i ir a a   (16) 

 If we define m* as the fitted value of m, the standard 

error in m can then be obtained (see Eqs. 7 and 10) as 

 
2

*
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d

ˆ
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SE m

a

m




 
 
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 (17) 

with 
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and 

 
*

d

d

model

i i

i

a
e r m

m

 
   

 
 (19) 

 The measured data, a
meas

, are actually simulated in 

this paper by applying an error model to the modeled 

damage size, a
model

. The error model includes the effect 

of bias, b, and noise, v, of the sensor measurement. The 

former is deterministic and represents a calibration 

error, while the latter is random and represents a white 

noise. The measured half damage size after N cycles 

can then be defined as 

 
meas model

N N
a a b v    (20) 

where b is the deterministic bias and v is a random 

noise defined as 

 Uniform( 1,1) mmv    (21) 

 It has to be noted here that when fitting only m, we 

assume the bias to be zero and that the initial damage 

size is known accurately. 

 Since the uncertainty in identifying m results from 

the noise in the data we can also quantify it using 

Monte Carlo Simulation (MCS) by simulating 1,000 

sets of data, perform a fit for each of them and then 

calculate the standard deviation for those data. We can 

afford to do this here because we are simulating the 

measured data using an error model.  Figure 1 shows 

the comparison between the standard error and the 

standard deviation from the MCS. 

 

Figure 1: Comparison of the derived standard error 

with the simulated standard error 

 

 It can be observed that the derived standard error 

(solid line) fits very well the estimated standard 
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deviation (dashed line), the plots can hardly be 

distinguished. 

 The next step is then to compare that standard error 

to the standard deviation of the distribution of m, 

identified using Bayesian inference. In order to do that 

we use the Bayesian inference method developed and 

presented by Coppe (Coppe, 2009). Figure 2 illustrates 

the comparison between the standard deviation 

resulting from least square fit identification and the one 

resulting from Bayesian inference. 

 

Figure 2: Comparison of the standard error obtained 

using least square fit and Bayesian inference 

 

 It can be observed that least square fit is able to 

identify m much more accurately than Bayesian 

inference at least 3 times more accurately. This can be 

explained by the fact that at a given inspection 

performed every 100 cycles, least square fit uses data at 

every cycle. Bayesian on the other hand used the 

measurement at  every 100 cycles, if the same was done 

with least square fit similar standard deviation would 

be achieved, just slightly lower than Bayesian 

inference. 

4 IDENTIFICATION OF MULTIPLE 

PARAMETERS 

 

As mentioned before, Bayesian inference becomes 

computationally expensive when multiple parameters 

are identified simultaneously, for that reason we are not 

presenting a comparison with Bayesian inference 

results. However, the proposed method is 

straightforward for quantifying uncertainty of multiple 

parameters. Unlike the idealized situation of the 

previous section, we now assume that the initial crack 

a0 and the bias b also need to be identified. Then the 

three-variable problem can then be defined as 

    0
ˆ ,  with ,, meas y N bR a m a     (22) 

with 

 ˆ model

i by a   (23) 

 The derivation of the standard error is the same as 

previously and it leads to 

  
1

11
ˆ T XSE m X


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With 
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 And 
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2ˆ
3i

ie

N
 


  (28) 

 As described in the previous section we compare the 

analytical estimate of SE to the simulated STD 

obtained using MCS. This can be found in Figure 3. 

It can be observed that in this case the derived 

standard error does not match the simulated standard 

deviation very well for the first 1,000 cycles. There are 

many explanations for this discrepancy. First, the least 

square method predicts a larger standard error because 

not many data are available at the early stage. The 

nonlinearity of the nonlinear least square problem can 

also contribute to the discrepancy. Another aspect is the 

close relationship between a0 and b, where these two 

parameters compensate each other and can lead to an ill 

conditioned X
T
X matrix. As the damage grows, the 

effect of a0 and b become more independent. 
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(a)

 
(b)

 
(c)

 

Figure 3: Uncertainty in a0 (a), b (b) and m (c) using 

least square fit with three variables 

5 CONCLUSION 

This paper presents a derivation of standard error to 

quantify uncertainty for nonlinear least square models. 

It has been shown that the method gives very good 

results when compared to MCS estimation for a one 

variable case. 

 For a multiple variable case the interaction between 

the variable can cause problems if they are not enough 

variables available. In this case MCS can be used to 

quantify the uncertainty. 

ACKNOWLEDGMENT 

This work was supported by the Air Force Office of 

Scientific Research under Grant FA9550-07-1-0018 

and by the NASA under Grant NNX08AC334. 

NOMENCLATURE 

a half damage size 

a0 initial half damage size 

a
meas

 half measured damage size 

a
model

 half modeled damage size 

b bias in the measurements 

C Paris law parameter 

ei Error in the fit 

f generic functions 

m Paris law exponent 

n number of parameters 

N number of cycles at inspection 

r residual after least square optimization 

R
2
 least square objective function 

S overall standard error 

SE standard error 

x,β vector of parameters 

X generic matrix 

y data points 

ŷ  approximated function 

ΔK range of stress intensity factor 

ε approximation error 

σ applied stress  
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