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BSTRACT 

This work is concerned with multiple faults isolation 
for hybrid systems based on Global Analytical 
Redundancy Relationships (GARRs) approach. GARRs 
are derived from the Hybrid Bond Graph (HBG) model 
of a hybrid system with a specified causality 
assignment procedure. In this article, multiple faults are 
considered in a complex hybrid system and these faults 
can develop during a mode when the faults are not 
detectable. Once a fault is detected, a fault candidates 
set is generated from mode dependent-fault signature 
matrix (MD-FSM) tables and a set of fault pattern 
hypothesis is created from the fault candidates set for 
further refinement. Fault isolation is carried out using a 
multiple nonlinear least square optimization (MNLSO) 
algorithm. The developed technique can deal with 
multiple faults with unknown pattern. The fault could 
be of incipient or abrupt nature. The simulation results 
show the effectiveness of the proposed method.* 
 

1. INTRODUCTION  

As the complexity of industrial systems increases, 
fault detection and isolation (FDI) becomes more and 
more important since it is a crucial means to maintain 
system safety and reliability.  In general, the nature of 
faults can be divided into three categories: abrupt fault, 
incipient fault and intermittent fault. Abrupt faults are 
step like and persistent, which lead to distinct 
inconsistency in the monitored system. Incipient faults 
are slowly developing and usually describe the wear 
                                                           
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

and ageing of system components. Incipient faults are 
relatively difficult to handle due to the slowly 
developing nature and the compensation of the 
feedback control. Intermittent faults usually last for a 
short time period and are difficult to anticipate. A 
model based FDI method works by evaluating the 
system’s behavior model using sensor measurement 
and parameter values. The FDI performance 
dependents on the quality the model and the modeling 
is a demanding step. Fortunately, Bond Graph (BG) 
provides an efficient way to model a complex system 
with different energy domain, such as mechanical, 
electrical and hydraulic, etc, in a unified framework. In 
recent years, BG based FDI has been successfully 
applied to different engineering fields, such as mobile 
robot (Arogeti et al., 2009), air conditioning systems, 
and industrial steam generator (Medjaher et al., 2006), 
etc.  

Many modern complex engineering systems can be 
modeled as hybrid systems. These systems consist of 
continuous dynamics and discrete states represented by 
modes. Within each mode, the system is represented by 
continuous dynamics and different modes correspond 
to different continuous behavior. In real life, hybrid 
systems include examples like Switched mode power 
converter, high speed printers and so on. Health 
monitoring of hybrid systems is relatively difficult 
because system continuous dynamics as well as discrete 
events must be available for FDI purpose. There are 
several works concerning hybrid system diagnosis. A 
discrete model-based approach is proposed for mode 
estimation and fault detection of hybrid systems 
(Koutsoukos et al., 2001), where a timed Petri net is 
used to abstract away the continuous dynamics and to 
represent only the temporal discrete event evolution of 
the system. This method, although general, needs 
domain-specific knowledge for offline generation of a 
fault-symptom table. The FDI of a hybrid system is 



  

based on structured parity residuals, which is also 
known as analytical redundancy relations (ARRs), and 
the model is described as a hybrid automaton 
(Cocquempot et al., 2001). Faults affecting discrete 
evolution are detected by a mode-tracking technique, 
based on residuals and discrete dynamical model.  

An extended BG-based modeling approach named 
Hybrid Bond Graph (HBG) is proposed to extend the 
benefits of BG to hybrid systems. The HBG uses 
controlled junctions to model discrete mode changes 
(Mosterman et al., 1998). The concept of HBG has been 
utilized to develop a qualitative/quantitative diagnosis 
framework for abrupt parametric faults in hybrid systems 
(Narasimhan et al., 2007).The fault isolation is based on 
a qualitative approach, i.e. Temporal Causal Graph (TCG), 
to narrow the set of fault hypotheses. A similar qualitative 
fault isolation method is proposed to consider multiple 
faults for continuous system (Daigle et al., 2007). 

Recently, a new concept of Global Analytical 
Redundancy Relations (GARRs) has been proposed to 
extend the Analytical Redundancy Relations (ARRs)-
based fault diagnosis to hybrid systems (Low et al., 
2010). GARRs describe the behavior of the hybrid 
system at all operating modes and they are derived 
systematically from the hybrid bond graph model of the 
hybrid system.  GARRs lay the base for some issues 
related to health monitoring of hybrid systems, such as 
monitoring ability analysis (Low et al., 2010), mode 
tracking (Arogeti et al., 2010), single fault parameter 
estimation (Yu et al., 2010), and fault prognosis (Yu et 
al., 2010).  

This paper proposes an innovative quantitative Fault 
isolation technique for hybrid systems with multiple 
faults of unknown nature under the condition that faults 
start at a non-detectable mode. The fault could be 
abrupt fault or incipient fault and unknown in advance. 
Once a fault is detected, a set of fault candidates is 
generated from the mode dependent-fault signature 
matrix (MD-FSM) tables, and a set of fault pattern 
hypothesis is established from the fault candidates set. 
A multiple nonlinear least square optimization 
(MNLSO) algorithm is presented, in which a bank of 
NLSO estimators runs in parallel, each based on one 
element in the fault pattern hypothesis set chosen from 
the fault isolation module, to estimate the parameter 
values for abrupt faults or the parameters of the 
dynamics of incipient faults. The objective function 
values of all NLSO estimators are compared to choose 
the true faults with correct nature.  

This paper is organized as follows: Section II 
presents a method for hybrid system modeling and 
GARRs. Section III provides the details on how to 
create the set of fault pattern hypothesis from the fault 
candidates set. The MNLSO algorithm is also 
addressed. Section IV discusses an example with 
multiple faults of unknown pattern, and simulation is 

carried out to verify the proposed methodology. Finally, 
concluding remarks are given in Section V.  

 

2. BOND GRAPH MODELLING AND GARRs 

Bond Graph is a pictorial representation of systems 
with complex energy interactions and it is based on the 
energy conservation law (Karnopp et al., 2006). The 
generalized representation of the system’s components 
in BG allows us to build and combine the behavioral 
model of a complex system in multiple domains. 
Fundamentally, a physical system can be described by 
BG components which include source elements Se  and 
Sf , dissipative element R , storage elements C  and I , 
four junctions 0 , 1 , TF  and GY . These elements are 
linked by lines representing power bonds. For each 
bond, there are two energy variables: effort and flow to 
describe the states of the components. A casual stroke 
of a bond indicates the direction of effort, while the 
flow points in the opposite direction. Generally, BG 
method is considered as not only a modeling tool, but 
also as a methodology for analysis of dynamical 
systems and also as an auxiliary technique for 
controller design. Moreover, a BG model allows a 
structure analysis of the system and offers different 
techniques for model simplification, order reduction 
and sensor placement.  

Unlike other modeling method such as state space 
modeling, the system structure and all components 
under consideration are clearly presented on the graph. 
Therefore, it is convenient for fault isolation. BG 
modeling has been used for both qualitative and 
quantitative FDI. In quantitative BG based FDI, there 
are two kinds of methods, namely, analytical or 
symbolic based method and numerical based method. 
Symbolic based method usually needs the derivation of 
ARRs, and through elimination of unknown variables 
from the corresponding BG model using causal path, 
ARR equations can be obtained and FSM can be 
established. In order to derive ARRs, all the storage 
elements in the BG model are assigned derivative 
causality by allowing inversion of sensor causality 
when necessary. The number of residuals theoretically 
is equal to the number of sensor mounted on the system. 
As for numerical based method, also termed Diagnostic 
Bond Graph (DBG), the numerical values for the 
residuals can be obtained, and the FSM is not generated 
from the closed form ARRs like classic symbolic based 
method, but from the causal path. Nevertheless, if the 
residuals in DBG are represented by equations from the 
DBG model, they are exactly the same as those ARRs 
of symbolic based method, and FSM also will be same. 
When ARRs cannot be symbolically solved, DBG is 
preferred (Samantaray and Ould Bouamama, 2008).  
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HBG extends the ability of BG to model hybrid 
systems using controlled junctions. However, changes 
in configuration through the various operating modes of 
the system can result in reassignment of causality. The 
derivation of GARRs from HBG needs consistent 
causality description at all modes. Such description can 
be achieved by the Diagnostic Hybrid Bond Graph 
(DHBG) (Low et al., 2008). A DHBG is a HBG that is 
assigned with proper set of causalities, such that the 
causality of every active BG component is valid and 
consistent at all modes. In a DHBG, a controlled 
junction output variable is only allowed to be the input 
variable of the following: a 1-port component ( R , C  
and I ); a source element if the source if null when the 
junction is OFF; another controlled junction of different 
type which shares the identical state; or a 2-port 
component ( TF , GY ) with two controlled junctions at 
its both side having identical state. In all of the cases 
mentioned above, the causality change due to the mode 
changes of the controlled junction is limited to the 
bonds connected to the inactive components, therefore 
a DHBG is achieved. For all other cases, for example, 
if the controlled junction output variable is an input 
variable of a standard BG junction (i.e. 1-type junction 
and 0-type junction), causality conflicts will result in 
reassignment of causality and a DHBG is not achieved. 
If a component output variable is fed to a component 
that is inactive when the junction is OFF, then the 
controlled junction is said to be in its preferred 
causality. If all the controlled junctions in HBG are 
assigned with preferred causality, then the causality 
conflicts can be avoided. A systematic causality 
assignment procedure, named Sequential Causality 
Assignment Procedure for Hybrid systems (SCAPH) is 
developed to provide preferred causality for controlled 
junctions.  
    Similar to ARRs for FDI of continuous systems, a set 
of unified constraint, named Global Analytical 
Redundancy Relations (GARRs), is developed to 
describe the behavior of a hybrid system at all modes 
(Low et al., 2010). Without loss of generality, GARR 
equations take the following form                                           
      ( ) 0,,,, =uDfDegl αθ  for 1,2, ,l m= …         (1)                                                                                                             

where m  represents the number of GARRs derived 
from the HBG; [ ]1 2, , , T

mθ θ θ θ= …  denotes the 
nominal parameters of the HBG components which are 
assumed to be known during fault-free operation; 

[ ]Tqaaa …,, 21=α  indicates the mode switching states of 
the q  controlled junctions; u  represents system input; 
De and Df denote the effort and flow sensors.  

Once the GARR equations are obtained, the mode 
dependent-fault signature matrix (MD-FSM) tables can 
be established, from which the monitoring ability 
analysis of the monitored hybrid system can be carried 

out. Since the hybrid systems are multiple modes in 
nature, different components may exhibit different 
monitoring ability under different modes.  

 

3. MULTIPLE FAULTS ISOLATION  

                Table 1 MD-FSM at 0a = .                                                    

 

 

 

 

 

 
 
 

Table 2 MD-FSM at 1a = . 
 

 

 

 

 
 
    Fault detection process evaluates the GARRs 

( ),lg nθ  of a hybrid system with n  being the discrete 
sampling index. If a fault-detectable component, i.e. 

θθ ∈i , is faulty, the GARRs ( ),lg nθ  that contains iθ  
will be nonzero, and hence a fault is detected. After a 
fault is detected, N  finite sample data are captured, so 

Nn ,,2,1 …= . The fault isolation module is activated and 
its objective is to find a set of suspected fault 
candidates leading to the fault signature observed from 
the fault detection process.  If a fault is detected at the 
time of mode change, then the fault candidates only 
include the parameters of such fault signature which is 
non-detectable in the previous mode. This indicates that 
if a fault occurs at the detectable mode, it will be 
detected before mode changes; on the contrary, if a 
fault occurs at the non-detectable mode, this fault will 
be detected only when the system enters a new mode in 
which the fault is detectable. Let us consider Mode 
Dependent-FSM (MD-FSM) tables shown in Table 1 
and Table 2. In the tables, { }0,1α ∈  represents the 
operating mode of the hybrid system; iθ , 

1, ,6,i = … denote the parameters; ir , 1, ,3,i = …  denote 

 1r 2r 3r  bD  

1θ 1 0 0 1 

2θ 0 0 0 0 

3θ 0 0 1 1 

4θ 0 1 1 1 

5θ 0 0 0 0 

6θ 0 1 0 1 

 1r 2r 3r  bD  
1θ 1 0 0 1 

2θ 0 0 1 1 

3θ 0 0 1 1 

4θ 0 1 1 1 

5θ 0 0 1 1 

6θ 0 1 0 1 
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the three residuals. The initial mode is 0a = , and the 
modes change at 5 second. When residual 3r  becomes 
abnormal at 5 second, it leads to a coherence vector 

[ ]0 0 1C =  at mode 1a = , from Table 2 the fault 
could be due to changes of either 2θ , 3θ  or 5θ  , or their 
combination, however, the fault is detected at the time 
of mode change, and only 2θ  and 5θ  are non-detectable 
at previous mode 0a = , therefore, the suspected fault 
candidates set could be { }2 5 2 5, , &δ θ θ θ θ= . Note that 
in the MD-FSM, the fault isolability ( bI ) is not 
involved because unlike fault analysis under single 
fault assumption, even the fault signature of a 
component is unique, it is still possible that the 
signature results from one or more faults occurring 
simultaneously. Since the pattern of fault, i.e. abrupt 
fault or incipient fault, is unknown in advance, a fault 
pattern hypothesis set is generated from the fault 
candidates set. Since both 2θ  and 5θ  could be abrupt 
fault or incipient fault, the fault pattern hypothesis set is: 

{ }2 2 5 5 2 5 2 5 2 5 2 5, , , , & , & , & , &A I A I A A I I A I I Aς θ θ θ θ θ θ θ θ θ θ θ θ=  

where A
iθ denotes abrupt fault and I

iθ denotes incipient 
fault, and any of these elements occurring supports the 
inconsistency.      

From parameter identification viewpoint, 
( ), 0lg nθ =  if the parameters θ  are the physical 

parameters of the system. If the fault is incipient fault, 
the original parameter identification problem is 
transformed into the incipient fault dynamical model 
coefficient identification problem. Assume that the 
incipient fault follows the dynamic behavior of 

aθ θ= ⋅� , so if iθ  is the true incipient fault, then the 
GARR ( ),lg nθ  that contains iθ  can be reformulated 
as 

( ), ,l jg sol nθ , with (0)exp( )isol a tθ= ⋅         (2)                                    

       stnt ⋅= , 1, ,j m= …  and  j i≠  
where st  is the sampling period.  Note that in the 
solution the initial condition )0(iθ  is not equal to the 
nominal value of iθ  since the fault initiates at the non-
detectable mode, therefore, )0(iθ  is also an unknown 
coefficient which needs to be estimated.  

Generally, ( ),lg nθ  is a nonlinear function of θ , so 
without loss of generality, the estimation process is 
formulated as a nonlinear least-square problem. Let 'θ  
is a set containing true abrupt fault parameters and 
incipient fault dynamical model coefficients and initial 
condition values, and the objective function for the 
nonlinear least square problem based on N samples of 
data as follows 

' 1( )
2

TJ r rθ =                              (3)                              

where [ ]1 2
T

Nr r r r= " , 

and ' ' '
1 2( , ) ( , ) ( , )

T

n mr g n g n g nθ θ θ⎡ ⎤= ⎣ ⎦"  for 

Nn ,,2,1 …= . 
According to Gauss-Newton method, the iterative 

solution which minimize the objective function (3) is 
' ' ' 1 '

1 ( ) ( )k k J k kH Jθ θ θ θ−
+ = − ∇                 (4)                              

where k  denotes the iteration index , and 
'

' '( )
( ) ( )

T
k

k k
r

J r
θ

θ θ
θ

∂
∇ = ⋅

∂
, 

' '
' ( ) ( )

( )
T

k k
J k

r r
H

θ θ
θ

θ θ
∂ ∂

= ⋅
∂ ∂

.  

The NLSO estimator is applicable to the condition 
where there is one element in the fault pattern 
hypothesis set, if there are more than one element in the 
set, a multiple nonlinear least square optimization 
(MNLSO) algorithm is proposed, in which each NLSO 
estimator is based on one element in the fault pattern 
hypothesis set, to estimate the parameter values for 
abrupt faults or the parameters of the dynamics of 
incipient faults. The bank of NLSO estimators run in 
parallel, and the objective function of all estimators are 
compared to choose the true faults with correct pattern. 
The Block diagram of the MNLSO based fault isolation 
method is shown in figure 1, in which p denotes the 
number of elements in the fault pattern hypothesis set.  

 Figure 1 Block diagram of the MNLSO based fault    
isolation method. 

 



Annual Conference of the Prognostics and Health Management Society, 2010 

 5 

4. ILLUSTRATIVE EXAMPLE 

4.1   System Description     

1R

2R

3R

1V 1C 2C

1sw

2V

Df

2sw 4R

5R2De 3De1De

  

Figure 2 A hybrid system: an electric circuit. 
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1:VSe

1R

2011

1C

2R

2:VSe

41

3R

50

2C

Df

1De

2De

61

4R

70

5R

3De
1sw 2sw

 
Figure 3 DHBG of the electric circuit. 

     Figure 2 presents an example of hybrid system in 
electrical domain whose DHBG is depicted in figure 3. 
The system consists of five R  
elements { }54321 ,,,, RRRRR , two C elements { }21,CC , 
two switches 1sw  and 2sw , one current (flow) 
sensor Df , and three voltage (effort) sensors 
{ }321 ,, DeDeDe  .  

First, consider the constitutive relation of junction 1 

                           0321 =−− eee                       (5)                                                                                          
    Since 2f  is measurable, Dff =2 [16], and the causal 
paths lead 2e  to  

                             DfRe ⋅= 12                         (6)                                                                                                      
     Substituting (6) into (5), GARR1 is achieved                                    

1 1 1 1 1( ) 0GARR a V R Df De= − ⋅ − =         (7)                                                                     
     Next, consider 02 junction attached to 1De , the 
constitutive relation of this junction can be expressed as 

                        087431 =−−+ ffffa                (8)                                                                                      
    Then tracking back the causal paths yields 

  

3

4 5 5 6 4 2 1
2 2 2

7 1 7 1 1

8 9 9 8 10 1 2
3 3 3

1 1 1( ) ( )

1 1 1( ) ( )

f Df

f f e e e V De
R R R

d df C e C De
dt dt

f f e e e De De
R R R

=

= = = − = −

= =

= = = − = −

       (9)                            

Substituting (9) into (8) gives        

           2 1 2 1
2

1 1 1 2
3

1 ( )

1( ) ( ) 0

GARR a Df V De
R

dC De De De
dt R

= + −

− − − =

          (10)                            

    Using the junction 05 with 2De , yields 
                       01221110 =−− faff                          (11)                            

    By following the causal paths, the flow variables 10f , 

11f  and 12f  can be represented as 

  10 9 9 8 10 1 2
3 3 3

1 1 1( ) ( )f f e e e De De
R R R

= = = − = −                                      

                 2211211 De
dt
dCe

dt
dCf ==                      (12)                             

12 13 13 12 14 2 3
4 4 4

1 1 1( ) ( )f f e e e De De
R R R

= = = − = −  

The third GARR3 can be obtained by combining (11) 
and (12)                                             

 
3 1 2 2 2

3

2 2 3
4

1 ( ) ( )

1 ( ) 0

dGARR De De C De
R dt

a De De
R

= − −

− − =

        (13)                            

    Finally consider junction 07, with the constitutive 
relation            
                                14 15 0f f− =                             (14)                            
Tracking the casual paths, gives                                                                

14 13 13 12 14 2 3
4 4 4

1 1 1( ) ( )f f e e e De De
R R R

= = = − = −      (15)                             

15 15 3
5 5

1 1f e De
R R

= =                         (16) 

Then GARR4 is given by                                                            

4 2 2 3 3
4 5

1 1( ) 0GARR a De De De
R R
⎡ ⎤

= − − =⎢ ⎥
⎣ ⎦

   (17)                           

From the four GARRs derived, the MD-FSM can be 
obtained in Table 3~ Table 6.  

      Table 3 MD-FSM at 1 0a = ， 2 1a = .                              

 
 
 
 
 
 
 
 

 
 

 
 
 

 
1r 2r 3r  4r  bD  

1C 0 1 0 0 1 

2C 0 0 1 0 1 

1R 0 0 0 0 0 

2R 0 1 0 0 1 

3R 0 1 1 0 1 

4R 0 0 1 1 1 

5R 0 0 0 1 1 
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            Table 4 MD-FSM at 1 1a = ， 2 0a = .                                                                                                                                          
                            
 
 
 
 
 
 
 
 
                
 

 
Table 5 MD-FSM at 1 0a = ， 2 0a = . 

 
 
 
 
 
 
 
 

                    .                            
 

 
 

Table 6 MD- FSM at 1 1a = ， 2 1a = .       
                                      

     

 

 

 

 

 

4.2   Simulation Result 

     MATLAB 7.0 is used to test the proposed fault 
isolation method for the hybrid system. The physical 
parameters of the circuit are: 1 7VoltV = , 2 1VoltV = , 

1 670R = Ω , 2 215.6R = Ω , 3 67.5R = Ω , 4 215.4R = Ω , 

5 509R = Ω , 1 10000 FC μ= , 2 4700 FC μ= , sampling 
time st is 0.05 s. Two faults are introduced, the first 
one is a gradual buildup of resistance introduced in 4R  
at 5st = , the coefficient of the incipient fault is set as  

0.05a = , and the other one is an abrupt fault 
introduced in 5R  at 6st = , in which 5R  changes from 

509Ω  to 350Ω . The fault profile is shown in figure 4. 
The switches programming is shown in Figure 5. 
Figure 6 illustrates the responses of residuals due to the 
faults in 4R  and 5R , in the figure, dash line denotes the 
thresholds 1 2 3eε = − , 2 2 2eε = − , 3 0.6 3eε = −  and 

4 5 4eε = − . If the residual exceeds the predetermined 
threshold, and system is considered as faulty. 
According to the MD-FSM tables, it is obvious that the 
faults in 4R  and 5R initiate at a non-detectable mode, i.e. 

1 0a =  and 2 0a = , hence the faults cannot be detected 
until the system enters a mode in which the 

4
(

)
R

Ω

5(
)

R
Ω

0 2 4 6 8 101214161820
200

300

400

500

t(s)
0 2 4 6 8 101214161820

300

400

500

t(s)  
Figure 4 Fault profile in electrical circuit.    

1sw

[ ]sect

[ ]sect

2sw

 
Figure 5 Switches programming for simulation. 

 
Figure 6 Residual responses for multiple faults. 

faults are detectable, i.e.  10t s= . Figure 5 reveals that 
residual 3r  and 4r  are sensitive to the faults at mode 

1 1a =  and 2 1a = . All observations have been captured 
from the moment that a fault is detected. With an 
observation window of 10 seconds, two hundred of 
sample data ( 200N = ) are collected after the fault 
occurrence. From the MD-FSM table at that mode, 4R  
and 5R  have fault signature [ ]0 0 1 1  and 

[ ]0 0 0 1 , respectively. According to the MD-FSM 

 1r  2r  3r 4r  bD  
1C  0 1 0 0 1 

2C  0 0 1 0 1 

1R  1 0 0 0 1 

2R  0 1 0 0 1 

3R  0 1 1 0 1 

4R  0 0 0 0 0 

5R  0 0 0 0 0 

 1r  2r  3r  4r  bD  
1C  0 1 0 0 1 

2C  0 0 1 0 1 

1R  0 0 0 0 0 

2R  0 1 0 0 1 

3R  0 1 1 0 1 

4R  0 0 0 0 0 

5R  0 0 0 0 0 

 1r  2r  3r  4r  bD  
1C  0 1 0 0 1 

2C  0 0 1 0 1 

1R  1 0 0 0 1 

2R  0 1 0 0 1 

3R  0 1 1 0 1 

4R  0 0 1 1 1 

5R  0 0 0 1 1 
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table at mode 1 1a =  and 2 1a = , 4R  and 5R  are non-
detectable at previous mode 1 1a =  and 2 0a = , and the 
fault signature [ ]0 0 1 1  may result from one or 
more faults occurring simultaneously, and also the 
faults are detected exactly at the time of mode change, 
hence the targeted fault candidates set is 

{ }4 4 5, &R R Rδ = . Since no fault pattern information is 
available in advance, in order to achieve fault isolation, 
the fault pattern hypothesis set is obtained as 

{ }4 4 4 5 4 5 4 5 4 5, , & , & , & , &A I I I A I I A A AR R R R R R R R R Rς =  .   
To further refine the isolation results, six NLSO 
estimators in MNLSO run in parallel, each based on 
one element from the fault pattern hypothesis set.  

Table 7 Objective function values comparison.  

 Table 7 lists the objective function values of 
different element in the fault pattern hypothesis set. It is 
obvious that the faults are in 4 5&R R  with fault pattern 

4 5&I AR R , not in the other elements in the fault pattern 
hypothesis set. Figure 7 shows the estimated values for 

4 5&I AR R  versus iterations, the estimated results are 

[ ]'
4 5

ˆ ˆˆ (0) 0.049 275.89 349.24a R Rθ ⎡ ⎤= =⎣ ⎦
, which are 

very close to the designed values 
[ ] [ ]4 5(0) 0.05 276.57 350a R R = . The simulation 
results confirm that the proposed method can accurately 
isolate multiple faults with unknown fault pattern for 
hybrid systems.     

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

Iteration
0 1 2 3 4 5 6 7 8 9 10

220

240

260

280

Iteration

0 1 2 3 4 5 6 7 8 9 10

300

400

500

Iteration

a

4
(0

)(
)

R
Ω

5
(

)
R

Ω

 
Figure 7 Estimated parameters '

4 5
ˆ ˆˆ (0)a R Rθ ⎡ ⎤= ⎣ ⎦ . 

5. CONCLUSION 

In this paper, a method dealing with multiple faults 
isolation is proposed for hybrid systems with unknown 
fault pattern. The unified property of GARRs is utilized 
to formulate the fault estimation problem as a nonlinear 
least square optimization, and solve it using Gauss-
Newton technique. Since the fault pattern is unknown 
in advance, once the fault candidates set is obtained, a 
fault pattern hypothesis set is created for further 
refinement. A MNLSO algorithm is presented to find 
the true faults with correct pattern. The simulation 
results suggest the effectiveness of the proposed 
method. Future works will be devoted to multiple faults 
isolation for hybrid systems with unknown mode 
changes. 
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