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ABSTRACT 

Condition-based maintenance (CBM) is a maintenance 

strategy that uses diagnosis and prognosis to determine 

system‟s health. The overall objective of this paper is 

design a real-time monitoring system for CBM, applied 

to a conveyor belt system, based on the integration of 

prognosis and health management technologies (PHM) 

and hybrid models. This work is focus on the prognosis 

part of PHM. A forecasting model based in Adaptive-

Network-based Fuzzy Inference Systems (ANFIS) 

combined with a Gray-Scale Health Index (HI) is 

implemented to evalualte the system degradation. As 

shown throughout the paper, the hybrid model allows 

extracting the main features of the system that will be 

used in the prognostic algorithm. The obtained results 

show that the ANFIS prediction model linked to the 

degradation index HI can track the system degradation, 

thus have the potential for being used as a tool suitable 

for condition-based maintenance.
 1 

1 INTRODUCTION 

 The present work is motivated by the increasing 

dependence of modern society on autonomous and 

complex technological processes and systems, where 

availability, reliability and safety are strategic words in 

industry. To achieve these requirements maintenance, 

or more general system‟s health monitoring, becomes 

an essential part. The performance degradation of 

mechanical systems is mainly due to component wear, 

abrasion and fatigue during the operation process. In 

order to ensure the component‟s health, maintenance 

strategies are traditionally used by, reactive, preventive 

or proactive maintenance. Reactive maintenance 

involves all the corrective actions performed as a result 

                                                           
1 This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

of system failure, to restore the specified system 

condition as the main objective. Preventive 

maintenance is based on a scheduling of planned 

maintenance actions that aims to “prevent” commonly 

failures. On the other hand, proactive maintenance 

consists of an intended set of measures to maximize the 

operational availability and safety of the system. It 

reacts when maintenance conditions fail, but also to 

anticipate the non satisfaction of these conditions to 

avoid the failure. 

 Condition Based Maintenance (CBM) is 

characterized as a proactive maintenance strategy that 

uses diagnosis and prognosis to determine system‟s 

health (Luo et al., 2008). Prognosis in CBM involves 

prediction of system degradation based on the analysis 

of monitored data. Based on the current condition, its 

main objective is to assess, whether the process needs 

maintenance tasks, and if a maintenance process is 

needed, determining when the maintenance actions 

should be executed (Tran et al., 2009). 

 One of the enablers of CBM is the use of prognostic 

and health management (PHM) technologies. PHM 

quantifies the extent of deviation or degradation from 

an expected normal operating condition.  It also 

provides data that can be used to achieve several 

critical goals: i.e. (1) warning of failures in advance, (2) 

minimizing unscheduled maintenance, extending 

maintenance cycles, as well as maintaining 

effectiveness through timely repair actions; (3) 

reducing the life-cycle cost of components by 

decreasing, inspection costs and downtime, an (4) 

qualification improvement, design assistance and 

logistical support for fielded and future systems. The 

strategy to perform PHM structure is based on five 

consecutive steps: (1) data collection, (2) degradation 

detection and system monitoring, (3) system diagnosis, 

(4) prognosis and (5) re-organization and decision stage 

(Zhang et al., 2009). 

 This present paper contributes on the “predictive” 

portion of PHM been the diagnosis part out of scope. 

Often, this prediction is characterized in the Remaining 
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Useful Life (RUL) estimation of components or system 

(Sheppard et al.,  2008). Kalgren et al., (2006) proposes 

a grey-scale Health Index (HI), as a continuous 

variable in the range from 0 to 1,  to indicate 

component or system health/performance state from 

new, fully operable, undamaged condition (1.0) to 

complete functional failure (0.0). The index is produced 

by algorithms that assess the system performance or 

health via measured symptoms, modeled data, and/or 

usage-based predictions. In our case, grey-scale HI is 

used to indicate the future operational capability of the 

system.  

 From engineering point of view, the deployment of 

the prognosis process and fault diagnosis can come 

from three different types of approaches; (1) Statistical 

approaches (Muller et al., 2008; Tran et al., 2009; 

Bolander et al., 2009), (2) Model-based approaches and 

(3) Data-driven approaches (Tran et al., 2009; Bolander 

et al., 2009).  

  The aim of the paper is to present the developed 

CBM architecture for on-line operation in a laboratory 

process. First step to solve is the system monitoring 

design. Then, the most significative system 

characteristics must be extracted for prognoses and 

diagnoses system health. The novelty of this work is to 

apply different techniques to simplify the system 

monitoring by using Hybrid System (HS) 

representation. Furthermore, an ANFIS model and HI 

are combined for health prediction and degradation 

visualization of the system. 

 The proposed approach is exemplified by means of 

an academic application, specifically a conveyor belt 

which moves a cart between two arm-robots. 

   The structure of the paper is the following. Section 

2 describes the proposed CBM architecture. Section 3 

outlines the model based techniques used in the paper. 

In Section 4, the proposed approach is applied to the 

conveyor belt process. Section 5 shows firsts results 

achieved. Finally, conclusions are provided in Section 

6.  

 

2 CBM ARCHITECTURE 

Developed CBM architecture is depicted in Figure 

1. This architecture includes both diagnosis and 

prognosis. The steps that allow inferring if the system 

requires some maintenance operation are:   

 Step1. Data collection: a real-time system is used to 

acquire all the available measurements. 

 Step2. System monitoring: A model description 

based on a hybrid automaton is used to follow the state 

of the system.  

 Step3. Data pre-processing: At each state, the 

selected system features are computed. 

 Step4. Prognosis: This step includes the 

computation of index degradation. It is computed using 

a HI (Kalgren et al., 2006) and an Adaptive-Network-

based Fuzzy Inference System (ANFIS) for predicting 

the machine condition.  

 Step5. Supervisor: With the information provided 

by HI and the monitoring data from the system it will 

be possible to determine the maintenance tasks and, in 

the case of predicting a failure, it could be possible to 

define corrective actions. 

 

 

Figure 1: PHM Scheme based in hybrid system 

representation 

The final objective is to provide information about 

the system operational capability to the operator, and 

the associated maintenance and logistics actions 

proposed by Kalgren et al. (2006), (see Table 1). 

Table 1: Gray-Scale Health Index for CBM 

 Operational 

Capability 

Maintenance Action Logistics Action 

 

Fully Functional 

 

No Maintenance 

Required 

 

No Logistic 

Changes 

Functional with 

degraded 

Performance 

 

Maintenance at 

Convenience 

Trigger 

Opportunistic 

Logistic Sparing 

Reduced 

Functionality 

Schedule 

Maintenance Now 

On-Demand 

Logistic Sparing 

Functionality 

Severely Impinged 

 

Remove from Service 

ASAP 

Logistic 

Emergency 

Sparing 

 

No functionality 

 

Remove from Service 

Now 

Logistic reflect 

unit out of Service 

 

3 MODEL-BASED TECHNIQUES   

Two modeling techniques are used in this approach. 

The hybrid system used for describing the system 

working stages and the hybrid approach based on 

ANFIS is used to predict the future system condition. 
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3.1 Hybrid systems 

Bemporad (2006) defines a HS as a dynamic system 

with both continuous and discrete behaviors. As seen in 

Figure 2, a hybrid system can be described by a state 

machine representation that comes from informatics 

science and a continuous dynamic representation 

coming from control theory. 

Figure 2: Hybrid system representation      
 

 Then, a hybrid system can be seen as a system 

which behavior is different depending on the current 

mode of operation among the several modes that can 

present. In each mode, the behavior is described by a 

set of difference or differential equations. The switch 

between different modes is controlled by „events‟. An 

event can be an external control signal, internal control 

signal or the dynamics of the system itself (Lygeros, 

2004). 

 A hybrid automaton is a mathematical 

representation of a hybrid system, combining in a 

unique formalism, the transition of the state machine, 

discrete part, and differential equations to capture the 

continuous part (Bemporad, 2006). 

A hybrid automaton   is defined as (Lygeros, 

2004): 

                        ( 1 ) 

with: 

-            is finite set of discrete states or 

modes where each state represents a functional system 

model. 

-     
 
 is set of continuous variables. 

-    is the set of events corresponding to control 

the switches between modes or fault events. 

-       is the set of initial conditions,      
         

-       is the set of observable events. 

-    is the transition function,      . 

-    is guard condition 

And, the discrete dynamic part of the system is 

represented by the system mode:              

(Bayoudh et al., 2006). 

 The approach relies on evaluating the system 

degradation exhibited at the continuous level into 

hybrid automaton. A full process includes a normal or 

degraded system mode characterized by  .  

   A behavior automaton for each system mode -

normal or degraded - is defined by Bayoudh (2006), as: 

 

        
         

        
 

       
        

   ( 2 ) 

 

where,       
  is the set of behavior automaton states, 

each state is characterized by a different working mode, 

and       
         is the set of events.   

 

3.2 ANFIS as a time series prediction  

 ANFIS architecture is composed of fuzzy sets (FIS) 

with Takagi-Sugeno rules, allowing the introduction of 

the expert knowledge, and a neural net (NN) capable to 

learn from data. Figure 3 presents ANFIS classic 

architecture for two variables x and y where the x 

domain is covered by the fuzzy sets A1 and A2, and the 

y domain by B1 and B2. Each domain can be described 

as a fuzzy set. 

 
Figure 3: ANFIS structure 

  In a fuzzy set, S is a function that links every 

element of the domain, D, with a point in the constant 

interval [0,1]. Zero is used to indicate that the element 

is not a member of S, and one indicates the complete 

membership of the element to S. The values between 0 

and 1 represent the partial degrees of belonging to the 

interval (Velásquez et al., 2004).  

  The function that links every element of the domain 

D in the interval [0, 1] is the membership function, 

  (x), and it can be represented using different 

mathematical functions. The one used in this work, is 

the sigmoid-S function: 

 
 

 
        

 

              
 

 

( 3 ) 

 

where {    } are the modifiable parameters governing 

the shape of the membership function.  

 In ANFIS layer 1 (Figure 3), the (x, y) input for a 

process implies: first, to calculate       ,       , 

      ,        using Eq. (3) having the membership 

input to the fuzzy set. Then, the membership 
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computation data flows to layer 2 where the product 

inference for every rule                 satisfying 

the Takagi-Sugeno rules  are computed (Velásquez et 

al., 2004).;  

 

                               

                               

 

( 4 ) 

 In layer 3, this data flows through the NN part of 

ANFIS scheme and establishes the contribution 

percentage of each rule to the final solution    
  

   
 
   

; Layer 4 computes the product of normalized 

values achieved in layer 3, like     ; and finally in 

layer 5, the output is calculate as          (Velásquez 

et al., 2004).  

 To determine the ANFIS input as a time series 

prediction the past process values up to sample ‘k’ are 

used to predict the value at some point in the future ‘ k 

+ n ’. The standard method for this type of prediction is 

to create a mapping from m points of the series spaced 

by  samples as follows: 

 
                                  ( 5 ) 

where        is the predicted value. 

 

4 PROPOSED APPROACH 

 Our CBM approach uses a behavior automaton to 

characterize the real system performance. In each 

working mode, continuous variables are used to 

compute some characteristics parameters that are send 

to ANFIS network. The ANFIS network using those 

characteristic parameters determines the system 

condition index that will allows the health system 

prediction in the future n cycles. This allows 

characterizing the system degradation to facilitate 

logistic support decisions. A conveyor belt, which 

moves a cart between two arm-robots, is used to 

illustrate this approach. 

 

4.1 System description 

 The conveyor belt (Figure 4) uses an AC electrical 

motor to move the belt from one robot-arm to another. 

A frequency variator with a two channels encoder is 

used to control the motor velocity. The process starts 

with the cart in front of robot A, with the conveyor 

stopped -motor off- and the cart locked. When robot-

arm A finishes it work, the first task is to un-lock the 

cart and then the conveyor belt movement starts, 

moving the cart to robot-arm B. After, robot-arm B 

starts their job. When it finishes, the conveyor belt 

returns the cart to the initial position, and the job starts 

again. The velocity set-point is composed of an 

acceleration ramp, a constant value and deceleration 

ramp. 

 To monitor the motor behavior a temperature sensor 

(  ) and a current sensor of the AC motor (  ) are 

used. The control system also provides the following 

digital information: 

-    : cart locked 

-     : finishing acceleration ramp from A to B 

-     : starting deceleration ramp from A to B 

-     : finishing acceleration ramp from B to A 

-    : cart is in front of robot-arm A 

-    : cart is in front of robot-arm B 

-   : finishing job of Robot-arm A  

-   : finishing job of robot-arm B 

 Different periods of    and   have been considered. 

 

 
Figure 4: Proposed application 

4.2 Behavior Hybrid Automaton Representation for 

system monitoring 

A conveyor belt system can be modeled through a 

behavior automaton representation as in Eq. (1) where 

the set of observable events are: 

                                       ; 

and, the set of continuous variables are   
           , being   and   the cart position and 

velocity computed using the encoder signal.  

 

 
Figure 5: Conveyor system signals 

The cart position is used to define the set of normal 

working stages. In this case study 9 states have been 
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identified.  Figure 5 shows in solid green line the cart 

position versus time,     , where 0% and 100 % 

correspond to     and    , respectively; and, the step 

signals
2
  and the set of transitions,  3. Table 2 and 3 

describe the set of normal states,  , and the relation 

between   and   . Figure 6 shows the structure of the 

hybrid automata proposed. 

 In this paper only the states q4 and q8, are used to 

extract the motor characteristics. These states allow to 

identify the area where the conveyor belt is working 

with constant velocity. In these stages some dynamic 

characteristic can be extracted, e.g. velocity (the 

derivative of the position), current amplitude and 

frequency of the AC motor and its temperature.  

Table 2: States description,   

STATES DESCRIPTION 

q1 Cart in robot A 

q2 Un-locking the cart 

q3 Conveyor belt acceleration 

from A to B 

q4 Constant speed, from A to B 

q5 Conveyor belt decelerations, 

from A to B 

q6 Cart in robot B 

q7 Conveyor belt acceleration 

from B to A 

q8 Cart travelling, from B to A 

q9 Locking the cart 

 

Table 3: Transition description  

TRANSITIONS DESCRIPTION 

t1 (magenta dotted line)      

t2 (green dash-dotted lines)       

t3 (solid blue line)        

t4 (dashed blue line)        

t5 (dash-dotted cyan line)       

t6 (dotted black line)      

t7 (dashed blue line)        

t8 (blue solid line)       

t9 (green dash-dotted line)       

4.3 Prognostic calculations and health index 

 After system monitoring developed, the prognostic 

part of PHM scheme, to predict the plant health, should 

                                                           
2 The relation between step signals and transitions are 

described in Table 2. 
3   and   means OFF-ON and ON-OFF signal activation, 

respectively. 

be implemented. ANFIS is used for a gray-scale health 

index computation.  

 According to ANFIS structure (Figure 3), to train 

ANFIS model the input and output variables must be 

provided. For conveyor belt application 8 inputs are 

used:                 
        

                         
         

      , where super 

indices 1 and 2 denote the values computed in the states 

q4 and q8, respectively. In each working cycle the 

mean value of: velocity (  ), temperature (  ), and 

current amplitude (  
   ) and frequency (  

 ) provided by 

  are computed.  

 Five fuzzy sets for each variable are defined, 

characterizing the five degradation modes proposed in 

gray-scale HI.  

 The output fuzzy sets are codified to produce the 

system condition (SC) number, allowing to visualize 

the system degradation. The SC indicates the mode in 

which the plant will be after n cycles. Mode 1 means 

that the system will be fully functional while mode 5 

will not be functional at all. Table 1 shows the ANFIS 

output. 

 Matlab’s Fuzzy logic toolbox is used for the entire 

process of training and evaluating the neuro-fuzzy 

model. ANFIS is used applying Eq. (5), with m = 4, 

=50 and n=50, to forecast 50 signal cycles ahead. 

 
Figure 6: Conveyor belt states and transitions to 

monitor the system 

4.4 Motivational Example 

To illustrate how the proposed fusion of ANFIS 

approach for predicting the evolution of the system 

heath and the use of gray-scale HI a motivational 

example is proposed that considers only two signals 

    
            , hence x and y.  

ANFIS approach, recalled in Section 2.2, with x and 

y as a system signals, and the domains A and B, is used 

to forecast signals behaviors. 

In Figure 7, x and y are represented into two y-axes 

where in the lefth axes apears the HI while in right axes 

the real signal value along working cycles are 

presented, respectively. The degradation index follows 

the process signals characteristics and indicates the 

health or performance state from normal with a 1 to 

complete damage with a 0. Then, there signal can be 

q1

t1

q2

q3

q4
q5q6

q7

q8

q9

t2

t3

t4

t5
t6

t7

t8

t9
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descomposed in subsets equivalent to each HI stage 

(Table 1) being each membership functions presented 

in Eq. (3).  

 To obtain an indicator that presents the total system 

damage, the following levels are used: A: {A1- Fully 

functionality, A2- Functional with degraded 

performance, A3- Reduced functionality, A4- 

Functionality severely impinged, A5- No functionality } 

and the same classification for fuzzy sets B are 

obtained. Moreover, the fuzzy rules express the full 

system degradation in n cycles: 

 
                                         

                                            
                                           
                                            

                                      
 

 
Figure 7: Grey-Scale Health Index example of 

mapping. 

5 FIRST RESULTS 

 In this section two scenarios illustrate the proposed 

methodology. Each scenario is characterized by the 

number of working cycles (WC) and the remaining time 

in q1 and q6, (    ) and (    ), respectively. The 

operation conditions for each scenario are described in 

Table 4. Both scenarios correspond with a degraded 

behavior (dB). To generate these scenarios different 

levels of friction are introduced in one roller belt 

causing the system malfunction. 

Table 4: Scenarios description 

SCENARIO WC 

(number) 
     

(sec) 

     

(sec) 

Behavior 

Scenario 1 300 5  10  dB 

Scenario 2 550 5  5  dB 

 

 The system monitoring signals appears in Figure 8: 

  ,   ,   
    and   

 , for each scenario on either conveyor 

belt directions, from robot-arm A to B and B to A. The 

degraded behavior is reflected in velocity and current 

frequency, both variables being significatively 

decreased. Otherwise, in the two scenarios, temperature 

increases fast at the beginning and, after a transition, it 

keeps constant. These eight inputs are introduced to the 

ANFIS model to forecast the full system condition.  

 The obtained results are shown in Figure 9 where 

ANFIS model output, SC, is presented for both 

scenarios. SC appears in a solid blue line and the 

desired output behavior in red dash-dotted line. Y-axes 

shows the SC mode from 1 fully functionality to 5 no 

functionality, and x-axes presents the cycle prediction 

number. 

 
Figure 8: Conveyor belt motor characteristics 

 

 
Figure 9: Health Prediction 
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6 CONCLUSION 

 This work is a starting point to show how a system 

representation based on a hybrid automaton has 

potential benefits for extracting the most specific 

system parameters. The proposed approach permits 

system monitoring for the application of  prognostic 

and diagnosis methodologies to monitor the system 

condition, facilitating the visualization of degradation 

system as well as maintenance and logistic task 

scheduling.  

 The hybrid model representation enables in an easy 

way the introduction of PHM techniques to system 

monitoring. The use of ANFIS and the gray-scale HI 

has allowed to predict the future condition of the 

conveyor system in a single formalism, the System 

Condition SC number. 

 The combination of hybrid methodology and PHM 

techniques has produced positive results and has 

facilitated issues related with condition-based 

maintenance and tolerant control methodologies. As a 

consequence, this research could be pursued in the 

future, working in the prediction information and SC to 

build a degradation automaton making possible to 

manage logistic and maintenance tasks for condition 

based maintenance.   
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