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ABSTRACT 

In this paper, we propose to use a data 

modeling technology, Factor Analysis, in the 

application of complex system fault diagnosis 

and failure prognosis. Factor Analysis 

captures the dominant dependency underlying 

observable measurements of physical systems, 

and is sensitive to their changes, as 

demonstrated by the preliminary experimental 

results on two real-world datasets. 

Comparison studies show that Factor Analysis 

has advantages over two related techniques, 

Principal Component Analysis and K-Means. 
*
 

1 INTRODUCTION 

The quality of modern life enjoys continuous 

improvement due to the extensive use of intelligent 

systems, such as robotic assistants, automobiles, health-

care device, and airplanes. At the same time, the 

increasing sophistication of these systems causes 

concerns regarding their robustness and reliability. 

Consequently, fault diagnosis and failure prognosis 

(D&P) has become a key component of many complex 

systems. 

In general terms, D&P algorithms transfer the signals 

measured from the target system into the knowledge 

regarding the system health status. In particular, the 

goal of diagnosis is to detect anomalies and isolate root 

cause of faults. The goal of prognosis is to identify 

failure precursors and predict the remaining useful life 

of the system, which allows adequate maintenance to 

be provided in advance.  

At the heart of D&P technologies is the 

understanding of system failure modes, including the 

classification, the symptoms, the underlying causes, the 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

progressive patterns, and the effects. However, the 

proliferating system complexity makes it difficult to 

exhaust every potential failure mode. The mounting 

time-to-market pressure reduces the development time, 

and poses further challenges to fully explore the failure 

mechanisms of newly developed systems.  

Effective and efficient data analytical methodologies 

are being called for to compensate the popular D&P 

methods, such as model-based approaches that require 

thorough knowledge of the target system, and data-

driven approaches that usually need labeled failure data 

(Schwabacher and Goebel, 2007). 

Towards this end, this paper presents some initial 

results of utilizing a data modeling technology called 

Factor Analysis (FA) to support the identification of 

new/unknown failure modes and the signature of 

incipient failures, given limited prior knowledge of the 

system. The rest of this paper is organized as follows. 

Section II introduces the standard FA, including the 

model, the interpretation of the model parameters, the 

parameter estimation algorithm, and a comparison of 

FA with a related technique, Principal Component 

Analysis (PCA). Section III presents an extension of 

FA to Mixture of Factor Analysis (MFA), and the 

comparison of MFA with a related technique, K-

Means. Section IV presents some preliminary 

experimental results of using MFA for fault detection. 

Section V draws the conclusion and discusses future 

works. 

2 Factor Analysis 

FA is a statistical technique to represent observed 

random variables in terms of a much smaller number of 

latent variables, i.e., hidden random variables. The 

latter usually reveal the key driving factors or 

relationships underlying the observations. Therefore, 

these hidden random variables are usually termed as 

factors. The use of FA was pioneered by the 

psychologist Charles Spearman in his 1904 paper in the 
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field of intelligence research. Since then, FA has been 

widely used in areas such as business and economics, 

meteorology, and medical science, all of which deal 

with large quantities of data (Nokhandan et al., 2009; 

Safdari et al., 2005; Chaijaruwanich et al., 2006). We 

have not seen much previous work using FA in system 

diagnosis and prognosis though.  

Physical systems are governed by fundamental 

physical laws. For example, an electrical system is 

governed by the ohm’s law. As a result, the signals 

measured from a physical system are usually closely 

related, and have an underlying structure. While the 

specifics of the structure are different from one system 

to another, the structure remains the same as long as the 

system is in its normal operation. When the system is at 

fault, the underlying structure will change, and the 

change will be reflected in the measured signals. 

Capturing this change allows the capture of fault 

signature. The challenge for real-world applications, 

especially for those complex engineering systems, is 

that the structural dependency among signals is usually 

complicated, and not easy to fully understand and 

model. In addition, the dependency is likely to be 

contaminated by sensor noise. Being a correlation 

analysis technique, FA has a potential to address this 

challenge. By modeling the covariance matrix, a 

representation of the intrinsic structure of the measured 

signals, FA captures the dominant signal dependency, 

and de-couples the underlying structures of measured 

data from noise. While standard FA handles only linear 

systems, an extension of FA, namely mixture of factor 

analysis (MFA), addresses non-linear systems. 

In FA, a d-dimensional real-valued random vector x  

is modeled using a k-dimensional random vector z , 

where k  is generally much smaller than d . The model 

is written as, 

ezx       (1) 

where x  is the vector of observed variables, z  is the 

vector of latent variables or factors,   is the mean,   

is a matrix called factor loading matrix, and e  is a d-

dimensional vector representing the noise. z  is 

assumed to be ),0( N  distributed, which means the 

factors in z  are mutually independent with a zero 

mean and a unit deviation. The noise model is channel 

independent and Gaussian, i.e., ),0(~ Ne , where 

  is a diagonal matrix. The goal of FA is to identify 

parameters },,{   that best fit the observed data. 

Since k  is typically smaller than d , FA promises to 

reduce the redundant information.  

2.1 Understanding the parameters 

In general, FA identifies the hidden factors in z  that 

govern the underlying mutual dependence among the 

observed variables in x . 

The factor loading matrix,  , represents the 

mapping from the factor space to the original 

observation space. An element λij of   is called the 

loading of the ith observed variable on the jth factor, 

which, in a general sense, means the correlation 

between the observed variable and the factor. If 

multiple loadings in one column of   take relative 

high values, the corresponding factor will have high 

contributions (or impacts) to multiple observed 

variables. The number of high loadings and the value of 

loadings determine how important the corresponding 

factor is. 

To get more insight of the factor loading matrix,  , 

we conduct a simple transformation on Eq. (1), and end 

up with, 
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Eq. (2) shows that the covariance structure of the 

observed variables can be decomposed into two parts. 

The first part is characterized by the factor loading 

matrix,  . It captures the variance shared by the 

different observed variables, which can be considered 

as the mutual dependency among observed variables. 

The second part   is a diagonal matrix, and therefore, 

captures the unique variance of each observed data 

channel. Since FA requires   to be diagonal, it forces 

the shared variance of the observed data into  . 

Therefore, FA favors factors that have high 

contribution to the shared variance. In other words, FA 

tends to identify the common factors underlying the 

observed variables. 

The factor vector z  can be considered as the 

projection of the observation vector x  in the factor 

space. The realization of the factors in z  is called 

score. FA model assumes the factors in z  are mutually 

independent. At the first glance, this assumption sounds 

to impose an unnecessary limitation over the 

representation power of FA. In practice, this 

assumption is very useful to many real-world 

applications. For example, in prognosis applications, 

the key is to uncover the underlying factors that control 

the degradation process. Decoupling the controlling 
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factors avoids the evaluation of overlapping factors, 

and allows a clear insight of the degradation process. 

By ranking the independent factors, the degradation 

index can be developed over major factors to assess the 

degradation, and eventually predict the remaining 

useful life.  

FA models the noise e  separately from the factors 

z , which is different from a related modeling 

technology called Principle Component Analysis 

(PCA). In the context of D&P applications, each 

observation channel of FA represents a sensor. The 

separation of noise and factors avoids the fault 

signature, as represented by the factor loadings, to be 

corrupted by the sensor noise. This is one of the 

advantages of FA over PCA, as will be shown in the 

following sections. It should be noted that the 

assumption of independent noise between data channels 

or sensors is not a strong one in real-world applications.  

2.2 Parameter estimation algorithm 

The parameter estimation for FA is not straightforward 

due to the existence of the latent variables (the factors). 

To find the maximum-likelihood estimation (MLE), a 

class of algorithms known as Expectation-

Maximization (EM) is usually used. 

An EM algorithm starts with some initial value of the 

model parameters  , and iteratively goes through the 

Expectation step (E step) and the Maximization step (M 

step) to find the model parameters that maximize the 

overall likelihood for the model to generate the 

observed data }...1,{ NnxX n  . Specifically, in the E 

step, EM assumes that the current estimate of the model 

parameters 
)(t  is the true value, and computes the 

expectation ( )|( )(tQ  ) of the log likelihood 

( ),;(log zxL  ) of generating the observed data, with 

respect to the conditional distribution of the latent 

variable given the observed variables. That is, 

  dzzxLxzpzxLEQ t
xz

t
t ),;(log);|()],;([log)|( )(

,|
)(

)(  

(3) 

Then in the M-step, the expectation is maximized to 

obtain the new estimate 
)1( t . That is, 

)|(maxarg )()1( tt Q 


    (4) 

The iteration continues until no value can be found to 

increase )|( )(tQ  . EM algorithms guarantee the 

monotonic increase of the likelihood. However, 

depending on the initial value, EM algorithms may not 

converge to the global maximum. 

For the FA model in Eq. (2), an EM algorithm is 

proposed by (Ghahramani and Hinton, 1996), where the 

corresponding )|( )(tQ  is, 
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where },,{   , },,{ )()()()( tttt   , tr  is the 

trace operator with 
i

iiaAtr )( , and C  is a constant. 

To run the EM algorithm, one needs to specify the 

total number of factors to be learned
†
, and randomly 

generate the initial values for )0(  

( },,{ )0()0()0()0(   ). Then, the following E-step 

and M-step are executed until the likelihood is not 

increasing. The computations involved in the E step 

are,  

xxzE t  ];|[ )(     (6) 

and, 
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where 1)()()()( )( 
TtttTt . The M step is,  
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and, 
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where the diag  operator sets all the off-diagonal 

elements of a matrix to zero. 

2.3  Comparison with PCA 

FA is similar to PCA in that both are dimension-

reduction techniques that combine data channels based 

on the data’s covariance structure.  

However, FA is fundamentally different from PCA. 

FA belongs to the group of approaches called 

generative model. With the generative models, a 

stochastic process is mathematically formulated to 

represent the observation data. The stochastic process 

                                                           
† How to specify the optimal total number of factors is still an 

open problem. In the experiments presented in this paper, we 

picked the number with a limited trial-and-error process. 
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typically has hidden parameters that need to be 

identified. If the observed data is indeed generated by 

the model, fitting the parameters of the generative 

model to maximize the data likelihood provides an 

optimal solution to interpret the data. The “generative” 

aspect of FA makes it particularly suitable for the 

applications such as D&P. In typical D&P applications, 

there is an underlying physical process governing the 

system behavior, which is reflected in the sensor 

measurements. By finding the underlying model that 

controls the process, and fitting the parameters with the 

observed data, FA is sensitive to the model change 

(including parameter and structure changes) due to 

system faults and, therefore, warrants the capture of the 

faults.  

On the other hand, PCA empirically identifies the 

components (directions) along which the data has major 

variance, regardless of the underlying model that 

governs the generation of the observed data. By 

maximizing the variance of the input data, PCA may 

retain unwanted variations. In the context of D&P, 

there is a potential risk that PCA picks up non-fault-

related data variance, such as sensor noise, instead of 

system fault related variance, which may lead to 

incorrect diagnostics decisions. 

To show the difference between FA and PCA, we did 

an experiment on a synthetic dataset that is generated 

by the following model, 

ezx   ,     (10) 

where, ),0(~
2

1
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As can be seen, the observed data x  is controlled by 

two underlying factors, where the first factor is a 

dominant factor since it impacts two data channels 1x  

and 2x , while the second factor only impacts the 3
rd

 

data channel. At the same time, the 3
rd

 data channel is 

deliberately set to have a large noise.  

Two thousand data points were generated and fed to 

both FA and PCA. Fig. 1 shows the results. For better 

illustration, Fig. 1 shows both the data with noise 

(green crosses) and without noise (blue dots). The blue 

line shows the direction of the actual dominant factor. 

It is aligned with the major spreading direction of the 

data without noise (blue dots). The black line and the 

red line are the directions of the dominant factor 

recovered by PCA and FA, respectively. As can be 

seen, FA correctly recovers a dominant direction (red 

line) very close to the actual one (blue line). On the 

other hand, PCA is confused by the noise, and recovers 

a dominant direction (black line) along the 3
rd

 data 

channel 3x , which has the highest noise.  

3 Mixtures of Factor Analysis  

In real-world applications, the linear relationship of 

Eq.(1) may not always hold. For example, shown in 

Fig. 2 are battery voltage and current during multiple 

vehicle cranking events that happened at different 

battery ages during an accelerated-ageing experiment. 

As can be seen, as the battery ages, the relationship 

between its voltage and current changes too. The 

overall relationship can no longer be described by one 

linear model in Eq. (1). 

An extension of standard FA is to model the data in a 

piece-wise manner. That is, as shown in Fig. 2, to 

divide the data into clusters, and fit each cluster with a 

separate FA model. The objective is that the overall 

mixture model has the maximized likelihood of 

generating all the observed data. This extension is 

called, Mixtures of Factor Analysis (MFA). Each FA 

model in the overall mixtures of models is usually 

called an analyzer, which models one cluster of the 

data. 

 

Fig. 1: Comparison of FA and PCA in identifying the 

dominant factor 
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Fig. 2: An illustration of MFA: the observed data is 

battery voltage and current during multiple vehicle 

cranking events happened at different battery ages. The 

data is divided into clusters as indicated by circles, each 

of which is modeled by a standard FA model. 

An MFA model is written as 

ezx mm       (11) 

where m  is the mean of the m-th analyzer 

(corresponding to the m-th cluster), m is the loading 

matrix of the m-th analyzer, and Mm ...1 . Similar 

to the FA model, the factors in z  are assumed to be 

),0( N  distributed, and the d-dimensional random 

variable e  is ),0( N  distributed, where  is a 

diagonal matrix. From Eq. (11), we have,  

),(),|(  zNzxP mmm    (12) 

where m  represents the m-th cluster in MFA. 

Therefore, the generative model of MFA can be shown 

in the following mixture distribution, 

dzPzPzxPxP mm

M

m
m )()|(),|()(

1




  (13) 

where, mmP  )(  is the prior probability of the m-

th cluster. The parameters of this model are,  

}...1,...1;,,,,{ NnMmmnmmm   , 

where 1mn , if nx  belongs to the m-th cluster. 

Compared to the FA model, there is an extra latent 

viable, mn , which specifies the membership of each 

data point with respect to the clusters. Note that the 

clusters share the same   to preserve the 

interpretation of e  as the sensor noise. 

The key of MFA is to divide the data into clusters, 

each of which has data with similar covariance 

structure. Similar to standard FA, EM algorithms have 

been developed to estimate the parameters in MFA 

(Ghahramani and Hinton, 1996).  

3.1  Comparison with K-Means  

While FA is a dimension reduction technique, MFA, 

the extension of FA, is fundamentally a clustering 

technique, as illustrated in Fig. 2. It is useful to 

compare MFA with another popular clustering 

technique called K-Means (Jain et al., 1999).  

K-Means is also an iterative algorithm. In each step, 

it starts with multiple cluster centers, where the initial 

cluster centers are selected randomly. The data points 

are assigned to different clusters based on their distance 

from the cluster centers. The cluster center is then re-

estimated using the updated cluster assignment.        (27) 

It should be noted that the iteration process of K-

Means is very similar to the EM algorithms used in 

MFA. The main difference is that the clustering 

assignment in K-Means is based on the distance metric, 

while that in MFA is based on the similarity of the 

covariance structure. 

To better understand the difference, we show some 

comparison results on a synthetic dataset. The synthetic 

dataset consists of two groups of data, generated by the 

following model, 

ezx mm   ,    (14) 

where, 2,1m , ),0(~ INz , ),0(~ Ne , 
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Note that each group has one underlying factor. We 

generated 5000 samples for the first group and 100 

samples for the second group. The unbalance of the 

group size is designed to simulate the situation in fault 

detection, where the normal operation data usually out-

numbers the abnormal operation data. Fig. 3 (a) shows 

the synthetic dataset, with data from the first group in 

blue and that from the second group in red.  

Without specifying the group ID, the data is fed into 

both the EM algorithm for MFA proposed by 

Ghahramani and Hinton (Ghahramani and Hinton, 

1996), and the K-Means implemented by MATLAB. 

Fig. 3 (b) shows the data labeled by MFA as group 1 

(blue), and Fig. 3 (c) shows the data labeled by MFA as 

group 2 (red). Similarly, the results of K-Means are 

shown in Fig. 3 (d) and (e). As can be seen clearly, 

using the covariance structure as the similarity metric, 

MFA recovered the group ID with much better 
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performance than K-Means. 

4 Preliminary Experimental Results on Fault 

Detection 

In this section, we present some initial experiment 

results on fault detection using MFA. It should be 

pointed out that fault classification with MFA is not 

addressed in this paper. 

4.1 Robot execution failure detection 

The first set of data, Robot Execution Failures, is 

obtained from UC-Irvine Machine Learning Data 

Repository (http://archive.ics.uci.edu/ml/). There are 5 

datasets in total. Each dataset corresponds to one 

particular robot maneuvering. Each dataset consists of 

multiple segments of force and torque measurements. 

Some of the segments are collected during normal 

operations. The other are collected right after a failure. 

Each segment lasts 315ms, and contains 15 data 

samples collected at regular intervals. Each sample has 

3 force measurements and 3 torque measurements. 

Due to the space limit, reported here are the results 

on the first dataset, “LP1: approach to grasp position.” 

The results of MFA and K-Means on other datasets of 

Robot Execution Failure are similar. The total number 

of segments in LP1 is 88, whose breakdown is as 

follows, 24% normal, 19% collision, 18% front 

collision, and 39% obstruction. 

The data is fed into the MFA with 4 analyzers and 3 

factors in each analyzer. After the learning algorithm 

converges, the membership of each data sample, 

mn , is generated by the learned MFA model. The 

results for the dataset LP1 are shown in Fig. 4. For 

better illustration, in Fig. 4, we group data segments of 

the same operation together. The solid vertical lines 

are the group boundaries. The dashed vertical lines are 

segment boundaries. The y axis is the membership of 

the data samples generated by MFA. One interesting 

observation from Fig. 4 is that MFA groups all of the 

normal operation data samples into one cluster (cluster 

3), while the membership of the data samples from the 

failure operations jumps among all four clusters. A 

close examination of the results shows that every 

failure operation segment has at least one data sample 

with the membership other than 3. Based on this, the 

fault detection algorithm can be as simple as,  

“If at least one data point within the segment has 

a membership other than 3, a fault is detected.”  

At segment level, this algorithm yields zero false 

alarm rate and zero false negative rate in detecting 

failure operations for this dataset. Keep in mind that 

this is achieved by simply feeding the raw data into the 

MFA model without any manual intervention such as 

labeling.  

As a comparison, the data is fed into K-Means, and 

the results are shown in Fig. 5. It is clear that K-Means 

can differentiate the failure operations of obstruction 

from normal operations, collisions, or fr-collisions. 

However, it cannot differentiate normal operations 

from collisions or fr-collisions, because the 

membership 2 dominants all these three types of 

operations.  

4.2 Vehicle battery fault detection 

The second set of data was collected by GM R&D in 

developing battery state of health estimation algorithms 

(Zhang et al., 2009). In this data collection effort, 12 

batteries from different suppliers were aged from fresh 

to the end of life through an accelerated ageing process. 

The battery age varies from 13 to 44 weeks. During the 

ageing process, weekly cranking tests were conducted 

on a test vehicle for each battery after it was 

conditioned to a high state of charge (SOC) and the 

temperature of 25C. Battery current, battery voltage, 

and engine RPM were collected at a sampling 

(a) 

(b) (c) 

(d) (e) 

Fig. 3: Clustering results for MFA and K-Means. 



Annual Conference of the Prognostics and Health Management Society, 2010 

 7  

frequency of 125Hz during cranking. After data 

cleaning, there are totally 279 cranking data files that 

have adequate data. Each cranking lasts a little bit less 

than 1 second. Therefore, each data file has about 100 

data samples. 

The data is fed to the MFA with 10 analyzers and 1 

factor for each analyzer. After the learning algorithm 

converges, the membership of each data sample, mn , 

is generated by the learned MFA model. Fig. 6 (a) 

shows the result of one representative battery. The 

green vertical lines specify the boundaries of the 

cranking data files. The cranking data files are ordered 

by increasing battery age from left to right. It can be 

seen from Fig. 6 (a) that there is a clear pattern change 

in the cluster number sequence, as the battery is getting 

close to the end of life. This means that MFA has 

Fig. 4: Results for MFA on Robot Execution Failure dataset LP1 

 

Fig. 5: Results for K-Means on Robot Execution Failure dataset LP1 
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detected an underlying change in the covariance 

structure of the data sample as battery ages.  

A related data provides more insight to the 

underlying change indicated by the MFA results. In 

Fig. 6 (a), the green dots plotted in the middle of each 

segment indicate the estimated internal resistance of the 

battery, whose value increases significantly towards the 

end of the battery life. Consider a simplified battery 

model (Plett, 2004),  

RIVV oc      (15) 

where ocV  is the battery open circuit voltage, R  is the 

internal resistance, and V and I are battery terminal 

voltage and current. It is understandable that the 

internal resistance is the underlying dependency 

(a) 

(b) 

Fig. 6: Results for (a) MFA and (b) K-Means on battery cranking data 
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between battery terminal voltage and current. MFA 

captures the change of this underlying dependency 

without prior knowledge of the system, i.e. the battery 

model.  

For comparison, the same set of data is fed into K-

Means, and the results are shown in Fig. 6 (b). It is 

clear that K-Means is not able to capture the change in 

battery characteristics. 

5 Conclusions and Future Works 

In this paper, we discuss a data modeling technology, 

Factor Analysis, and propose its applications in system 

diagnosis and prognosis. The preliminary yet promising 

experimental results on two real-world datasets suggest 

that FA is sensitive to intrinsic system changes caused 

by system faults, and can capture the change without 

thorough prior knowledge about the system. This 

property makes FA an excellent candidate technology 

to facilitate the fast analysis and detection of new 

system failure modes, which is critical to enhance the 

robustness and reliability of complex intelligent 

systems.‡ While this paper presents some initial results 

on fault detection, yet to be explored is the feasibility of 

using Factor Analysis for fault isolation and failure 

prediction. 
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