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ABSTRACT 

This paper addresses the problem of system 
design for diagnosability. Specifically, it focuses 
on design of built-in self-tests (BISTs) for 
subsystems based on electronic control units 
(ECUs). The BISTs play a major role in 
diagnosis of the systems and in particular in 
determining if the failure is in the ECU or 
externally in the sensors, detectors, or actuators. 
The design of BISTs involves a tradeoff between 
the diagnostic benefit gained by the presence of a 
BIST versus cost of providing it in the system. 

We describe a systematic methodology and 
software tools for quantitative tradeoff analysis 
of BISTs. The methodology utilizes graphical 
probabilistic models (Bayesian networks) to 
represent the diagnostic properties of the system 
and structured equation models to perform cost-
benefit analysis. The models are developed from 
the knowledge of the systems (i.e. 
documentation and/or subject matter experts) and 
from data.  The methodology is suitable for 
design of BIST for a broad range of systems. We 
illustrate the use of it on an example of a ECU-
based subsystem for control of agricultural 
machinery.* 

1. INTRODUCTION 
In many systems used in transportation, 

communication, aerospace, manufacturing and medicine 
the number of electronic control units (ECUs) grows as the 
functionality of the system increases. Moreover, the 
                                                 
* Przytula et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 

complexity of the ECUs and the subsystems that 
they control is also growing.  

Efficient and accurate diagnosis of failures in 
ECU-based subsystems is very difficult. 
Consequently many component replacements in the 
systems, in particular ECU replacements, result in 
no-defect-found (NDF) when the replaced 
components are later tested.  This in turn leads to a 
very high system warranty cost and reduced 
customer satisfaction. 

There is a need for systematic methodology and 
software tools for design of built-in self-tests 
(BISTs) for ECU-based systems. The methodology 
should support trade-off analysis of quantitative 
measures of the BIST’s diagnostic benefits, i.e. 
improvements in failure detectability and 
disambiguation, versus the costs of introducing 
BISTs into the systems, i.e. nonrecurring and 
recurring engineering, such as design, validation, 
software development and hardware extensions. 

This paper describes a model-based 
methodology for quantitative BIST evaluation. The 
methodology is suitable for broad range of systems, 
however our focus is on subsystems involving 
ECUs.  

We use graphical probabilistic models to 
represent the diagnostic properties of the system and 
for cost-benefit analysis. The diagnostic models are 
Bayesian networks (BNs), also called belief 
networks (Pearl 1988). They consist of a qualitative 
part, namely a directed acyclic graph, and a 
quantitative part, namely parameters in the form of 
probabilities. From a mathematical point of view 
they constitute a joint probability distribution over a 
set of random variables. The variables represent: 
components and subsystems of the system and 
diagnostic observations, e.g. BIST results. The 
probabilistic diagnostic model allows us to account 
in our analysis for imperfect observations, i.e. 
BISTs with limited failure detectability and 
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disambiguation. This results in more accurate 
diagnosability analysis of them.  

The diagnostic models are developed from the 
knowledge of the systems (i.e. documentation and/or 
subject matter experts) and from data.  The model analysis 
is performed by processing the diagnostic models using 
model evaluation algorithms (Przytula et al., 2003). The 
model creation and evaluation are supported by software 
tools (Przytula et al., 2006). 

The BIST cost-benefit trade-off analysis uses the 
results of the model evaluation. It is performed with the 
help of another graphical representation called structured 
equation models (Lu et al., 2000). The equations represent 
relations between the BIST costs and benefit parameters. 
They constitute a convenient form of encoding of the 
relations. 

We have demonstrated the efficacy of our model-
based approach to BIST evaluation on a real ECU 
subsystem, the Header Height Control (HHC) subsystem 
of the Self-Propelled Foraging Harvester (SPFH). We 
developed a BN diagnostic model using expert-knowledge 
and data and then performed diagnosability analysis. The 
results of the analysis and expert knowledge of the system 
were used to propose several additional BISTs for the 
subsystem. Each of the proposed BISTs was added to the 
diagnostic model and diagnosability analysis of the 
modified system was performed. The analysis was 
followed by cost-benefit analysis of each of the BISTs 
separately. The results indicated that addition to the 
subsystem of each of the proposed BISTs, except for one, 
resulted in a net benefit. 

Selected aspects of the model-based approach 
presented in this paper were described in our earlier 
publication, which discusses its application to 
development of computerized diagnostic assistants for 
complex transportations system, (Przytula and Smith, 
2004).  

Many authors have addressed the issue of economic 
effects of BISTs.  For example, (Lu and Wu, 2000) 
discussed the cost and benefit models for logic and 
memory BIST. They included in their analysis impact of 
BIST on design verification and test development time.  
(Ungar and Ambler, 2001) discussed the cost-benefit of 
BIST for electronics at the integrated circuit, board, and 
system level. (Feldman et al., 2008) addressed return of 
investment into BIST for prognostics and health 
management.   

This paper consists of five sections.  Section 2, 
following this introduction, presents material on 
development of BN diagnostic models. In addition to 
general information on BN models and their creation, it 
contains discussion of the BN model for the HHC 
subsystem. Section 3 is devoted to diagnosability analysis 
of the ECU-based systems. It also presents a general 
introduction to our approach as well as its application to 
the HHC subsystem. In Section 4 we present the cost-
benefit analysis of BIST using structured equations. The 
results for several different BISTs for HHC are included. 
The paper results are summarized in Section 5. 

2. DEVELOPMENT OF DIAGNOSTIC MODELS 
Our approach to BIST evaluation is based on 

diagnostic models. This section presents the diagnostic 

modeling approach and its application to the 
development of a model for a real-world vehicle 
subsystem. 

2.1 Bayesian Network Models 
We are using a specific form of graphical 

probabilistic models referred to as Bayesian 
networks (BN) or belief networks (Pearl, 1988). 
These models capture relations between failure 
modes of components and outcomes of diagnostic 
observations (e.g. BIST results).  They describe how 
system failures are observed via the diagnostic 
observations. They do not simulate system operation 
and are different from physics models.  In general, 
they are simpler and easier to create than physics 
models, but contain all the necessary information for 
model based diagnosis. 

BNs are directed acyclic graphs, which consist 
of nodes and directed links. Nodes represent 
components and subsystems as well as diagnostic 
observations. There are two or more states 
associated with each node. The states of the 
component or subsystem nodes represent failure 
modes and a correct operation mode. Each node has 
at least one failure mode state and one OK state. The 
states of observation nodes encode different 
outcomes of the observation, i.e. different BIST 
results including the “pass” or OK result. A link 
between a component node and a subsystem node 
indicates that the component failure affects the 
subsystem.  A link from a component node to an 
observation node indicates that failures of the 
component affect the outcome of the observation.  A 
failure of a given component in a typical system 
affects only a small subset of observations.  

The BN graphs are annotated with probabilities. 
In mathematical terms it means that the nodes of the 
BN are random variables with specified probability 
distributions. The root nodes in the graph, i.e. the 
nodes that have only outgoing links, are annotated 
with prior probabilities.  In diagnostic models these 
nodes typically represent system components and 
their prior probabilities reflect frequency of 

C1 C2

O

C1=defect.  C2=defect.   None

O=fail 0.6 0.95 0.01

O=pass 0.4 0.05 0.99

C1=defect.    0.01

C1= OK         0.99

C2=defect.    0.1

C2= OK         0.9

 
Figure 1. Simple Bayesian network diagnostic 
model with two component nodes and one 
observation node.  Each node has two states.  The 
conditional probability table assumes the use of a 
"Noisy-Or" node. 
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component failures. The nodes that have one or more 
parents are annotated with conditional probabilities. The 
probabilities indicate how likely each state of the child 
node is given the states of the parent node(s). The child 
nodes in the diagnostic models are typically subsystem and 
observation nodes. The conditional probabilities are used 
to express uncertainty of the observation state given the 
failure states. The diagnostic BN models allow for 
imperfect observations, e.g. tests with nonzero false 
positives and negatives.  

A complete BN model constitutes a joint probability 
distribution over the random variables represented by the 
nodes. Figure 1 shows a simple diagnostic BN with two 
component nodes and a single observation node. Each 
node has only two states. The tables next to the nodes 
contain network parameters, i.e. prior and conditional 
probability values. The observation node in Figure 1 is 
represented as a Noisy OR node (Pearl, 1988), which is 
reflected in its conditional probability table. The table has 
a separate column for each failure mode of the two 
component nodes C1 and C2.  The conditional probability 
values in the table indicate how well the observation 
detects the failures (e.g. defect of C1 is detected by 
observation O only 60% of time, whereas defect of C2 is 
detected almost perfectly – 95% ) and how many times the 
observation indicates failure even if there is no C1 or C2 
failure present (e.g.1% of false alarms). 

A BN diagnostic model for a particular system can be 
developed from domain knowledge only, data only or a 
combination of knowledge and data.  The domain 
knowledge can be acquired from system documentation, 
service manuals or from experts. The data may be in form 
of detailed repair records, which contain results of the 
observations and repair actions, or in form of average 
failure statistics. The most typical model development 
scenario assumes a combination of sources in the form of 
knowledge and data.  

The model development process begins by 
enumerating the components and their failure modes. The 
level of granularity of the component is determined by 
diagnostic requirements and repair practice. It is typically 
assumed that the component is a line replaceable unit 
(LRU).  Given the list of components we determine the 
pertinent observations. The observations may include 
symptoms, BIST results, inspections and manual tests. We 
are interested in BIST evaluation for design and will 
include in our models only BIST-based observations. The 
BN model with all the forms of observations included in it 
can be used to support diagnosis in service operations. In 
order to be able to evaluate potential additional BISTs, we 
create multiple models of the system: with and without the 
nodes representing the new BIST under consideration. In 
practice, BISTs are represented as algorithms executed on-
board, which produce a diagnostic trouble code (DTC) in 
the system archive. Some BISTs may indicate multiple 
failure modes, which are recorded as DTC with failure 
mode indicator (FMI). 

The parameters of the model can be estimated by 
experts or acquired from data. The prior probabilities of 
component failures can be approximated using frequency 
of failure statistics, which are typically available. The data 
for conditional probabilities are often not available 
initially. Thus, the conditional probabilities have to be 

estimated by expert and later updated as the data 
become available.  

The model development process can be 
improved in terms of efficiency and accuracy by use 
of software tools. The main tools include editors for 
model entry, learning tools for model creation or 
updating from data and model evaluation tools. We 
will discuss a model evaluation tool in detail in 
Section 3. The remaining tools are available from 
many sources, both commercial and academic. HRL 
has its own toolset including a tabular editor Gnosis 
(Przytula et al., 2006) and model evaluation tool 
(Przytula et al., 2003). We also use a graphical 
editor called GeNIe, which comes with a reasoning 
engine, called SMILE, which also contains learning 
algorithms. Both tools are available free of charge 
from the University of Pittsburgh 
(http://dsl.sis.pitt.edu/). 

2.2 Example Domain: Header Height Controller 
In this paper we evaluate our methodology and 

tools on an electronic control unit (ECU) from a 
self-propelled forage harvester (SPFH).  The 
specific ECU presented in this paper is known as the 
Header Height Controller (HHC).  It is responsible 
for automatically adjusting the height and angle of 
the header in order to follow the contour of the 
ground while harvesting.  An SPFH with a corn 
header is shown in Figure 2. 

 

Figure 3. High-level block diagram of header 
height controller electronic control unit (ECU). 

Figure 2. Self-Propelled Forage Harvester. 
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As shown in Figure 3, the ECU communicates with or 
receives inputs from the power system, external 
communications, and multiple types of sensors, including 
electric, mechanical, and hydraulic.  It in turn controls 
multiple actuators affecting such functions as the header’s 
height and tilt angle.  The actuators are solenoid valves 
commonly used in hydraulic power systems. 

In order to build a diagnostic model of the BIST for 
this system we began by identifying sources of domain 
knowledge such as: user and technical manuals, electronic 
schematics, hydraulic schematics, IO charts, diagnostic 
trouble code (DTC) lists, repair records, experts from the 
service department, and system designers and engineers. 

Upon gaining an understanding of the domain we 
began identifying system components, their failure modes, 
and relevant observations.  We grouped these into seven 
groups: power system, electric portion of valves and 
hydraulic portion of valves, sensors, hydraulic support 
system, microprocessor, and communications.  During our 
modeling we identified 47 components (each with one or 
more failure mode) and 22 observations relevant to 
modeling the BISTs within the HHC.  The structural 
relationships between these items are depicted in Figure 4, 
where components are shown as blue ovals and 
observations are shown as yellow ovals.  The links 
between nodes in the figure depict the probabilistic 
(in)dependence assumptions of our model.   

Our model also contains parameters in the form of 
prior likelihood of failures for components and 
sensitivities associated with the links.  Component failures 
were determined by examining the manufacturing 
specifications and repair records in the service database.  
The sensitivities associated from links are derived from the 
observability of a test; its false positive and false negative 
rates. 

Once we built a model of the system we analyzed the 
model to determine the extent to which the automated 
BIST observations could detect and disambiguate the 
different failures of the system (this will be further 
discussed in the next section).  We then identified 
additional potential tests which could be included in the 
system, for an additional cost, to improve diagnosability.  
They were identified by looking both at where 

diagnosability was lacking in the current system as 
well as by looking at domain knowledge and what 
other observations would be feasible to include. 

We identified three BIST additions. The first 
was a new BIST, which used existing sensors. 
Implementation would  involve writing a new 
software routine. We labeled it Timeout DTC. The 
second addition improved existing BISTs by 
extending the set of failure mode indicators, they are 
called FMI DTC. The third was the most extensive 
and included a new sensor and new software. We 
call it Sensor DTC.  We built and analyzed five 
different models: HHC (system with the original set 
of BISTs), “HHC+Timeout DTCs”, “HHC+FMI 
DTCs”, “HHC+Sensor DTC”, and “HHC+All” 
(includes all the above additions).   

3. MODEL BASED DIAGNOSABILITY 
ANALYSIS 

3.1 Introduction to Diagnosability Analysis 
System diagnosability analysis provides 

information about quality of diagnosis for a given 
system with defined diagnostic observations.  In a 
conventional approach to diagnosability, system 
observations are assumed to be perfect, i.e. they 
always detect observed failure modes and never 
produce false alarms. Under these assumptions, only 
the following three cases are possible: 
 
• component failure is perfectly detected and 

attributed to the root cause, e.g. there is a 
separate observation available for the failure 
mode or multiple observations uniquely point to 
it 

• component failure is undetectable, i.e. no 
observation is available for the failure mode 

• component failure is ambiguous, i.e. the 
observations point to more than one potential 
failure 
 

Figure 4. Structure of a diagnostic model of the ECU. 
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For perfect observations, the system diagnosability 
results are reduced to listing the percent of all component 
failures uniquely diagnosable, percent diagnosable with 
ambiguity group of two failures, three failures, etc. 

Our probabilistic approach allows for imperfect 
observations. The diagnostic results are expressed as 
probability of failure, i.e. they are real values from the 
interval [0,1]. The system diagnosability analysis is much 
more complicated, but the results are more informative. 
We perform the analysis using BN diagnostic models with 
the help of model evaluation software tools.  

BN models effectively represent probabilistic 
relations between system components and observations as 
a joint probability distribution. Given the distribution we 
can compute the posterior probability of any variable 
given observations of any other variable.  

Diagnosability computations are implemented in two 
phases: phase I – forward propagation from failures to 
observations and phase II – backward propagation or 
diagnosis of failure from observations. In phase I we 
assume that a particular failure mode is present and all the 
other components are OK. Given the states of the 
components, we compute posterior probability of 
outcomes for all observations. These probabilities 
represent how likely the outcomes are given the failure. In 
phase II we assume in turn that the outcomes of 
observations follow the distributions obtained in phase I 
and compute the diagnosis i.e. the likelihood of component 
failures given the observation outcomes. Phases I and II 
are repeated for all the failure modes – one at a time. Also, 
each execution of phase II involves multiple setting of 
observation states and diagnosis. The states of observation 
are sampled from the distribution obtained for them in 
phase I. For details on the algorithm see (Przytula et al., 
2006). 

The diagnosability result for a given system is a 
square matrix. It has a row and a column for each of the 
failure modes. The values of the matrix are probabilities of 
failures. Each row corresponds to an “actual” failure, 
whereas columns are the “diagnosed” or “predicted” 
failures. The values of the matrix on the diagonal are the 
diagnosed probabilities of actual failure, i.e. probability of 
detecting a failure. A system with perfectly detectable 
failures has all 1’s on the diagonal of its matrix. The 
matrix values off the diagonal represent incorrect 
diagnoses. A system with no ambiguity in diagnosis has all 
0’s off the diagonal. Thus, a perfectly diagnosable system 
has the matrix with all 1’s on the diagonal and 0’s off the 
diagonal.   

The diagnosability results can be visualized in 2D and 

3D. It is convenient to sort rows of the matrix, so 
that the probabilities appear on the diagonal 
arranged from the largest to the smallest. In the 3D 
representation the values of probabilities are 
depicted over the grid of the failure modes. This 
representation gives a good overview of the 
diagnostic properties of the system, see Figure 5. 
The 2D representation, Figure 6, shows the diagonal 
values of the matrix (in blue) and the largest 
incorrect diagnosis (in red).   

 In our evaluation of a specific BIST we 
produce diagnosability results for BN models with 
and without the additional BIST. The changes in 
diagnosability results for the BN model representing 
the system with BIST relative to the system without 
it are used to compute the diagnostic benefit of the 
BIST. The details of this computation are presented 
in Section 4. 

3.2 Diagnosability Analysis for Header Height 
Controller 
In this section we present the diagnosability 

results for the HHC BISTs.  Note that the analysis is 
limited to BIST only and does not include manual 
tests and inspections, which are available to service 
technicians. We present a 3D results in Figure 5 and 
a 2D projection of them in Figure 6. 

In Figure 5 the axis along the lower portion of 
the screen contains the predicted failures and the 
axis along the right portion contains the true 
failures.  Therefore, values along the diagonal show 
correct diagnosis and off diagonal results are 
incorrect diagnosis (values are sorted from highest 
detection to lowest).  Flat areas show ambiguous 
failures (such as those with limited observability). 

Figure 6 is a projection of Figure 5 down to 2D, 
where the blue values represent those along the 
diagonal (correct diagnosis) and the red values 
represent the largest off-diagonal value.  Therefore, 
the desirable situation is for a large blue value and a 
small red value (this means good detectability and 
low ambiguity).  When they are close together (e.g. 
near the middle of the figure) it means there is 
ambiguity and when the red values are larger than 

 
Figure 5. 3D visualization of model analysis showing 
the detectability and ambiguity for the model.

Figure 6. 2D visualization of model analysis 
showing the correct failure diagnosis with BIST 
(blue) compared with the highest incorrect 
failure (red). 
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the blue it means there is a misdiagnosis.  If both are low, 
it implies that it is not only ambiguous, but that there is 
low detectability (e.g. near the right of the figure). 

These values only represent the diagnosability based 
on the built-in self-tests; by adding in manual tests, 
symptoms, and inspections (e.g. examining the wires or 
hoses or plugging in a volt meter) we could further 
improve the detectability and disambiguation to help a 
service technician, however for this work we will continue 
to focus on built-in self-test observations.   

In Figure 7 we show the analysis for both the original 
model and the model with all the new BISTs.  You can see 
that in the original model there are 24 failures with a 
detection rate of over 0.5; in the new model this increases 
to 39 failures.  Furthermore, the failure depicted for the 
hydraulic cylinder in both shows a failure which was 
misdiagnosed in the original model (a valve was blamed 
instead of the cylinder) and then in the new model it is 
correctly diagnosed with almost no ambiguity.   

4. COST-BENEFIT ANALYSIS 
The main goal of the cost-benefit analysis is 

evaluating the economic effect brought about by inclusion 
of additional BISTs.  In general, inclusion of a new BIST 
results in the following costs:  (1) nonrecurring software 
cost for BIST algorithm development, BIST parameter 
definition, coding, testing and verification, (2) 
nonrecurring hardware cost for the development of 
specification and the design of new hardware, (3) 
recurring costs for part manufacturing, assembly, and 
testing.   On the other hand, it is expected that the new 
BISTs bring the benefit of reduced cost of warranty  
repairs (or system lifetime maintenance), as well as other 
benefits, such as shorter time in testing/verification, 
shorter time to market, design and test reuse, and customer 
satisfaction.   

4.1 Graphical Cost-Benefit Analysis Model 
Our approach to cost-benefit analysis is based 

on structural equation models. The model takes the 
form of a directed graph describing dependency 
relations among variables of the problem domain 
(Lu et al., 2000). In our cost-benefit model nodes 
represent variables, which can be input parameters 
or can be associated with a deterministic (or 
probabilistic) equation. The arcs represent 
dependency relations among variables.  For any 
given node, its value is directly dependent on its 
parent nodes. 

Figure 8 shows a simplified graphical model for 
BIST cost-benefit analysis.  Green nodes represent 
input parameters, whereas blue nodes are associated 
with equations. The equation computes the value of 
the node using the values from its parent nodes.   
We can obtain from the graph the direct dependency 
between nodes by considering a node and its parents 
(e.g., “BIST Warranty Benefit” directly depends on 
“Number of Units” and “Warranty Benefit per 
Unit”), the indirect dependency relation by 
inspecting the path between nodes (e.g., “BIST 
Cost” indirectly depends on the “Number of Units”)  

Figure 8. A Graphic Model for BIST Cost-
Benefit Analysis. 

 
Figure 7. Analysis of the original model (left) and with all the additional BISTs (right). The marked failure is 
misdiagnosed in the original model, however with the additional BIST the correct diagnosis is made with 
almost no ambiguity in the new model. 
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as well as  as common cause (e.g., “Number of Units” is 
the common cause of “Hardware Cost” and “BIST 
Warranty Benefit”). In other words the graphical model 
enables us to qualitatively examine our cost-benefit 
analysis model before defining any numerical values.    

 The specific equations for the model in Figure 8 are 
listed in Table 1. 

4.2 Expected Warranty Benefit 
The graphical cost-benefit model in Figure 8 uses as 

input the Warranty Benefit Per Unit, which is expressed in 
dollars. This value is derived for a given BIST from the 
diagnosability matrix for the original system and the 
matrix for the system with the BIST added to it, see 
Section 3. In order to compute the dollar value of the 
benefit from the diagnosability benefit expressed in the 
matrices we need repair costs for all the components of the 
system. 

We assume that the repair costs include the recurring 
cost, such as labor and part cost, as well as nonrecurring 
cost for testing/repair equipment.  We make also several 
simplifying assumptions pertaining to the repair costs and 
procedures:   

1. Cost/Benefit calculation is limited to the faults 
captured in the diagnostic model for the system, 
and only use BIST observations. 

2. Repair is guaranteed to fix a fault, if the repaired 
component is correctly diagnosed. 

3. Repair of misdiagnosed fault, is followed 
by a make-up sessions of diagnosis and 
repair, which continue until the actual fault 
is found and repaired. 

 
The diagnosability matrices obtained in Section 

3 represent the quality of diagnosis in terms of 
probabilities. The Warranty Benefit in dollars is 
actually an expected value of the financial benefit. 
The detailed discussion of the computations and the 
issues involved in it will be presented in an 
upcoming publication. 

4.3 Analysis Results for Header Height Control 
System 
In Section 3, we proposed three additional sets 

of BISTs for inclusion in the system.  Therefore, we 
can look at each of these additions independently, or 
look at all of them together.  The diagnosability 
analysis results and costs for repairs, estimated from 
historical repair data by our Deere subject matter 
experts, are taken as input for computing the 
expected warranty cost for each unit. The expected 
warranty benefit is then computed as the difference 
between the warranty cost for the new BIST design 
and the one for the existing BIST design.  We then 
take this value as the input value for “Warranty 
Benefit per Unit” in the cost-benefit analysis model 
(Figure 8). We also elicit the values for “Number of 
Lines,” “Hardware Cost per Unit,”  “Number of 
Units,” and “Expected Years of Life” from our 
Deere experts for the four versions.  We then 
perform the inference on the graphical cost-benefit 
model to derive the target values for “Deere Benefit, 
“Customer Benefit,” and “BIST Total” (see Figure 
9).  It should be noted that it is possible for the 
benefit to be negative, rather than positive, as the 
costs can outweigh the benefits.  For example, in the 
case of the BIST involving new sensor, i.e. HHC + 

Endogenous Variables Equation
Software_Cost CostPerLine*Number_of_Lines
Hardware_Cost Number_of_Units*Hardware_Cost_per_Unit
BIST_Warranty_Benefit Number_of_Units*Warranty_Benefit_per_Unit
BIST_Cost Hardware_Cost+Software_Cost
Customer_Benefit BIST_Warranty_Benefit*Expected_Years_of_Life
HRL_Benefit BIST_Warranty_Benefit-BIST_Cost
BIST_Total HRL_Benefit+Customer_Benefit

Table 1. Equations for BIST Cost-Benefit Analysis 
Model in Figure 9. 

HHC BIST Benefit Cost Analysis

-1

0

1

2

3
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7

HHC+Timeout DTC HHC+ Sensor DTC HHC+Revised FMI HHC+All Changes

Fi
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it 

BIST Design

Customer_Benefit

Deere_Benefit

Figure 9. Cost Benefit Result for HHC BIST Addition. 
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Sensor DTC, the manufacturer had a loss during the 
warranty year, because the cost of additional hardware and 
software was greater than warranty repair benefit.  
However, for the entire lifetime of the vehicle the BIST 
does provide the customer with a financial benefit. 

5. CONCLUSIONS 
Complex systems based on ECUs are difficult to 

diagnose. As a result, technicians often replace the ECUs 
to avoid time-consuming troubleshooting. This leads to a 
very high level of no-defect found and high warranty 
costs. 

Our methodology for troubleshooting ECU 
subsystems begins with a review of DTCs produced by 
BISTs. The DTCs, sometimes augmented with symptoms 
of failure, determine which manual tests need to be 
performed to find the root cause of failure. Manual tests 
are expensive, so it is hard to expect that technician would 
perform more than two or three tests.    

All this suggests that proper design of BISTs is 
critical for life-time cost of system health management. 
The BIST design has to include a careful cost-benefit 
analysis. 

We have presented a methodology for accurate, 
quantitative BIST cost-benefit analysis. The methodology 
uses two forms of graphical models: a BN diagnostic 
model and a structured equation model. The development 
and verification of these models is well supported by 
software tools. The tools make it possible to apply the 
methodology to complex real-life systems with high 
efficiency and reliability.  

We have illustrated the methodology and the tools on 
an example of a real-world ECU-based system. The 
models were created using data and expert knowledge and 
we applied the algorithms and computed numerical values 
of BIST cost-benefit. 

In the future we intend to expand the analysis of 
BISTs beyond the tradeoff between cost of BIST and 
diagnosability benefits. In particular we intend to include 
additional BIST evaluation criteria such as energy 
efficiency.   
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