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ABSTRACT

Distributed wireless architectures for prognostics
is an important enabling step in prognostic re-
search in order to achieve feasible real-time sys-
tem health management. A significant problem
encountered in implementation of such architec-
tures is power management. In this paper, we
present robust power management techniques for
a generic health management architecture that in-
volves diagnostics and prognostics for a system
comprising multiple heterogeneous components.
Our power management techniques are based on
online dynamic monitoring of the sensor battery
discharge profile which enables accurate predic-
tions of when the device should be put into low
power modes. In our architecture, low power
mode is achieved by run-time sampling rate mod-
ification through sleep states. Our experiments
with a cluster of smart sensors for a hybrid diag-
nostics and prognostics architecture show signif-
icant gains in power management without severe
loss in performance.

1 INTRODUCTION
Recent times have witnessed a sharp increase in com-
plexity of modern aircraft and spacecraft systems and
it is projected to further increase in future. Thus, it is
expected that prognostics and health management for
such systems would also increase in complexity and
involve several challenges such as a) large amounts of
sensor data due to presence of more components with
elaborate interconnections and sensor instrumentation
along with high frequency diagnostic sampling b)
increasingly more complex algorithms incorporating
higher expectations of system performance being de-
ployed that exceed the capabilities of single-processor
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systems due to high memory computation require-
ments and c) robustness to failure of sensor modes and
fast recovery. The most common architecture for such
systems - mainly due to ease of development - is cen-
tralized i.e., a central processing device collects data
from sensors and processes them, while executing var-
ious health management algorithms. However, such a
system does not scale well for data intensive and com-
plex health management systems and thus distributed
system architectures are essential.

The distributed architecture (first proposed in (Saha
et al., 2008)) discussed in this paper comprises mul-
tiple wirelessly connected smart sensor devices. A
smart sensor comprises a sensing device along with a
microprocessor in order to enable functionalities be-
yond sensing such as low-weight signal processing be-
fore transmitting to a controller. These devices would
monitor different parts of the distributed health man-
agement system and collaborate when computation-
ally intensive prognostic algorithms or large amounts
of data are involved that cannot be handled efficiently
by a single processor/node. Recent advances in smart
sensor technology combining the power of embedded
computing devices with sensors and wireless transmis-
sion technology make the practical implementation of
such systems feasible.

An important problem in wireless sensor networks
is efficient power management which has been ex-
plored in various contexts in order to prolong bat-
tery life as well as reduce cooling requirements. With
longer battery life, frequent replacement of sensors is
avoided thereby leading to more autonomous systems
and, hence, less maintenance costs. For many appli-
cations, replacement of sensors with dead batteries is
possible only after significantly long intervals, thus,
requiring aggressive battery life management. Most
battery conservation algorithms for embedded devices
rely on forcing the device to switch to a low-power
mode which entails reduction in computational re-
sources and hence reduced performance. Thus, an effi-
cient power management technique involves balancing
trade-offs between performance and operational costs.

In this paper we present regression based power
management techniques that provide robust battery ca-
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pacity management without significant loss in perfor-
mance. Our battery management architecture relies
on individual on line monitoring of battery discharge
profile which in turn enables accurate prediction of
remaining battery capacity. The computation load of
the smart sensors are then adjusted dynamically to en-
sure longer battery life. The specific target architecture
in our case is composed of a network of smart sen-
sors from Sun Microsystems called SPOT (Small Pro-
grammable Object Technology) devices. However, the
techniques developed in this paper are generic enough
for use in other distributed wireless networks. The pa-
per is organized as follows: in section 2 we discuss re-
lated work, followed by an overview of our distributed
health management architecture in section 3. In sec-
tion 4, we discuss our power management techniques
in details. In section 5 we present the details of our ex-
periments and present results followed by conclusions
in section 6.

2 RELATED WORK
Most of the efforts for power conservation in embed-
ded devices are focused on reducing the power con-
sumption by forcing the embedded computing element
to operate in a low power mode more well-known as
sleep states. Dynamic voltage scaling (DVS) imple-
ments such low power modes by lowering the sup-
ply voltage and operating frequency when the com-
puting load is less and has been explored extensively
(M. Nakai and Shimura, 2005). In (Pillai and Shin,
2001; ?), the authors present power management by
using the real-time scheduler and task manager within
the operating system to decide when to implement
voltage scaling. However, forcing such low power
modes affect the performance since the sampling rate
and computing speeds are affected.

Wireless sensor networks present significantly more
challenges compared to other embedded devices, since
they support extensive wireless communication which
affects the power consumption severely. Thus, a lot
of focus for power conservation for embedded wire-
less devices has been based on communication pat-
terns. For example, in (Anand et al., 2003), the authors
present an adaptive power management technique that
adapts its power consumption behavior based on the
communication access patterns. However, it requires
considerable prior knowledge of the applications in
order to exploit the access patterns for energy sav-
ings. Similarly, in (Chiasserini and Rao, 2000), the
authors propose a method in which the sensor nodes
are maintained in sleep mode unless woken up by a
Radio Frequency (RF) signal when required to partic-
ipate in an activity. Distributed power management
techniques, where a cluster of sensors instead of one
central monitor participate in battery capacity savings,
have been explored as well. For example, in (R. Tynan
and Hare, 2005) the authors use intelligent software
agents to perform distributed power management. The
use of timeouts and local voting amongst video sen-
sor clusters in order to collaboratively decide when to
shut down a sensor is demonstrated in (Zamora et al.,
2007).

An important consideration for efficient power man-
agement is accurate prediction of when to transition to

a low power mode. Some of the methods discussed
above implement this by either relying on off line com-
puting and communication load analysis, or high-level
operating system based indicators in order to make this
decision. However, for sensor networks that offer rel-
atively low-level computational power, such methods
may become too expensive in terms of computation.
An alternative method is to monitor battery charge and
discharge level and use this information to manage
power (Jayashree et al., 2004). In this paper, the au-
thors propose new communication protocols in order
to schedule tasks efficiently based on battery life pre-
dictions. However, the authors restrict to an off line
model of the battery that does not account for run-time
change in discharge profile.

From this discussion, one may observe that there is a
distinct lack of work on exploiting dynamic battery life
estimation for efficient power management. Such esti-
mates can be made through simple yet accurate models

3 DISTRIBUTED HEALTH MANAGEMENT
ARCHITECTURE

In this section we provide a brief overview of our dis-
tributed health management architecture. Further de-
scription of this architecture can be obtained in (Saha
et al., 2008; 2009). This architecture is comprised
of a network of smart sensor devices that monitor the
health of various subsystems or modules. The health
management system comprises of mainly sensing, di-
agnostics and prognostics operations. The sensors col-
lect component signals and monitor them using low-
weight diagnostics algorithms. Prognostics operations
are triggered based on user defined thresholds. An
example of such a distributed prognostics system is
shown in Figure 1.

Figure 1: Overview of distributed prognostics system
architecture. (Adapted from figure 1 in (Saha et al.,
2008).

The sensor devices – which we call computing ele-
ments (CEs) – consist of a sensor or a set of sensors
and a communication device, i.e., a wireless transre-
ceiver or wired communication capabilities besides an
embedded processing element. Though in many in-
stances wired sensor network may be preferable, in
this paper we focus on wirelessly connected devices
for enhanced flexibility. Such a wireless network has
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Figure 2: Flow diagram for diagnostics and prognostics operations in the distributed architecture. (Adapted from
figure 2 in (Saha et al., 2009).

both advantages and disdvantages. Major application
domains for such a health management architectures
are aircraft and spacecraft systems, where reduced
physical weight of such monitoring structure is of
prime importance and hence wireless systems are far
more preferable. However, wireless networks can in-
cur significant signal interference from other on-board
interference. This problem is handled through various
methods including specification of special communi-
cation frequency bands and is an important research
area. However, we do not delve into detailed discus-
sion of this problem since the main focus of this paper
is power management issues.

As mentioned earlier, there are two main operating
modes for a CE: diagnostics and prognostics (Saha et
al., 2008). The CEs are arranged as clusters that mon-
itor and manage the health of a sub-system, and hi-
erarchically the whole system. The default mode of
operation for a CE is diagnostics where it monitors a
given sub-system or component through a low weight
diagnostics algorithm. During this monitoring, if a CE
detects a critical condition, it raises a flag and starts the
prognostics mode. In this mode it initiates the forma-
tion of a cluster of CEs that collaboratively performs
the prognostics task. The prognostics task is expected
to be computationally expensive involving complex al-
gorithms. The amount of data also increases due to in-
crease in the frequency of component signal sampling
for more accurate prognostic estimates, which in turn,
increases the memory requirements as well. If the CE
does not have enough computational resource to per-
form the overheads of the distributed system manage-
ment, it informs the base station of the prognostic task
which then performs system management tasks, such
as scheduling, synchronization, load distribution and
so on. In the prognostics mode it is not necessary that
all CEs within a cluster monitoring a subsystem partic-
ipate in the prognostics task; some of them may lack
the necessary computing power to support the addi-

tional new task. Also, the diagnostics operations con-
tinue uninterrupted in the prognostics mode. To ensure
that a participating CE can support such multi-tasking
efficiently the prognostics algorithms need to be dis-
tributed efficiently.

In many cases the sensor capabilities of the CEs may
not be utilized at all, i.e., they could act as monitors
for the rest of the system - schedule tasks, detect fail-
ures and initiate recovery, provide access to resources
such as an external database and so on. These CEs
are specially designated as base stations. The base
station is also, typically, connected to a more power
computing resource (to aid in collection and storage
of system data) which in our case was a PC. Since
the experiments presented in this paper were carried
out in a laboratory setting, suitable integration steps
would be involved to scale this architecture for full-
scale aerospace applications. Thus, in practical de-
ployment, more powerful computing resource could
be on-board computers or communication devices that
relay information to computers on ground stations in-
stead of a laptop .

Figure 2 shows, in detail, the typical execution flow
in our health management architecture. As mentioned
earlier, each CE monitors different components or sub-
systems such as battery health, actuator faults, health
of electronic components and so on. It can also be
responsible for diagnostic monitoring of a sub-system
comprising multiple components. In most cases the
raw data collected is refined using diagnostics algo-
rithms, and only a summary is reported to the base
station. But, in many cases, when the CE does not
have enough computing power - for example, in order
to support heavy sampling rate of data collection - or
remaining battery life, it can periodically send packets
of raw data which can then be analyzed offline.

The base station monitors all the CEs and coordi-
nates tasks. Also, the base station maintains infor-
mation regarding CE resource availability. As men-
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tioned earlier, the base station may not coordinate all
the tasks in local prognostics operation which may
be handled by the CE that raised the flag or another
local leader/server may be chosen. This decision of
leader selection in a distributed prognostic operation
is based on multiple factors, including resource avail-
ability, proximity of the participating CEs etc and is a
topic for future research.

3.1 Hardware Description
The smart sensor device used in our architecture is the
Sun Microsystems SPOT device. A free range Sun
SPOT is a small, wireless, battery powered experimen-
tal platform built by stacking a Sun SPOT processor
board with a sensor board and battery as shown in fig-
ure 3. The smaller base station consists of just the
processor board in a plastic housing. In terms of pro-
cessing power, each Sun SPOT has a 180MHz 32-bit
ARM920T core processor with 512 Kb RAM and 4
Mb Flash. The Sun SPOTs communicate using radio
channels. The processor board has a 2.4 GHz radio
with an integrated antenna on the board. The radio is a
TI CC2420 (formerly ChipCon) and is IEEE 802.15.4
compliant. Each processor board has a USB interface
which can be connected to a host PC to charge the bat-
tery. In our implementation, the free ranging SPOT
devices act as CE while the SPOT base station acts as
the default base station.

Figure 3: Anatomy of a free ranging Sun SPOT device
(courtesy of www.sunspotworld.com).

Each free ranging SPOT is powered using a
rechargeable, 720 mAh Lithium-ion (Li-ion) battery.
The SPOT devices provide for automatic power man-
agement through an Atmel Atmega88 microcontroller.
However, this controller does not provide aggressive
battery management. It mainly ensures two functions:
a) forcing a SPOT device into deep sleep when it is
inactive for a long interval b) turning off the SPOT
device when the battery capacity falls below critical
level, which is approximately 3.2V. In our power man-
agement architecture, this controller is used in order
to probe the battery to read current being drawn and

corresponding voltage drop at regular intervals in or-
der to monitor the battery usage. The controller is
also used to induce shallow sleep modes in order to
conserve battery. During shallow sleep, the processor
clock is stopped and is restarted when an interrupt is
received. The main difference between shallow and
deep sleep mode lies in being able to react to external
stimuli: during shallow sleep the CE can react to an
external stimuli such as radio, while in deep sleep no
such activity is allowed. The base station SPOT does
not have its own battery and instead draws power via
the USB connection to the host PC.

3.2 SUN Spot based Health Management
Architecture

In the system considered in this paper, four free rang-
ing CEs are involved in addition to the base station. All
CEs perform diagnostics and one of the CE performs
particle filter based prognostics routine on a Li-ion bat-
tery health data set from an offline source in collabo-
ration with the base station. The number of particles
used in the prognostics routine is 300, which is sig-
nificantly high. Further details of this algorithm can
be obtained in (Saha and Goebel, 2008), while details
of its distributed implementation can be obtained in
(Saha et al., 2008). Note that this battery prognostics
algorithm is distinct from the battery discharge model
based power management routine presented in this pa-
per. It is an example of a health management applica-
tion and can be replaced by any other prognostics rou-
tine such as electronics prognostics. After startup of
the system, during initialization, the base station com-
municates with remote CEs to gather information re-
garding available resources. The CEs collect vibration
and temperature data and send the data to the base sta-
tion periodically. Two of the CEs also run frequency
analysis of the collected data by executing FFT (Fast
Fourier Transform) on the dataset.

In our system, prognostics is triggered by the base
station after it detects an anomaly. Based on resource
information, it selects one of the CEs (say CE1) to col-
laborate in prognostics on battery health data. It al-
locates task share to this CE and acts as a leader for
the prognostics routine as well. CE1 now performs
the prognostics sub-task in addition to its diagnostics
task. The remaining free ranging CEs continue with
their diagnostic operation. The base station now per-
forms only its share of the prognostics task besides
scheduling and oversight of the prognostics task and
collection of diagnostics data from the two CEs. Once
the required maintenance has been performed and the
prognostics task is over, the base station informs CE1,
which then returns to its diagnostics mode. In addition
to the diagnostics and prognostics task, all CEs also
run individual low-weight battery management algo-
rithm as detailed in section 4.2.

4 POWER MANAGEMENT
The core of our power management methodology is
based on monitoring the rate of drop in CE battery ca-
pacity using low computation-weight regression tech-
niques. When the battery capacity decreases to cer-
tain critical levels, the CEs are dynamically configured
to low power modes. In order to achieve low power
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modes we adjust the system sampling rate of the CEs
by periodically forcing the device to go shallow sleep.
However, this affects the performance of the system in
two ways: a) it reduces the rate at which a CE collects
sensor data and runs diagnostic algorithms which we
call the diagnostics frequency, and b) if sleep modes
are introduced during the prognostics routine, it affects
the execution speed and, hence, time required for eval-
uation of prognostic estimates. When the CE battery
capacity reaches critical levels, the device is forced to
go into shallow sleep for brief periods whose duration
is determined by diagnostics frequency and maximum
delay that can be tolerated for a prognostics update.

Our methodology was developed in a two-phase
manner. First, the CE battery discharge profile was
studied to understand how the capacity variation can
be modeled based on usage. Battery usage included
computation, communication and in-built sensor prob-
ing loads. This profile was then used to create a re-
gression model for battery discharging. Our power
management algorithm uses this model to predict how
long the CE battery would last. This prediction scheme
along with system thresholds (such as minimum diag-
nostics frequency) are used to determine when and for
what duration a CE should be forced into low power
mode, thereby extending battery life. Each CE has
its individual prediction model based on its discharge
profile. This is because for the exact same computa-
tion load, different CEs may show slightly different
discharge profiles. Such variation in discharge profile
may exist for batteries with exact same specifications.
Since it is expected that different CEs will handle
different diagnostics computation loads, the various
thresholds would vary between different CEs. Also,
the prognostics computation load is non-periodic in
nature (arising only when a flag is raised due to a crit-
ical fault), thus leading to different CE performance
requirements. Thus, the power management routines
are customized for individual CEs; each CE performs
its own prediction of its remaining battery life based
on its regression model and based on the diagnostics
frequency and/or maximum prognostics update delay
decides when to move into shallow sleep mode.

In the following sections, we first provide details of
our battery discharge profile analysis and regression
model, followed by the power management methodol-
ogy.

4.1 State-of-Charge Estimation for Sun SPOT
Li-ion Battery and Regression Modeling

After analyzing the battery discharge profile, it was
observed that the CEs that only collected sensor data
had insignificant computation load and, hence, did not
warrant sophisticated power management techniques.
However, for CEs that executed frequency analysis us-
ing FFT, the computational load was non-trivial but
not significantly high. The computational load handled
by the CE that executed prognostics along with sensor
data collection was highest and, hence, only this CE
was chosen to test our power management routines.
Implementing such routines for the lightweight diag-
nostics algorithms would result in unnecessary over-
loading of the CEs. For more complex diagnostics
routines, the same power management routines can be
deployed by the CEs. The prognostics routine starts

after a few diagnostics routines (based on a prognostic
trigger threshold) and continue till the CE shuts down
due to low battery.

There are several published techniques in literature
to estimate the state-of-charge (SOC) for Li-ion bat-
teries, however, these are not directly applicable in our
case since battery health monitoring is not the main
goal. It is just an ancillary function that helps us bet-
ter schedule our main task, which is to monitor the
subsystem being supervised by the CEs and perform
prognostics if required. Thus, we need a SOC estima-
tion algorithm that is very fast and consumes the bare
minimum of computational and memory resources.

Figure 4: Typical discharge curve of a Sun SPOT Li-
ion battery with piecewise linear model fit.

In order to achieve this, we built a simple piece-
wise linear model of the battery discharge and used
least-squares regression on the training data to identify
the model parameters. We approximate the discharge
curve by two linear sections defined by the points V1,
V2 and V3 as shown in figure 4. Since the start and end
points V1 and V3 are well defined, it only remains to
find the position of V2.

Although figure 4 displays the cell voltage as a func-
tion of the depth-of-discharge (DOD) during constant
current discharge cycles, this curve can represent the
decrease in cell voltage with time. DOD is essentially
computed as 100%−SOC. Figure 5 shows the plot of
voltage vs. time for a specific Sun SPOT device dis-
charge cycle (running particle filter based prognostics
application ((Saha and Goebel, 2008))). The current
drawn from the battery has a lot of jitter as is character-
istic of logic circuits, but it may be viewed as a uniform
random distribution with a stationary mean. The jitter
on the cell voltage is smoothed out by moving win-
dow averaging (solid blue line). The coordinates of the
point V2 are computed by minimizing the squared er-
ror between the smoothed voltage curve and the piece-
wise linear model (dashed red line). The points V1 and
V3 are not present in figure 5 since it shows zoomed in
view of the plot. Figure 6 shows the plot of the squared
error vs. the time index.

Having estimated the coordinates of the point V2
from the discharge cycles used for training and corre-
lating the time axis to DOD, we found the SOC at V2,
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Figure 5: Model identification from a specific dis-
charge cycle.

denoted as V2, SOC, to be approximately 10% (90%
DOD) with a cell voltage, V2,E , of about 3.66V. We
use these observations to further simplify our predic-
tion task, which is to predict the occurrence of V2, i.e.
the time tcritical after which the cell voltage starts to
drop sharply. In our experiments, we consider the end-
of-discharge (EOD) the same as tcritical. The predic-
tion happens in two steps. In the first step we estimate
the current SOC, SOCi, from the current cell voltage,
Ei, (averaged over a small time window to smooth out
the jitters):

SOCi =
V2,SOC + (V1,SOC − V2,SOC) (1)
×(Ei − V2,E)/(V1,E − V2,E).

Substituting the values learnt from the training data,
this equation reduces to:

SOCi = 10 + 183.67(Ei − 3.66). (2)

Figure 6: Least square regression for a specific dis-
charge cycle.

Figure 7: Predicting tcritical for a test case.

Having determined the current SOC, we simply in-
tegrate the expected current profile over time to get
the rate of charge depletion and extrapolate it from the
current time ti till we reach 10% SOC. Assuming sta-
tionary distribution of the expected current with mean
Iavg , this step reduces to:

tcritical = ti + (C/Iavg)× (SOCi − 10)/100, (3)

Here, C represents the charge capacity of the bat-
tery (0.72 Ahr in our case). Thus the actual prediction
exercise is reduce to two simple calculations of com-
plexity order O(1). Although, this method is simplis-
tic, the results are definitely usable as shown in figure
7. The prediction is made at time instant tP , when the
CE starts to run the prognostics routine. It is desired to
predict tcritical or EOD which gives us the time win-
dow (tcritical − tP ) within which the health manage-
ment task may be run reliably.

Figure 8 shows one such example where the initial
prediction at tP,1 of tcritical, denoted by tcritical,1 in
the plot, is determined to be too soon for the comple-
tion of the prognostic activity being undertaken. Sub-
sequently we introduce sleep states to prolong the bat-
tery and make another prediction at tP,2. The new
value of tcritical is denoted by tcritical,2 in the plot.
In this case tcritical,2 is far enough out in the future
to complete the health management routine. If that
is not the case, we can prolong the sleep states and
make another prediction and so on. It should be noted
that tcritical,2 agrees well with the computed location
of V2, indicating the robustness of our simplistic ap-
proach.

4.2 Regression Based Battery Power
Management

As mentioned earlier, each individual CE executes its
own power management routine. If a CE participates
in prognostics, the power management routine is initi-
ated whenever the prognostics routine is started since
it is expected that the prognostics routine would cause
significant rise in current consumption by the device
and hence would reduce the battery life earlier.

As mentioned in the previous section, two regres-
sion models are developed. In the first case, a static

6



Annual Conference of the Prognostics and Health Management Society, 2009

Figure 8: Predicting tcritical with sleep modes intro-
duced.

model (model A) is created for the discharge profile
which provides only one EOD value. This model con-
sidered the battery discharge profile involving prog-
nostics load. Though this model leads to significant
saving in battery life, it does not model the effects of
introducing the sleep mode which would change the
current consumption. In the second case, the model
is dynamic (model B) and adapts to accommodate
changes in the discharge profile due to introduction of
shallow sleep modes. There are essentially two forms
of low power mode that we implement. In the first
mode, the CE goes to shallow sleep for time tsleep dur-
ing every iteration. For the second mode, the CE goes
to shallow sleep after multiple iterations (n) of prog-
nostics and diagnostics. For the dynamic regression
model based scheme (model B), both tsleep and n vary
during run-time. Based on the two regression models
and the two low power modes, three power manage-
ment routines are formulated.

Before describing the routines we define the follow-
ing parameters that are specified by the system user
• fdiag: This is the minimum diagnostics frequency

for the health management system.
• δprog: This is the maximum delay that can be tol-

erated in obtaining a prognostics update for a sin-
gle iteration. The inverse of δprog is defined as
the minimum prognostics frequency fprog.

Note the values for the above parameters are
application-specific and should decided based on
user requirements. We also assume that an average
value for the computation time for the diagnostics
routines tdiag and each prognostics iteration tprog
is available. These computation times also include
average communication times. In case of problems in
communication, due to sudden interference, signifi-
cant deviations in the actual performance can occur.
Also, in our system, only a single prognostic activity
is included, for more complex systems, there may
be multiple other prognostic activities which may
interrupt the operations thereby causing changes in
fdiag and fprog values. Thus, fdiag and fprog are
mainly used for guiding calculations for tsleep as

accurately as possible. The three power management
routines are presented below.

Simple power management

In this method, a CE is forced to go to shallow
sleep at every iteration for a brief period of time
Note that in this case fdiag and fprog are same. Thus
in this case fdiag and fprog are same. The power
management routine consists of the following steps:
• Using model A, the EOD is calculated.
• Based on tdiag, tprog and fdiag , the sleep time
tsleep is calculated.

• The total number of diagnostics and prognostics
updates N that can be obtained before the battery
reaches EOD is calculated.

• The total number of diagnostics and prognostics
iterations N that can be achieved for this scheme
is calculated as follows:

N × (tdiag + tprog + tsleep) = EOD− tP . (4)

• Shallow sleep is introduced during every prog-
nostics iteration for time tsleep.

Our goal in implementing power saving routines is
to maximize N, i.e., ensure more health management
iterations. N is directly proportional to remaining
battery life and execution speed. Higher values of
tsleep result in more battery life, at the cost of low
execution speeds, hence the trade-offs between these
two factors need to be investigated. The next power
management schemes, provide more parameters that
can be varied to investigate such trade-offs more
comprehensively.

Parameterized power management

As observed in the simple power management
scheme, the only parameter that can be adjusted to
meet system constraints is tsleep. For many complex
systems, this may not be sufficient to meet all sys-
tem performance requirements. For example, in many
cases fdiag may need to be much higher compared to
fprog and, thus, the device may have to be forced to
avoid sleep modes during diagnostics. The following
scheme caters to such cases by providing more param-
eters for performance adjustments. In this method, the
device goes to shallow sleep for a few iterations, m,
after n regular iterations while diagnostic operations –
involving only probing sensors – is not stopped during
sleep. Regular iterations involve both diagnostics and
prognostics routines.
• Using model A, the EOD is calculated.
• Based on tdiag, tprog, fdiag and δprog, the sleep

time tsleep and m and n are calculated.
• The total number of diagnostics and prognostics

iterations N can be achieved for this scheme as
follows:

N × (n× (tdiag + tprog) +
m× (tdiag + tsleep)) = EOD − tP . (5)
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Table 1: Test matrix for parameter variation for different power management routines.
Algorithm fdiag(Hz) δprog(secs) Ndiag(Hz) Nprog(Hz)

Simple 0.4 2.5 1127 1127
Parameterized a 0.4 50 1800 900

b 0.4 40 1700 1500
Dynamic a 0.4 50 1925 1650

b 0.4 120 2160 300
c 0.4 40 1620 900

Since in this case the total number of diagnostics
is update is different from the total number of
prognostics updates, we define them separately
as:

Ndiag = N × n (6)
Nprog = N ×m (7)

• The CE goes to shallow sleep mode after n prog-
nostics iteration for time tsleep for m iterations.
During the sleep iterations, the diagnostics up-
dates are not stopped.

In this case we have three parameters – tsleep, n and
m – that can be adjusted in order to explore trade-offs
between execution time and battery life. Note that
Ndiag and Nprog are equal to each other for the simple
power management scheme.

Dynamic power management

In this scheme, we extend the parameterized power
management scheme by including dynamic updates to
the value of EOD so that the change in current profile
due to sleep modes is taken into consideration. In this
method, during the sleep iterations the diagnostics
updates are not stopped, only prognostics operations
that drain more battery capacity are stopped. The
details of the scheme is given below.
• Using the model B, the initial EOD is calculated.
• Using this initial value of EOD combined with
tdiag, tprog, fdiag and δprog, the sleep time tsleep,
m and n are calculated.

• The CE goes to shallow sleep mode after n prog-
nostics iteration for time tsleep for m iterations.
During this sleep iterations, the diagnostics up-
dates are not stopped.

• As the shallow sleep modes are introduced, the
battery discharge profile gets updated and, hence,
new values of EOD (EODi) are obtained. For
every new value of EODi, tsleep, m and n are
updated.

• For a new value of EODi, N is calculated as
follows:

N × (n× (tdiag + tprog) +
m× (tdiag + tsleep)) = EODi − tP . (8)

Ndiag and Nprog are as defined in parameterized
power management scheme.

Note that it is not useful to increase the tsleep value
frequently based on new calculations of EOD. This is
because a high value of tsleep will cause an increase in
the value of δprog. This is not desirable as we progress
further into the prognostics routine when more fre-
quent updates – and hence less delays – would be re-
quired for critical prognostics decisions. In our experi-
ments, we update the EOD value twice for the duration
of the prognostics routine.

5 EXPERIMENTS AND RESULTS
In this section we present our experiments with the
three power management techniques presented in sec-
tion 4.2 for the health management architecture out-
lined in section 3.2 comprising of 4 CEs and 1 base
station. As observed from the descriptions of the rou-
tines, the design space that can be explored by vary-
ing the different parameters and their combinations are
huge and cannot be fully explored within the scope
of this paper. Therefore, we examined a limited set
of parameter variations. The values of both the fdiag
and fprog obtained for operation without power man-
agement are 0.5 Hz. Note that these values are used
mainly for calculating the tsleep values, and hence, are
assumed to not have any variations. However, during
practical implementation these frequencies do not re-
main constant due to disturbances in the communica-
tion channel. The computation and memory overhead
for the power management algorithms was negligible
and did not add any overhead to the existing frame-
work. All the CEs were charged to a voltage of 3.8V
before starting the health management routines.

Table 1 presents our experimental test matrix along
with the resultant values of Ndiag and Nprog from the
experiments. The parameter variations for the differ-
ent power management schemes are outlined by the
different fdiag and δprog values. Figure 9 shows the
battery lifetime for the different power management
schemes as outlined in table 1 compared to lifetime
with no power management scheme.

Switching to low power mode clearly shows sav-
ings in battery life. However, the savings come at
the expense of lower diagnostic and prognostic fre-
quencies. Also, when the total battery lifetime val-
ues are compared with the values obtained for Ndiag
and Nprog in table 1, it may be observed that the sim-
ple power management routine yields very low total
number of iterations. This is because the device goes
to sleep at every iteration that hampers the execution
profile. However, for the parameterized scheme, the
Ndiag and Nprog values are much higher for compara-
ble total battery life. This implies that it is more effi-
cient to make the device go to sleep for brief bursts of

8
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Figure 9: Battery life with different power manage-
ment schemes compared with no power management
scheme.

time after longer intervals of execution as against let-
ting the device sleep at more frequent intervals. The
reason behind this could be that bursts of sleep peri-
ods allow the battery to significantly recover its capac-
ity thereby extending its battery life with lower penal-
ties on performance. However, in order to determine
when to start these burst periods as well its duration,
accurate prediction of EOD is required. Our dynamic
power management aims to achieve that by periodi-
cally updating the value of EOD as the current dis-
charge profile changes. For the dynamic power man-
agement scheme, it was observed that increasing tsleep
was more efficient than increasing the value of m in
terms of achieving higherNdiag andNdiag for compa-
rable battery lifetimes.

Figure 10 shows the expected voltage and current
discharge profile for a CE with diagnostics and prog-
nostics routine, while figure 11 shows the voltage and
current profiles for the dynamic power management
schemes. The current discharge profile clearly shows
the dip in current values which occur during sleep iter-
ations. An increase in voltage level corresponding to a
dip in current value during sleep iterations is also visi-
ble. Also, compared to the battery life of the CE with
no power management, a significant increase in battery
life is observed in the device with power management.

6 CONCLUSIONS AND FUTURE WORK
This paper explored regression based power manage-
ment schemes for wireless sensor architecture imple-
menting a distributed health management system. The
system involved multiple smart sensors implementing
diagnostics operation along with off line battery prog-
nostics routines. Our proposed power management
schemes are centered around monitoring of battery dis-
charge profile and using that information for accurate
regression based prediction of device battery EOD.
This accurate prediction enables efficient low power
mode transitions, since the sensors transition into sleep
modes only when required. The EOD prediction based
method also enables efficient calculation of the time
periods for which the device can sleep, thereby en-
suring minimal loss in system performance. Three
low computation-weight power management schemes
were explored that involved on line prediction of EOD
as well as dynamically updating EOD based on change

Figure 10: Current and discharge profile for CE with
no power management schemes.

in battery discharge profile. Our power management
schemes provide multiple parameters that can be ad-
justed for different system constraints, and the user
should make a careful trade-off analysis of system per-
formance requirements such as speed cost etc., in order
to set threshold values for the different parameters.

As observed from the experimental results, in-
creased sleep durations by the device may help in ex-
tending battery life of the device but hampers sys-
tem performance. The results also show that bursts
of sleep iterations after several regular health manage-
ment task iterations provided better trade-off between
performance and battery life.

Figure 11: Current and discharge profile for CE with
dynamic power management schemes with varying
fdiag . The dip in current values correspond to sleep
states.

Future work will look into more complex and inter-
active systems involving multiple prognostic routines
to test the robustness of the schemes. Other battery
life prediction techniques for the SPOT devices such
as particle filter based schemes will also be explored.

9



Annual Conference of the Prognostics and Health Management Society, 2009

NOMENCLATURE
SOC State of Charge
EOD End of Discharge
DOD Depth of Discharge
V1 Start point of discharge curve
V2 Knee point of discharge curve
V3 End point of discharge curve
Vi,E Voltage at point Vi
Vi,SOC SOC at Vi
Iavg Mean current
ti Current Time
C Charge capacity
SOCi Current at SOC
tcritical Time at which SOC is 10% of full value
tP prediction start time
tdiag Computation time for diagnostics
tprog Computation time for prognostics
fdiag Minimum diagnostics frequency
fprog Minimum prognostics frequency
δprog Maximum prognostics delay
N Total number of diagnostics and

prognostics iterations
Ndiag Total number of iagnostics iterations
Nprog Total number of prognostics iterations
tsleep Amount time spent in shallow sleep (in ms)
m number of sleep iterations for parameterized

and dynamic power management schemes
n number of iterations before sleep iterations

start
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