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ABSTRACT(MODIFIED) 

Progress in development of the physics model based 
diagnostic and prognostic system for solid rocket motors 
(SRMs) of the new generation of the crew exploration 
vehicles is reported. The performance model (PM) of the 
internal ballistics of large segmented SRMs in the regime 
of steady burning in the presence of the case breach fault is 
presented. This model takes into account propellant 
regression, erosive burning, surface friction, nozzle 
ablation, and also processes describing specific faults. The 
performance of the model is verified by comparison with 
the results of 2D high-fidelity simulations. Importantly, the 
PM allows for the simulation of a number of faults 
observed earlier in large segmented SRMs including 
nozzle blocking, bore choking, propellant debonding, and 
case breach fault. The developed model of the case breach 
allows calculations of the side thrust at a given location 
along the rocket axis. The model takes into account the 
effect of mass addition along the rocket axis, erosive 
burning, and surface friction. 

In this paper we illustrate to use the developed PM for 
analysis of the case breach fault. The model of the 
internal ballistics is combined with the model of dynamics 
of burning-through case at a given location along the 
motor axis. The case breach fault diagnostic is developed 
via inference of the case breach area in a quasi-steady 
approximation. Prognosis of the case breach fault is 
achieved using a scaling algorithm. The diagnostic and 
prognostic algorithms were verified using the results of a 
ground firing test of a sub-scale motor.
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NOMENCLATURE 
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= gas density  

= gas pressure 

= gas pressure at the chamber head  

=  nozzle stagnation pressure  

= gas temperature 

= gas velocity 

= sound velocity  

= Mach number, M = u/c, M0 = u/c0 

= specific heat for the constant volume 

= specific heat for the constant pressure 

= ration of specific heats; γ= Cp/CV 

= perimeter of the burning propellant surface 

= length of the propellant grain 

= typical length equal to 1m 

= perimeter of the hole cross-section 

= burn distance of the propellant 

= radius of the nozzle throat 

= radius of the nozzle exit 

= radius of the hole throat 

= cross-section of  propellant surface 

= cross-sectional area of the nozzle throat 

= cross-sectional area of the hole throat 

= total energy of the combustion gas 

= total enthalpy of the combustion  

= additional thrust produced by hole gas flow 

= normal thrust  

= reference burning rate 
 

= burning rate of solid propellant 

= erosive burning rate of solid propellant 

= exponent for burning rate of the propellant 

= constant for burning rate [a = rc/pc
n 
] 

= reference pressure for burning rate 

= density of the solid propellant 

= combustion heat of the solid propellant 

= variable in the Vilyunov correlation law  

= mass flow density [ j = uρ] 

= mass flow [ J = uρS]  

= heat transfer coefficient 

= heat flow from the gas to a hole wall 

= surface friction force 

= velocity of propagation of  hole wall  

= velocity of propagation of ablation front 

= typical ablation velocity of nozzle throat 

= typical ablation velocity of nozzle exit 

= convection heat flow   

= radiation heat flow  

= melting temperature point 

= heat of combustion of case metal  

= temperature of metal surface burning 

= characteristic temperature of ablation 

= temperature of metal far from hole 

= specific heat of case metal 

= specific melting heat of case metal 

= specific heat of insulator layer 

qins 

ρmet 
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k 

µ 

= specific ablation heat of insulator layer 

= density of case metal 

= density of insulator layer 

= the thermal conductivity 

= dynamical viscosity of hot gas 
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= stagnation gas 

= initial states 

= i-part of the ballistic element 

= parameters in the hole  

= parameters in the nozzle exit 

= parameters in the nozzle throat  

= parameters in the nominal regime 

= parameters in the nozzle 

= parameters at the chamber head 

= parameters at the grain outlet (nozzle inlet) 

= parameters at the aft end 

 
1. INTRODUCTION 

Development of an in-flight Failure Detection and 
Prognostic (FD&P) system for SRMs is a prerequisite for 
the safe exploitation of the next-generation Crew 
Exploration Vehicles (Roger, 1986). The main challenges 
in the development of on-board FD&P systems are the 
following: (i) internal gas dynamics of SRMs is highly 
nonlinear, (ii) there is a number of failure modes that may 
lead to abrupt changes of SRMs parameters, (iii) the 
number and types of available sensors are severely 
limited, as a rule only two sensors of the head pressure 
and acceleration, (iv) the fault detection is a complicated 
ill-posed inverse problem, and (v) the safe time window 
between the detectable onset of a catastrophic failure is 
typically a few seconds. These difficulties suggest that the 
model based approach to the IVHM of SRMs that 
incorporates information about physical processes 
underlying the nominal and off-nominal regimes can 
minimizes the number of “misses” and “false alarms” and 
reduce learning time required for accurate prediction of 
the fault dynamics forward in time. Preliminary numerical 
research (Luchinsky et al May 2007) confirms this 
conjecture. 
Indeed, dynamical models of internal SRMs ballistics and 
many SRMs fault modes are well studied, see e.g. 
(Culick, 1996; Salita, 1989; Sorkin, 1967) and references 
therein. Examples of faults, for which quite accurate 
dynamical models can be introduced, include: (1) 
combustion instability; (ii) case breach fault, i.e. local 
burning-through of the rocket case; (iii) propellant 
cracking; (iv) overpressure and bursting of the case 
induced by nozzle blocking or bore choking. The 
combustion instabilities were studied in detail in the 
classical papers of (Culick and Yang, 1992; Culick, 1996) 
and (Flandro et al, 2004). Bore choking phenomenon due 
to radial deformation of the propellant grain near booster 
joint segments was studied numerically in (Dick et al., 
2005; Isaac and Iverson, 2003; Wang et al., 2005) and 
observed in primary construction of the Titan IV (see the 
report, Wilson at al., 1992).  
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A model based fault diagnostic and prognostic system for 
a case breach fault in a subscale SRM was introduced in 
our earlier work (Smelyanskiy et al., 2005; Osipov et al., 
March 2007 and July 2007; Luchinsky et al., 2007 and 
2008). The FD&P system in this work was based on a 
novel Bayesian inferential framework allowing for an 
analytical solution of the reconstruction problem in a 
stochastic nonlinear dynamical model in the presence of 
measurement noise. The performance of the FD&P system 
was verified using 2D high-fidelity FLUENT modeling 
and the results of the ground firing test. It was shown that 
the reconstructed system describes the SRMs ballistics 
with good accuracy. 
In this paper we present an extension of the results 
obtained for the subscale motor to a case breach model of 
large segmented SRMs. The extension of this FD&P 
system to large segmented rockets is complicated due to 
the following reasons. Firstly, the effect of the mass 
addition from the propellant walls to the gas flow in the 
combustion chamber (Salita, 1989 and 2001) has to be 
taken into account to calculate the pressure distribution 
along the axis of the large rocket (Osipov et al., 2007, 
March).  Secondly, an additional difficulty in modeling 
internal ballistics of the large segmented SRMs is related 
to the fact that the propellant burning model has to be 
extended by including the corrections for erosive burning 
and friction. 
The FD&P system in multi-segment SRMs is based on our 
model of the internal ballistics that describes dynamics of 
the nominal regime as well as the off-nominal regimes in 
the presence of different faults, including the case breach 
fault. The model consists of a set of one-dimensional 
partial differential equations coupled to the equations of 
the nozzle ablation, propellant regression, erosive burning, 
and the dynamics of the case breach fault. The later takes 
into account heat transfer between the hot gas flow and 
hole walls, melting, and burning of the metal surface. The 
model is solved in a quasi-steady approximation by 
dividing the combustion volume into a number of ballistic 
elements, setting up a boundary value problem with 
boundaries at the head and aft of the rocket, and solving 
resulting boundary value problem for stationary axial 
distributions of the flow variables at each time step.  
The FD&P system consists of the diagnostics of the fault 
parameters using steady-state equation for the nozzle 
stagnation pressure (Salita, January 1989) and prognostics 
of the combustion gas and fault dynamics using inferred 
fault parameters and solutions of the model equations 
forward in time or scaling algorithm (McMillin, 2006). 
The PM and FD&P system are validated using results of 
the high-fidelity simulations in FLUENT and analysis of 
the time-traces obtained in the ground firing tests of a 
subscale motor.  
The paper is organized as follows. Symbols and 
abbreviations are defined in the Nomenclature. The 
performance model is described in the Sec.2. The fault 
diagnostics and prognostic system for large segmented 
SRM is introduced in Sec. 3.  The scaling algorithm for 
prediction of the SRM and fault parameters is outlined in 
Sec. 4. Finally, the conclusions are drawn in the final 
section.  

2. PERFORMANCE MODEL 

2.1 Equations of gas dynamics 

The gas dynamics in the combustion chamber is 
determined by the system of the equations for the mass, 
momentum and energy conservation. Taking into account 
a well known result (Salita, 1989; Sorkin, 1967) that the 
internal ballistics of SRMs is described to a high precision 
by averaging hydrodynamic equations over the port area 
we obtain the following set of 1D partial differential 
equations (Smelyanskiy et al., 2005; Osipov et al., 2007, 
March and 2007, July; Luchinsky et al., 2007) for the gas 
dynamics in the combustion chamber: 

( )

2 2

,

( ) ( ) ,

( ) ,

t p x p b

t p x p x p

t p T x T p b

A u r l

A u A u p p A u l

A e u e p H r l

ρ ρ ρ

ρ ρ λρ

ρ ρ ρ

∂ = −∂ +

∂ = −∂ + − ∂ −

∂ = −∂ + +

    (1) 

where /t t∂ ≡ ∂ ∂ , /x x∂ ≡ ∂ ∂ ; x  is the coordinate along 
the motor axis, and ( )2 / 2t ve c T u= + ;  0 0H c T=

 
is the 

combustion heat of the solid propellant.  
Due to the high temperature T of combustion products in 
the combustion chamber, the hot mixed gas can be 
considered as a combination of ideal gases. As we are 
interested in average gas characteristics (head pressure 
and temperature) we will characterize the combustion 
products by averaged parameters using the state equation 
for an ideal gas: 

2

0 0

0 0 0

( )P V

p cp T T
c c T

T Tρ ρ γ

   
= − = =   

   

              (2) 

2.2 Regression of propellant surface 

We take into account the propellant erosion in a large 
segmented rocket assuming that the erosive burning rate 
of the propellant radius can be presented in the form  

                  n

b er
R r ap r= = +ɺ ɺ  .              (3) 

The erosive burning is taken into account in the 

Vilyunov’s  approximation 

( )er cr
r C I I= −ɺ      (4) 

for I > Icr and 0 otherwise, where C and Icr are constants 

and ( ) 1/8/ Re
b p

I const u rρ ρ
−= , where Re is the 

Reynolds number. 

2.3 Model of the propellant geometry 

To model the actual propellant geometry along the rocket 
axis the combustion chamber is divided into N segments 
as schematically shown in Figure 1. For each segment “i" 
the port area Ap(xi) and perimeter l(xi) averaged over the 
segment length dxi are provided in the form of the design 
curves (DCs)    

 

           ( ) ( ( )), ( ) ( ( ))p i Ai i i li iA x f R x l x f R x= =
    

    (5) 
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(see Figure 1). Note that the burning area and the port 

volume for each segment are given by the following 

relations 

 ( ) ( ) , ( ) ( ) ,b i i i i b i idA x l x dx dV x A x dx= =       (6) 

and, therefore, are uniquely determined by the burning rate 
rbi for each ballistic element.  
For numerical integration each segment was divided into a 
finite number of ballistic elements. The design curves were 
provided for each ballistic segment.  
2.4 Model of the nozzle ablation 

To model nozzle ablation we use the Bartz’ approximation 
(Bartz, 1965; Hill and Peterson,1992; Handbook, 1973). In 
this approximation the ablation rate of the nozzle radius 

N
Rɺ is given (Osipov et al., 2007, March and 2007, July; 
Luchinsky et al., 2007) by the following equation: 
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where typical values of fitting parameters are β  ≈ 0.2 and 

ε
 
 ≈ 0.023. In a particular case of the ablation of the nozzle 

throat (t) and nozzle exit (ex) this approximation is 

reduced to  
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where Rt,in=Rt(0), Rt,in=Rt(0) are initial values of the 
nozzle throat and nozzle exit radii and vm,t  and vm,ex are 
constants determined by fitting experimental data. In 
practice, to fit experimental or numerical results on the 
nozzle ablation it suffices to substitute β = 0.2 into the 
Eqs. (8), (9) and to obtain values of vm,t  and vm,ex by 
regression.  

2.5 Model of the burning-though of a hole  

To complete the model of the case breach fault for the 
segmented RSRMV the system of equations (1)--(6), (8), 
(9) above has to be extended by including equations of the 
hole growth model (Luchinsky et al., 2007; Osipov et al., 
2007, March & July) 
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2.6 Performance model 

Combining the equations of gas dynamics with the 
dynamics of propellant regression, nozzle ablation, and 
case breach fault the performance model of the large 
segmented SRM in the presence of faults can be 
summarized as follows:  
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where conservative variables of the gas dynamics and 

function f(U) are given by the following equations 
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and the source terms that include fault terms at a given 

location x0 have the form 
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 Here Ah is the cross-section of burning-through hole and 
ut,h  is the gas velocity through the hole. The main rocket 
thrust FN and lateral (side) thrust Fh induced by the gas 
flow through the hole are given by 
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where  

,, .t t t t h h t t hJ u A J u Aρ ρ= =  

and  pamb is an ambient pressure and the density ρh,t  at the 

hole throat corresponds to the hole stagnation density at 

the point of location of the hole. 

 

2.7 Integration of the PM 

We notice that (12) is a system of nearly balanced PDEs 
with slowly varying parameters. This is an example of 
PDEs with multiple time scales (Knoll et al., 2003), where 
the slower dynamical time scale is a result of a near 
balance between ∂x (f(U)Ap) and S in the first equation and 
slowly varying parameters in the last four equations in (12) 
The fast dynamics of (12) corresponds to the acoustic time 
scale. To see the multiple time scale character of the 
system (12) more clearly let us introduce dimensionless 
variables  
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where t0 = L0/ap0
n ≈ 10

-2 
sec; p0 = p0 (t=0), ρ0 = ρ0 (t=0) 

are the gas pressure and density near the rocket head at 
initial time point after the ignition, M0 = u/c0, L0 ≈1m are 
characteristics scales of time and length, rp0 = ap0

n
 is a 

typical burning rate. In dimensionless variables (12) can 
be rewritten as follows 
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Here we have introduced small parameter ε = 
L0/(t0c0) < 10

-5
 corresponding to the ratio of the 

characteristic velocity of the propellant surface regression  
(rp0 ≈ 10

-2
 m/sec) to the speed of sound (c0 ≈ 1006 m/sec). 

It is clear that in the first approximation at each given 
moment of time the axial distribution of the flow 
variables in a segmented rocket can be found in quasi-
steady approximation neglecting a small last term 
proportional to ε = 10

-5
. Note that two source terms in the 

1
st
 and 3

rd
 Eqs. of (17) are also ε∝ but these terms 

cannot be  neglected, because they are proportional to ρp 
≈ 10

2
. 

 
To solve equations (17) one can neglect the last term ∝ ε 
and complete the resulting system of ODEs by a set of 

Figure 2 Nominal regime: Results of numerical solution of Eqs (17),(20) for axial distributions of pressure (left) and 

velocity (right) at different moments of time. Time after ignition: 14, 30, 46, 62, and 80 seconds. The value of x is 

measured from the motor head. The dips in the right figure for time 14 sec relate to the propellant grain boundaries.
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boundary conditions. The calculation of the axial 
distribution of the flow parameters in the quasi-steady 
approximation can be reduced to the integration of the 
system of ODEs with respect to spatial coordinate x. To 
this end it is convenient to write explicitly Euler 
approximation of Eqs. (17) in a quasi-steady regime on a 
coarse-grained (in general non-uniform) lattice of axial 
coordinates {xi: i=1,…,N} 
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(18) 

where ( )1 2

02
/h T M H

γ −= + . The last terms in the first and 
third equations correspond to the mass and energy losses 
due to the case breach fault in the ih ballistic element. The 
dynamics of the case breach fault in this approximation is 
determined by the dynamics of the area of the case breach 
Ah. Note that the same model can be used to model other 
important fault modes in SRM. For example, the bore 
choking fault in the i

th
 ballistics element can be modeled 

by introducing fault induced changes to the port area Ap in 
this element; the crack dynamics can be modeled by 
introducing crack induced changes to an effective port 
perimeter l(x) in the i

th
 ballistics element; the nozzle 

blocking can be modeled by introducing fault induced 
changes to the nozzle throat area At in the boundary 
conditions (20) below. 
The boundary conditions at the aft end (at the outlet of the 
grain) are defined by the choking (sonic) conditions at the 
nozzle throat. The boundary conditions at the rocket head 
are determined by the continuity conditions of the gas flow 
from the propellant surface and through the port area at the 
rocket head. By adding to these two conditions the 
equation of state and the equation for the gas temperature 
in the combustion chamber as a function of the Mach 
number M0 we obtain resulting boundary conditions at the 
rocket head (0) and aft (A) ends in dimensionless units as 
follows 

 ,0 2

0 0,0 0 0 0,0 0 0 0

,

1
, 1 , ,

2

p b n

p H

A
M p T M p T

A

δρ γ
ρ ρ

  − 
= = − =       

 

1

1
2 2

0, 0, 0,

1 1
1 , 1 , .

2 2

t
A A A A A A A

A

A
M M T M p T

A

γγ γ
ρ

−− −   
− = = − =   

Γ   

(19) 

The conditions (19) can be reduced to 

,0 2 1

0,0 0,0 0

,0

1

1
2

0, 0,

2

0,

1
1 ,

2

1
1 ,

2

1
1 .

2

p b n

p

t
A A

A

A A A

A
M M p

A

A
M M

A

p M

γ

δρ γ

γ

γ
ρ

−

−

  − 
= −       

− 
− = 

Γ 

− 
= − 

 

             (20) 

The results of the numerical solution of the problem (18), 
(20) for nominal regime (Ah=0) are presented in Figure 2. 
This figure shows the resulting axial distributions of the 
pressure and velocity for five instances of time with the 
time step 16 sec (the time resolution of the solution was 
0.2sec). It can be seen from Figure 2 that there is a 
substantial difference between the head and aft pressure 
due to the effect of mass addition. The difference is most 
significant at the initial time when the port area is the 
smallest and the flow velocity has the largest values along 
the axis. With time the port area is increasing and the 
difference between head and aft pressure becomes 
negligible. Our analysis showed that results presented in 
Figure 2 coincide with those obtained by the 3

rd
 party 

using 2D CFD code that was verified and validated in 
multiple ground firing and flight tests and for many years 
is standard software for predicting internal ballistics of 
SRMs. 

3 FAULT DIAGNOSTICS AND PROGNOSTICS  

The model of internal ballistics of the SRM in off-
nominal regimes allows one to develop and verify FD&P 
system for the large segmented SRMs. The FD&P system 
consists of two separate steps: (i) diagnosis or 
reconstruction of the fault parameters from the measured 
time-traces and (ii) prediction of fault and internal 
ballistic dynamics forward in time. We now describe each 
in more details.  

3.1 Diagnostics of the fault parameters 
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To be able to reconstruct fault parameters we first have to 
introduce a parameterization of the fault. It can be seen 
from the model (18) that the fault dynamics is described 
entirely by the dynamics of the area of the hole Ah(t). The 
actual dynamics of the fault area can be complicated due 
to e.g. cracks and nontrivial geometry of the joints, see e.g. 
(McMillin, 2006; Smelyanskiy at al., 2008). However, 
analysis of the ground test results (Smelyanskiy at al., 
2008) and of the challenger accident (McMillin, 2006) 
show that the case breach dynamics is sufficiently smooth,  
because it is primarily determined by the burning of the 
metal walls of the hole in the rocket case. It is therefore 
convenient to introduce a polynomial parameterization in 
the form:  

2 3

1 2 3 4( ) .hA t a a t a t a t= + + +          (21) 

This parameterization has proved to be useful in the 
analysis of the ground firing test (Smelyanskiy at al., 
2008). The parameters of the fault dynamics {a1, a2, a3, 
a4} are reconstructed from the inferred time-series data 
Ah(t) using the least square method. The hole is most likely 
to be localized at one of the section joints as shown 
schematically in Figure 1. As a rule, the only pressure 
sensor available is situated in the rocket head. Therefore, 
we have to verify that the measurements of the head 
pressure can be used to infer pressure at an arbitrary 
location of the hole along the rocket axis. To do so we 
simulate the model of internal ballistics of the SRM (18), 
(20) in the off-nominal regime with the case breach area 
given by (21) at arbitrary location. The results of such 
simulations for the case breach at the middle of the SRM 
are shown in the Figure 3. The time resolution of the 
calculations was 0.2 sec, initial radius of the hole Rh0 = 0.1 
in, burning rate of the hole wall vm = 0.3 in/sec, initial time 
of the fault 20 sec, the fault is located in the middle 
section. It can be seen from the figure that the pressure 
drop induced by the case breach is uniform along the 
rocket axis. This shift practically does not depend on the 
location of the hole burning through the case. In particular, 
this result relates the shift both the head pressure to the 
changes in the aft pressures.  
This finding allows us to use the following quasi-
stationary solution for the nozzle stagnation pressure pns, 

which holds with good accuracy for large SRMs (Salita, 
1989; McMillin, 2006): 

 

1

1
0 , ( )

.
( ) ( )

n
p c b eff

ns c

c t h

c r A t
p p

p A t A t

ρ

γ

− Γ  
=   

+   

          (22) 

This equation is derived from the balance condition 
between the choked flow through the nozzle throat and 
the combustion gas flow from the burning surface of the 
grain. It relates the nozzle stagnation pressure to the 
burning area Ab,eff divided by the effective area of the 
nozzle throat.  It allows for reconstruction the effective 
area of the nozzle throat from the time-traces of the 
nozzle stagnation pressure.  
To see this we notice that burning area Ab(R(t)) and 
nozzle throat area At(t) are determined by the known 
initial condition and measured time-traces of the gas 
pressure pns(t). The accuracy of the relation (22) is further 
improved by introducing the effective burning area 
Ab,eff(R(t)) in the nominal regime. Indeed, in the nominal 
regime Ah(t) = 0 while pns(t) and At(t) are well known. 
This allows one to determine uniquely the effective 
burning area Ab,eff(R(t)) as a function of the burn distance 
R(t). This functional dependence is assumed to be valid in 
the off-nominal regime of the case breach. Therefore, one 

Figure 3 (left) Comparison between spatial distribution of pressure in the nominal regime (solid lines) and off-nominal 
regime (squares).  (right). Comparison between spatial distribution of velocity in the nominal regime (solid lines) and 
off-nominal regime (circles).  The time instants from the top to the bottom in the figure are 60 sec and 76 sec.  
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Figure 4 The time-trace of the actual hole dynamics 
(blue open circles) as compared with the results of the 
predictions using model (21) for three different times 
of inference: 6 sec after the fault, 8 sec, and 10.0 sec. 
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can use data of the pressure sensor at the rocket head to 
estimate the deviations of the nozzle stagnation pressure 
pns from the nominal regime and subsequently to use 
equation (22) to estimate the area of the case breach fault 
Ah(t) according to the following algorithm: 
1) Use the nominal regime time-traces to determine the 

effective burning area by Eq. (22) 

1

,

0

( )
( ) ( )nt

b eff ns

p

A t
A t p t

c a

γ

ρ
−

 
=  

Γ  

; 

2) Use measured time-trace of the head pressure in the 
off-nominal regime pH(t) to find fault-induced 
pressure at the aft end using the fact that the pressure 
changes induced by the fault are uniform along the 
motor axis 

 ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )fault nom fault nom

A A H Hp t p t p t p t= + − ; 

3) Use nominal time-trace of the Mach number at the aft 

end to determined nozzle stagnation pressure 

 
1

( ) ( ) 2

,0

1
( ) ( ) 1 ( )

2

fault fault

ns A Ap t p t M t
γ

−
− 

= − 
 

; 

 

4) Use Eq. (22) to determined time-trace of the hole area       

( )
0 ,

1
( )

( )
( ) ( )

( )

p b eff

h tn
fault

ns

c aA t
A t A t

p t

ρ

γ
−

 Γ
 = −
 
 

. 

The parameters of the fault dynamics {a1, a2, a3, a4} are 
reconstructed from the inferred time-series data Ah(t) using 
the least square method. We can now use the values of the 
parameters {ai} reconstructed during the diagnostic to 
predict fault and internal ballistics of the SRM forward in 

time. 

3.2 Prognostics of the fault parameters: FD&P 

algorithm 

We note that the values of the reconstructed parameters ai 
of Eq. (22) depend on the diagnostics time. The 
convergence of the forward predictions also depends on 
the diagnostic time, which is, therefore, one of the key 
characteristics of the FD&P system. The convergence of 
the predicted hole area time-traces towards actual time-
traces of Ah(t) is illustrated in Figure 4. In this test the 
fault initialization time iss 40 sec, the hole area 
measurements are assumed to have sampling rate 1kHz 
and measurement noise 1%. The filtering procedure is 
used to reduce the noise in the data. The time intervals 
∆Tm used to infer fault parameters are 8 sec and 11 sec. 
The predictions are made up to 85 sec of the flight. Note 
that the convergence of the predictions of the hole area is 
achieved approximately after 10 sec of diagnostics. The 
inferred values of ai can now be used to predict the case 
breach dynamics forward in time.  
The mean values and standard deviations of the 
parameters {ai} reconstructed during diagnostics of the 
inferred time-series data Ah(t) can now be used to 
integrate model of internal ballistics (12) forward in time 
to obtain predictions of the pressure and thrust dynamics 
in the presence of the fault. The results of the predictions 
for the nozzle and side thrust are shown in the Figure 5. In 
this test the fault was located at the middle of the motor 
and initial time Tf = 45 sec. In the figures the predictions 
are made for two different time intervals of diagnostic: (i) 
∆Tm=8 sec (left) and (ii) ∆Tm=12 sec (right). The 
beginning and the end of the time interval used to infer 
fault parameters are indicated by red vertical lines. The 

Figure 5 Convergence of the predicted hole area (top) and thrust (bottom). The actual time-traces (black solid lines)
obtained by the integration of the performance model are compared with the time-traces of mean predicted values (blue 
dashed lines). The green shading indicates standard deviations for the predicted values of area and nozzle thrust. The 
cyan shading indicates standard deviations for predicted value of the side thrust.  
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metal burning rate corresponding to the hole radius growth 
rate is 0.3 in/sec. We take the initial radius of the hole 
equal to 0.1in. It can be seen from the figure that the 
predictions begin to converge after 12 sec. 
We note, however, that full integration of the model 
forward in time is time consuming procedure and it is 
desirable to reduce the time of calculations required for 
prediction. This can be achieved by applying for 
predictions scaling algorithm based on earlier results of 
(McMillin, 2006). 

4 SCALING ALGORITHM FOR FAULT 
PROGNOSTICS 

This scaling algorithm (McMillin, 2006), unlike FD&P 
algorithm presented above, requires a knowledge of the 
time-trace of the pressure in the nominal regime. Since this 
requirement is a necessary prerequisite for the space flight 
one can substantially reduce the prediction time. Let us 
remind briefly main steps of the scaling algorithm 
(McMillin, 2006). The key assumption based on extensive 
experimental results is that the empirical coefficient q 

 
1

ln( *)
, * .

ln( )

n

t

s p

p AC
q const C

p A aρ

−∂
= = =

∂
        (23) 

is constant. Here * /
t

C pA m= ɺ
 

is characteristic exhaust 
velocity and 

n

b p b p
m A R A apρ ρ= =ɺɺ

 
is the mass flow 

with total burning area Ab , where the burning law is given 
by 

n
R ap=ɺ . To see more clearly the meaning of (23) we 

write its solution on a discrete time lattice {ti: i=1,…,N} 
chosen in such a way that every moment of time in the 
nominal tNi and off-nominal tDi regimes correspond the 
same fixed lattice of burned distances {ri: i = 1,…,N} and 
therefore the burning area As,i at any given instant of time 
is also the same 

 

1

,*

,

n q

i t iq

i i

s i p

p A
C p const

A aρ

− −

− = =             (24) 

The experiments and numerical simulation show that the 
later expression is constant with good accuracy during the 
steady burn out of the propellant both in nominal (N) and 
off-nominal, deviant (D), regimes. We notice that the 
mean value of q is approximately 0.007, i.e. 2 orders of 
magnitude less than (1-n) = 0.7 and can be neglected in 
the calculations. 
Using Eq. (24) for the nominal pNi  and off-nominal pDi 

pressures at the instant ti on a given time lattice {ti} we 

obtain 

 ( )
1

1
, ,/ ,n q

D i N i t N i t D ip p A A − −=   (25) 

where ,t NiA  and ,t DiA  are nozzle throat area in the 
nominal regime and the nozzle effective area in the off-
nominal regime at the instant ti on the nominal time lattice 
{ti} and instant tDi on the deviant time lattice {tDi} as 
explained in the next sub-section. It was noticed that if the 
lattice of burned distances {ri} is kept the same in 
nominal and off-nominal regimes the corresponding time 
lattices {ti} in these two regimes will be different. To find 
the scaling of the time lattice the burning law is used as 
follows (McMillin, 2006) 

1

n n

i i i Ni Ni Di Di
r r r ap t ap t−∆ = − = ∆ = ∆

     
or 

 ( )/ .
n

Di Ni Ni Di
t t p p∆ = ∆                   (26) 

Therefore, the time scale in the presence of the fault is  

, , 1 .D i D i Dit t t−= + ∆   (27) 

Finally, substituting (25) into (26) we have 

 ( )1
, ,/ .

n

e n q
Di Ni t Ni t Di

t t A A
−

− −∆ = ∆
  (28)

 

Figure 6 (left) Nozzle pressure (black line) in the nominal regime are compared with the calculations of the fault 
induced pressure using 1D model (blue line) and scaling algorithm (red line). (right) Nozzle vacuum thrust (black 
line) in the nominal regime as compared to the deviation of the thrust from nominal regime calculated using scaling 
algorithm (red line) and 1D model (blue line). The hole’ thrust calculated using scaling equations (green line) and 1D 
algorithm (yellow line).  
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Fault dynamics can be given in any form, in particular it is 

a given function of time (McMillin, 2006) 

 
, ,( ).h i D i fA f t t= −   (29) 

The effective nozzle throat area for the case breach fault 

A
e
t,D is the sum of the hole area Ah in the case and of the 

slightly modified nozzle throat area At,D 

 
, , , .e

tD i h i tD i
A A A= +   (30) 

To calculate nozzle thrust the empirical constant thrust 

coefficient was used (McMillin, 2006) 

 , , ,/ , .F N t N F N F DC F pA C C= =           (31) 

If combined with (25) the following result for the deviant 

nozzle thrust FDi can be obtained 

 

1

1
, ,

, ,

.
n q

t Di t Ni

Di Ni e

t Ni t Di

A A
F F

A A

− −   
= =       

        

 (32) 

Eq. (15) can be used to calculate the side breach thrust . 

The resulting expression for the side vacuum thrust (pamb = 

0) can be simplified  

( )
1

0

2
1 .

1
h hF p A

γ

γ

γ
γ

− 
= + 

+ 
  (33) 

The algorithm suggested in earlier work (McMillin, 2006)  
consists of iteration of Eqs. (27)-(30) until convergence of 
∆ti is achieved. On substituting Eq. (29) into Eq. (30) and 
Eq. (30) into Eq. (28) the equations. (27)-(30) can be 
reduced to two equations in the form 

 

1
,

, ,

, , 1

,
( )

.

n

n q
t i

Di Ni

tD i D i f

D i D i Di

A
t t

A f t t

t t t

−

− −

−

 
∆ = ∆   + − 

= + ∆

 (34)  

where Dit is given by (27). There are three unknown 

variables  {∆tDi, AtDi, tDi} in two Eqs. (34), therefore one 

more equation is needed to implement iterative procedure. 

We use the assumption (McMillin, 2006) that the nozzle 

throat area is only a function of time AtD(tDi) = AtN(tDi), 

which holds for actual rocket parameters.  
We now verify of both algorithms by direct comparison 
of their performance in an off-nominal regime with the 
fault initial time 10 sec and initial hole radius 0 in. The 
results of the calculation of pressure, nozzle and side 
thrusts using model integration and scaling equations are 
shown in the Figure 6. The results of the simulations of 
the pressure and nozzle thrust of the SRM in the off-
nominal regime are shown by the blue dotted lines. The 
results of the fault-induced scaling of the nominal time-
traces of pressure and nozzle thrust are shown by the red 
and cyan dashed lines respectively. The maximum 
relative deviation of the scaling algorithm results from the 
simulation results is less than 7%. However, the safety 
margins do not allow for the deviation of the nozzle thrust 
more than 10% of the nominal regime. Within these 
safety margins the agreement between the predictions 
based on the scaling algorithm results and on simulations 
is better than 1%. The reason for the small deviation of 
the scaling algorithm from the results of model integration 

t, sec t, sec

Figure 7 Convergence of the predicted hole area (top) and thrust (bottom). The actual time-traces (black solid lines) 
are compared with the time-traces of mean predicted values of nozzle thrust (blue dotted lines) and side thrust (green 
dotted lines). The green shading indicates standard deviations for the predicted values of area and nozzle thrust. The 
nozzle thrust in nominal regime is shown by red lines.  
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is that scaling algorithm ablation of the nozzle throat area, 
while chamber pressure and nozzle thrust are slightly 
underestimated. The modeling of the nozzle ablation in the 
scaling algorithm will be improved in the next version of 
the code. 
Note also that the nominal regimes are well established for 
on-board FD&P and full simulations of the internal 
ballistics are not necessary. Therefore, it becomes possible 
to use simplified predictions based on the scaling 
equations for the prognostics of the case breach fault. The 
later algorithm is much faster than full simulations of the 
model. For example the full simulation takes about 58 sec 
on the laptop with dual core Intel processor, while scaling 
of the given time-traces takes less than 0.3 sec. The results 
of the prognostics based on the scaling equations are 
presented in Figure 7. In the figures the predictions are 
made for two different time intervals of diagnostic: (i) 
∆Tm=8 sec (left) and (ii) ∆Tm=12 sec (right). The 
beginning and the end of the time interval used to infer 
fault parameters are indicated by red vertical lines. Fault 
initial time Tf = 30 sec in all cases, initial hole radius 0 in, 
metal burning rate 0.3 in/sec. 
We therefore conclude that it is possible to perform in-

flight fault diagnostics and prognostics of the case breach 

fault in large segmented SRMs using only measurements 

of the head pressure in the combustion chamber. For 

realistic fault parameters, sufficiently smooth dynamics of 

the fault and relatively low measurement noise the 

convergence of the predictions can be achieved after 10 

seconds of the fault diagnostics. 

Note that the dispersion of predictions for the pressure and 

thrust is smaller than the dispersion of the corresponding 

predictions for the area of the case breach. The reason is 

that the fault is most likely to occur in the second half of 

the flight of the first stage and the prediction time 

corresponds to the decreasing part of the time-trace of the 

head pressure. This will result in the decreasing of the 

dispersion of the pressure predictions according to the Eq. 

(25) 

 

1

1
,

,

.
n q

t Ni

Di Ni

t Di h

A
p p

A A

− − 
=   + 

  

One can see from this equation that despite the fact that the 
dispersion of the hole area (Ah) predictions in the 
denominator is growing, the dispersion of the predictions 
of the deviant pressure pDi is decreasing together with 
decreasing of the nominal pressure pNi. 

5 CONCLUSION 

We analyze the problem of in-flight diagnostics and 
prognostics of the SRM failure modes and, in particular, of 
the case breach fault. To model the internal ballistics of 
large segmented SRMs we introduce a 1D time accurate 
model that takes into account geometry of the grain, the 
propellant regression rate, including erosive burning and 
surface friction, nozzle ablation, and the case breach 
dynamics. The model is integrated in quasi-steady 
approximation by solving the boundary value problem 
using shooting method. The results of integration were 
verified by comparison with 2D FLUENT simulations 

(developed by the third party). The diagnostics of the case 
breach dynamics is performed using stationary solution 
for the nozzle stagnation pressure and the measurements 
of head pressure using polynomial approximation of the 
hole area dynamics and least square method to infer 
coefficients of the polynomial. We demonstrate next that 
it is possible to perform in-flight fault diagnostics and 
prognostics of the case breach fault in large segmented 
SRMs using only measurements of the head pressure in 
the combustion chamber. Prognostics are developed using 
both integration the model equations forward in time and 
using scaling equations (McMillin, 2006). The results of 
predictions based on scaling equations are in good 
agreement with the results of the integration of the 1D 
model in off-nominal regime. The method can be applied 
to the analysis of a number of other faults in SRMs. 
 

REFERENCES 

D.R. Bartz. (1965), Heat Transfer from Rapidly and from 

Heated Air, in Advances in Heat Transfer, vol. 2, 

Hartnett, J. P. , and Irvine, T. F.  Jr., eds., New York: 

Academic Press.  

W. A. Dick et al. (2005, July), Advanced Simulation of 

Solid Propellant Rockets from First Principles", Center 

for Simulation of Advanced Rockets, University of 

Illinois, in Proceeding of 41st AIAA Joint Propulsion 

Conference & exhibit, Tucson, Arizona. 

F. E. C. Culick and V. Yang. (1992), Prediction of the 

Stability of Unsteady Motions in Solid Propellant 

Rocket Motors, Nonsteady Burning and Combustion 

Stability of Solid Propellants, edited by L. De Luca, E. 

W. Price, and M. Summerfield, Vol. 143, Progress in 

Astronautics and Aeronautics, AIAA, Washington, 

DC, pp. 719–779. 

F. E. C. Culick. (1996), Combustion of the Stability in 

Propulsion Systems, Unsteady Combustion, Kluwer 

Academic Publisher. 

G. A. Flandro et al. (2004, July), “Nonlinear Rocket 

Motor Stability Prediction: Limit Amplitude, 

Triggering, and Mean Pressure Shift”, in Proceeding 

of  AIAA 2004-4054, 40th AIAA Joint Propulsion 

Conference & Exhibit, Florida. 

D. A. Knoll, L. Chacon, L. G. Margolin, V. A. Mousseau. 

(2003), On balanced approximations for time 

integration of multiple time scale systems", J. Comput. 

Phys., 185(2), pp 583-611. 

P. Hill and C. Peterson (1992), Mechanics and 

Thermodynamics of Propulsion, 2-rd ed., Addison-

Wesley Publishing Company, Inc. New York. 

F.P. Incropera and D. P. DeWitt (2002), Introduction to 

Heat Transfer, John Wiley & Sons, NY,  

D. A. Isaac and M. P. Iverson. (2003), "Automated Fluid-

Structure Interaction Analysis", ATK Thiokol 

Propulsion, A Division of ATK Aerospace Company. 

D.G. Luchinsky, V.N. Smelyanskiy, V.V. Osipov, and D. 

A. Timucin, and S. Lee. (2007) , “Data management 

and decision support for the in-flight SRM”, in 



Annual Conference of the Prognostics and Health Management Society, 2009 

 12  

Proceeding of AIAA-2007-2829 AIAA 

Infotech@Aerospace 2007 Conference and Exhibit, 

Rohnert Park, California.  

D.G. Luchinsky, V.V. Osipov, V.N. Smelyanskiy, D.A. 

Timucin, D. S. Uckun. (2008), “Model based IVHM 

system for the solid rocket booster”, in Proceeding of 

Aerospace Conference, 2008 IEEE, 1-8, BigSky, 

Montana, 2008 Page(s):1 – 15 

D.G. Luchinsky, V.V. Osipov,  V.N. Smelyanskiy, D.A. 

Timucin, S. Uckun, B. Hayashida, M. Watson, J. 

McMillin, D. Shook, M. Johnson, S. Hyde. (2009), 

“Fault Diagnostics and Prognostics for Large 

Segmented SRMs”, in Proceeding of 2009 IEEE 

Aerospace Conference, Big Sky, Montana. 

J. E. McMillin. (2006, July), AIAA 2006-5121, in 

Proceeding of 42nd AIAA/ASME/SAE/ASEE Joint 

Propulsion Conference & Exhibit , Sacramento, CA. 

V. V. Osipov, D. G. Luchinsky, V. N. Smelyanskiy, S. 

Lee, C. Kiris, D. Timucin. (2007, March), “Bayesian 

Framework for In-Flight SRM Data Management and 

Decision Support”, in Proceeding of IEEE 2007 

Aerospace Conference, Big Sky. 

V.V. Osipov, D.G. Luchinsky, V.N. Smelyanskiy, C. 

Kiris, D.A. Timucin, S.H. Lee. (2007, July) , In-Flight 

Failure Decision and Prognostic for the Solid Rocket 

Buster, in Proceeding of AIAA-2007-5823, 43rd 

AIAA/ASME/SAE/ ASEE Joint Propulsion Conference 

and Exhibit, Cincinnati, OH. 

Rogers (1986). Rogers Commission report.  Report of the 

Presidential Commission on the Space Shuttle 

Challenger Accident 

M. Sailta. (1989, January),  “Verification of Spatial and 

Temporal Pressure Distribution in Segmented Solid 

Rocket Motors,” in Proceeding of AIAA paper 89-

0298, 27th Aerospace Science Meeting, Reno, Nevada. 

M. Salita. (1989, July),  "Closed-Form Analytical 

Solutions for Fluid Mechanical, Thermochemical, and 

Thermal Processes in Solid Rocket Motors", in 

Proceeding of AIAA 98-3965,34th Joint Propulsion 

Conference, Cleveland. 

M. Salita. (2001), “Modern SRM ignition transient 

modeling. I - Introduction and physical models”, in 

Proceeding of AIAA-2001-3443, 

AIAA/ASME/SAE/ASEE Joint Propulsion Conference 

and Exhibit, 37th, Salt Lake City, U. 

J.C. Santiago. (1995), “An experimental study of the 

velocity field of a transverse jet injected into a 

supersonic crossflow”, Ph.D. thesis, University of 

Illinois, Urbana-Champaign.  

A. H. Shapiro. (1953.), “The Dynamics and 

Thermodynamics of Compressible Fluid Flow”, Ronald 

Press, NY, vol. I ,  

E. Sorkin. (1967), Dynamics and Thermodynamics of 

Solid-Propellant Rockets, Wiener Bindery Ltd., 

Jerusalem.  

V.N. Smelyanskiy, D.G. Luchinsky, V.V. Osipov,  D.A. 

Timucin, S. Uckun, B. Hayashida, M. Watson, J. 

McMillin, D. Shook, M. Johnson, S. Hyde. (2008, 

December), Analysis of experimental time-traces of 

the ground firing test of a subscale srm with gas leak 

in the forward closure”, in Proceeding of  6th 

Modeling and Simulation / 4th Liquid Propulsion / 3rd 

Spacecraft Propulsion Joint Subcommittee Meeting, 

Orlando, Florida. 

V.N. Smelyanskiy, D.G. Luchinsky, V.V. Osipov, D.A. 

Timuchin, S.Uckun. (2008, July), “Development of an 

on-board failure diagnostics and prognostics system 

for Solid Rocket Booster”, in Proceeding of 44rd 

AIAA/ASME/SAE/ASEE Joint Propulsion Conference 

& Exhibit, Hartford, CT. 

V.N. Smelyanskiy, D.G. Luchinsky, V.V. Osipov,  D.A. 

Timucin, S. Uckun, B. Hayashida, M. Watson, J. 

McMillin, D. Shook, M. Johnson, S. Hyde. (2008a, 

December) , “Fault diagnostic and prognostic system 

for a gas leak fault in subscale SRM: modeling and 

verification in a ground firing test”, in Proceeding of 

6th Modeling and Simulation / 4th Liquid Propulsion / 

3rd Spacecraft Propulsion Joint Subcommittee 

Meeting, Orlando, Florida.  

V.N. Smelyanskiy, D.G. Luchinsky, V.V. Osipov,  D.A. 

Timucin, S. Uckun, B. Hayashida, M. Watson, A. 

Ridnour, D. Shook, M. Johnson, S. Hyde. (2008b, 

December), “Modeling, Diagnostics and Prognostics 

of Nozzle failures from Ground Tests Hybrid Motor 

Test Data”, in Proceeding of 6th Modeling and 

Simulation / 4th Liquid Propulsion / 3rd Spacecraft 

Propulsion Joint Subcommittee Meeting, Orlando, 

Florida. 

 D.S. Stewart; K.C. Tang; S. Yoo; Q. Brewster; I.R. 

Kuznetsov. (2006). Multiscale Modeling of Solid 

Rocket Motors: Computational Aerodynamic Methods 

for Stable Quasi-Steady Burning,     Journal of Prop 

and Power, Vol. 22, no. 6, 1382-1388. 

W.G. Wilson, J.M. Anderson, and M.V. Meyden (1992, 

July), “Titan IV SRMU PQM-1 Overview”, in 

Proceeding of AIAA/ 92-3819, AIAA 28th Joint 

Propulsion Conference and Exhibit, Nashville, TN. 

W.G. Wilson, J. M. Anderson, M. Vander Meyden (1992, 

July). “Titan IV SRMU PQM-1 Overview”, AIAA 

paper 92-3819, in Proceeding of 

AIAA/SAE/ASME/ASEE, 28th Joint Propulsion 

Conference and Exhibi, Nashville, TN.  
Dr. Dmitry G. Luchinsky is a senior research 

scientist in MCT Inc. He obtained his MSc and PhD in 
physics in Moscow working on nonlinear optics of 
semiconductors. He is an author of more than 100 
publications. He has been on a number of occasions a 
Royal Society Visiting Fellow and a NASA visiting 
scientist. He worked as a senior scientific researcher in 
VNII for Metrological Service (Moscow, Russia) and as a 
Senior Research Fellow in Lancaster University 
(Lancaster, UK). His research interests include nonlinear 



Annual Conference of the Prognostics and Health Management Society, 2009 

 13  

optics, stochastic and chaotic nonlinear dynamics, 
dynamical inference, fluid dynamics, ionic motion. His 
research is currently focused on theory and CFD of gas 
dynamics and fluid structure interaction in SRBs. 

Dr. Viatcheslav (Slava) V. Osipov is a leading 
research scientist in MCT working at NASA Research 
Centre on nonlinear spatial extended systems far from 
equilibrium with application to semiconductor physics and 
hydrodynamics. Slava Osipov received MS, Engineer-
Physicist followed by Ph.D. and Sci. Doc. in Physics of 
non-equilibrium systems” (1975) from Moscow Institute 
of Physics and Technology (MIPT) for the study of self-
organization phenomena in physical, chemical, and 
biological system. He was a professor in MIPT and a 
science-director of the Department of Fundamental 
Research and Theoretical Physics in Russian State 
Science Center "ORION", Moscow, Russia. Dr. Osipov 
has published 4 books and more than 250 science articles 
in the leading physical journals. He have worked a 
research professor in scientific laboratories of different 
countries, including in Consejo Superior  de 
Investigaciones Cientificas,  Madrid, Spain, in University 
of New South Wales (UNSW), Sydney, Australia, and in 
Hewlett-Packard Labs, CA, USA.  

Dr. Vadim N Smelyanskiy leads the physics 
modeling group in Computation Science Division at 
NASA Ames Research Center. He has obtained his BS, 
MS, and PhD in Institute of Semiconductors (Kiev, 

Ukraine). He has worked as a consultant and research 
Scientist in Los Alamos National Lab., Departments of 
Physics in Ann Arbor, MSU, and Princeton. Currently his 
research interest include nonlinear dynamics, statistical 
mechanics, Bayesian Statistics, nonlinear modeling, 
computer vision, quantum, computer, fluid dynamics of 
solid rocket motors, nonlinear dynamics of CMG. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


