
Annual Conference of the Prognostics and Health Management Society, 2009 

 1 

Entropy-based probabilistic fatigue damage prognosis and 

algorithmic performance comparison 

Xuefei Guan
1
, Yongming Liu

2
, Abhinav Saxena

3
,  

Jose Celaya
3
 and Kai Goebel

4 

1
 Department of Mechanical & Aeronautical Engineering, Clarkson University, Potsdam, NY 13699-5725, USA 

guanx@clarkson.edu  

2
 Departments of Civil & Environmental Engineering, Clarkson University, Potsdam, NY 13699-5710, USA 

yliu@clarkson.edu 

3
 SGT, NASA Ames Research Center, Moffett Field, CA 94035, USA  

abhinav.saxena@nasa.gov 

jose.r.celaya@nasa.gov 

4
 NASA Ames Research Center, Moffett Field, CA 94035, USA 

kai.goebel@nasa.gov   

 

 

ABSTRACT 

In this paper, a maximum entropy-based 

general framework for probabilistic fatigue 

damage prognosis is investigated. The 

proposed methodology is based on an 

underlying physics-based crack growth model. 

Various uncertainties from measurements, 

modeling, and parameter estimations are 

considered to describe the stochastic process 

of fatigue damage accumulation. A 

probabilistic prognosis updating procedure 

based on the maximum relative entropy 

concept is proposed to incorporate 

measurement data. Markov Chain Monte 

Carlo (MCMC) technique is used to provide 

the posterior samples for model updating in 

the maximum entropy approach. Experimental 

data are used to demonstrate the operation of 

the proposed probabilistic prognosis 

methodology. A set of prognostics-based 

metrics are employed to quantitatively 

evaluate the prognosis performance and 

compare the proposed method with the 

classical Bayesian updating algorithm. In 

particular, model accuracy, precision and 

convergence are rigorously evaluated in
*
 

addition to the qualitative visual comparison. 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

It is shown that the proposed maximum 

relative entropy methodology has narrower 

confidence bounds of the remaining life 

prediction than classical Bayesian updating 

algorithm. 

1 INTRODUCTION 

Fatigue damage is a critical issue in many structural 

and non-structural systems, such as aircrafts, critical 

civil structures, and electronic components. The 

estimation of the reliability and remaining useful life 

(RUL) is important in condition-based maintenance of 

a system so that unit replacements can be taken in time 

prior to catastrophic failures. Several physics-based 

models have been proposed in order to describe the 

fatigue process and predict the damage propagation; 

among those, Paris-type crack growth laws are most 

commonly used (Bourdin et al., 2008). However, due 

to the stochastic nature of fatigue crack growth, a 

deterministic model is not capable of quantifying the 

crack growth subject to various uncertainties associated 

with the fatigue damage. Uncertainties arising from a 

number of sources, such as measurement errors, model 

prediction residuals, and non-optimal parameter 

estimation, affect the quality of life predictions.  

 Probabilistic updating methods based on Bayes 

theorem have been used to evaluate the probability 

density functions (PDF) of input parameters using 

response measurements (Madsen, 1997; Zhang and 

Mahadevan, 2000; Perrin et al., 2007). Methodologies 

based on maximum entropy, such as Maximum 

Entropy principle (MaxEnt) and Maximum relative 
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Entropy (MRE), are alternative approaches for 

probabilistic updating and have been used in many 

applications such as statistical mechanics (Caticha and 

Preuss, 2004; Tseng and Caticha, 2008). The objective 

of this paper is to develop and apply a prognosis 

approach based on MRE for probabilistic fatigue 

damage prognosis. One of the advantages of the 

proposed MRE approach is that the resulting 

confidence bounds are narrower compared to the 

classical Bayesian method, which is beneficial for 

decision making in a health management setting. 

2 MRE UPDATING 

2.1 MRE formulation for model updating 

The relative information entropy, also referred to as 
Kullback-Leibler divergence (Kullback and Leibler, 
1951), of two PDFs ( )θ

1
f  and ( )θ

2
f  is defined as, 

 

( ) ( ) ( ) ( )( )∫Θ ⋅−= θθθθ
21121

log: fffdffI         (1) 

 
where θ  is the parameter vector and Θ  is the 
parameter vector space. The axioms of maximum 
entropy (Skilling, 1988) indicate that the form of Eq. 
(1) is the unique entropy representation for inductive 
inference. For a generic inverse problem, the posterior 
of parameter vector θ  is inferred based on the prior 
information about θ  (the prior PDF of θ ), the 
observations of data x  (the response measurements), 
and the known relationship between x  and θ  (the 
physics-based models). Let ( )θµ ,x  be a prior joint 
distribution and ( )θ,xp be a posterior joint distribution. 
According to the entropy axioms, the selected joint 
posterior is the one that maximizes the relative entropy 

( )µ:pI , subject to constraints, such as statistical 
moments and measures of response variable. 
 

( ) ( ) ( ) ( )( )∫ ⋅−= θµθθθµ ,,log,: xxpxpdxdpI    (2) 

 
In Eq. (2), ( ) ( ) ( )θµθµθµ |, xx =  contains all prior 
information. ( )θµ |x  is the likelihood function and 

( )θµ  is the prior PDF. The same relationship applies to 
the joint posterior ( )θ,xp . When new information is 
available in the form of a constraint, the updating 
procedure will search in the space of Θ×Χ  for a 
posterior which maximizes ( )µ:pI . Measurements of 
the response variable x  can be used to perform the 
updating, which is performed in a similar way as the 
classical Bayesian updating. The benefit of MRE 
updating is that it can incorporate other information for 
inference, which cannot be included in the classical 
Bayesian updating. For example, the expected value of 
a function of θ  or the empirical judgment on the mean 
value of θ  can be used in MRE updating (Giffin and 
Caticha, 2007). This flexibility of applicable 
information can pose more constraints on a posterior 
thus yield a more accurate result given that those 
constraints are justified. Following the derivation of 
MRE posterior (Caticha and Giffin, 2006), if a new 

observation x′  is obtained, the posteriors that reflect 
the fact x  is now known to be x′  is a constraint such 
that  
 

( ) ( ) ( )xxxpdxpc ′−=⋅= ∫ δθθ ,:
1

           (3) 

 
Other information in the form of moment constraints, 
such as the expected value of some function ( )θg , can 
be formulated as 
 

( ) ( ) ( ) Gggxpdxdc ==⋅∫ θθθθ ,:
2

          (4) 

 
The normalization constraint is  
 

( )∫ =⋅= 1,
3

θθ xpdxdc                    (5) 

 
Maximizing Eq. (2), subject to constraints Eqs. (3-5), 
the posterior can be obtained as (Caticha and Giffin, 
2006). 
 

( ) ( ) ( ) ( )θβθµθµθ gexp ⋅′∝ |                    (6) 

 
The coefficient β  is determined by, 
 

( )
G

xZ
=

∂

′∂

β

β,ln
                       (7) 

 

where ( ) ( ) ( ) ( )θβθµθµθβ gexdxZ ⋅′⋅=′ ∫ |,  is the 

normalization constant. The right side of Eq. (6) 

consists of three terms. ( )θµ  is the parameter prior, 

( )θµ |x′  is the likelihood, and ( )θβ ge ⋅  is the exponential 

term introduced by moment constraints. Eq. (6) is 

similar to Bayesian posterior except for the additional 

exponential term. This equation further indicates that, if 

no moment constraint is available, i.e., β  is zero, MRE 

updating will be identical to Bayesian updating. In 

other words, Bayesian updating is a special case of 

MRE updating. Similar to that of a Bayesian updating 

problem, the likelihood function is usually constructed 

using the physics-based model depending on different 

realistic applications. 

2.2 Likelihood function and mechanism model 

Considering a general model prediction equation, let d  

be the observed value of a response variable and y  be 

the prediction value of a model M . If the model is 

sufficiently accurate to describe the system, the 

observed value is equal to model prediction value, i.e. 

dy = . However, noises and errors usually exist for 

both model predictions and measurements. Combining 
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the model prediction error term e  and measurement 

error term ε , the observed value can be expressed as, 

 

( ) εθ ++= exMd |                        (8) 

 

where ( )θ|xM  is the model prediction value given 

parameter vector θ . In general, the probability density 

functions of the two uncorrelated error terms e  and ε  

can be described using two independent Gaussian 

distributions with standard deviations of 
e

σ  and εσ , 

respectively. Replacing the two error terms with a total 

error term ( ) ( )τσετ ,0~ Gaussiane += , the likelihood 

function of multiple observation data can be 

constructed as 

 

( )
( )

( )[ ]







 −
−= ∑

=

n

i

i

nN

xMd
DL

1

2

2

2

|
exp

2

1
|

τ
τ

σ

θ

σπ
θ    (9) 

 

Substituting Eq. (9) in Eq. (6), an MRE posterior of θ  

is derived to be  

 

( ) ( ) ( )[ ] ( )θβ

ττ σ

θ

σ
θµθ g

n

i

i

n
e

xMd
p







 −

−∝ ∑
=1

2

2

2

|
exp

1
  (10) 

 

For fatigue damage calculation of ( )θ|xM , various 

deterministic models have been proposed to describe 

the fatigue crack propagation, among which Paris type 

of laws are commonly used in cycle based fatigue crack 

growth calculation. In this study, Paris model (Paris 

and Erdogan, 1963) is used to compute the fatigue 

crack length for illustration purposes. Let a  be the 

crack length, N  be the number of cycles, the Paris’ law 

reads, 

( ) ( )( )mm
aFacKc

dN

da
⋅⋅∆=∆= πσ        (11) 

 

where c  and m  are material constants, K∆  is the 

variation of stress intensity factor in one cycle of stress 

amplitude σ∆ , and ( )aF  is the geometric correction 

factor. The crack size can be calculated by solving Eq. 

(11) numerically given c , m , and N . Early studies 

show that )log(c  follows a normal distribution and m  

follows a truncated normal distribution (Kotulski, 

1998). Assuming )log(c  and m are independent 

variables and combining Eq. (11) with Eq. (10), the 

joint posterior can be expressed as 

( )

( )
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 (12) 

The probability density function of one parameter can 

be obtained by integrating over the rest of parameters. 

2.3 MCMC simulation 

Directly evaluating the PDF of Eq. (12) is difficult 

because of multi-dimensional integration for 

normalization. In order to circumvent the direct 

evaluation of Eq. (12), Markov Chain Monte Carlo 

sampling technique is used in this study. MCMC was 

first introduced by (Metropolis et al., 1953) as a 

method to simulate a discrete-time homogeneous 

Markov chain. The merit of MCMC is that it 

overcomes the normalization of Eq. (12) and ensures 

that the state of the chain converge to the desired 

distribution after a large number of steps from an 

arbitrary initial start. The widely used random walk 

algorithm, Metropolis-Hastings algorithm (Hastings, 

1970), is summarized here. 

 The transition between two successive samples 
t

x  

and 
1+t

x  is defined by Eq. (13) 

 

( ) ( )





=
+

elsex

xxyprobabilitwithxXqx
x

t

tt

t

~,|~~

1

α
  (13) 

 

where ( )
t

xXq |  is the transition distribution, and 

( ) ( )rxx
t

,1min~, =α  is the acceptance probability. The 

Metropolis ratio r  is defined as, 

 

( )
( )

( )
( )

t

t

t
xxq

xxq

xp

xp
r

|~

~|~
=                        (14) 

 

where ( )⋅p  is the posterior probability representation. 

In our case, ( )⋅p  is computed using Eq. (12). For a 

symmetric transition distribution of ( )⋅q , such as a 

normal distribution, the property of ( ) ( )
tt

xxqxxq |~~| =  

simplifies Metropolis ratio in Eq. (14) to 

( ) ( )
t

xpxpr ~= . In this paper, 100,000 posterior 

samples of ( )mc),log(  are generated with a 5% burn-in 

period using a Gaussian transition distribution. 

Additionally, the moment information of these samples 
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is then integrated into the proposed MRE updating 

procedure. 

2.4 MRE updating procedure 

The proposed MRE updating procedure for fatigue 

crack growth problem using Paris’ law is described in 

the following steps. When one observation data 

( )
ii

Nd ,  is available, MRE updating procedure begins 

with initial values of 0==
mc

ββ  in Eq. (12) 

 Step 1: Generate a sufficient number of ( )mc),log(  

samples using MCMC. 

 Step 2: Calculate the crack size 
i

a  at any interested 

cycles N  and RUL using the samples obtained in step 

1. This step is for crack size and RUL prognosis 

purpose. 

 Step 3: Calculate 
c

β  and 
m

β  with the statistics of 

the samples obtained in step 1 for the next updating. 

 If additional observation data become available, 

repeat the above steps 1-3. To illustrate this process, a 

flow chart of MRE updating procedure is shown in 

Figure 1. In order to exemplify the MRE updating 

procedure, two application examples are given in the 

next section.  

MRE updating

with MCMC

Model prediction

Parameter

samples

Update

prior

measures of 

response

crack size,

RUL, etc.

prior information

 

Figure 1: MRE updating procedures 

3 APPLICATION EXAMPLES 

Two fatigue crack growth experimental datasets are 

used to demonstrate the proposed MRE updating 

procedure to show the benefits of this approach.  

3.1 Virkler’s 2024-T3 aluminum alloy experimental 

data  

An extensive fatigue crack growth data under constant 

loading for Al 2024-T3 plate specimens with center 

through cracks was collected in (Virkler et al., 1979). 

The dataset consists of 68 fatigue crack growth 

trajectories and each trajectory contains 164 

measurement points. All specimens have the same 

geometry, i.e., an initial crack size mma
i

9= , length 

mmL 8.558= , width mmw 4.152=  and thickness 

mmd 54.2= . The loading information is 

MPa28.48=∆σ  and stress ratio 2.0=R .  The 

geometry correction factor for Virkler’s experiments is 

( ) ( )waaF /cos1 π= . Kotulski (1998) reported the 

statistical information of the parameters in Paris’ law, 

namely, mean values 155.26)log( −== c
c

ζ  and 

874.2== m
m

ζ  with standard deviations 968.0=
c

σ  

and 164.0=
m

σ , respectively. Assuming the total error 

term is mm1.0=τσ  (see Eq. (8)) and substituting the 

statistics information into Eq. (12) with )log()( ccg
c

=  

and mg
m

= , the updating procedure can be performed 

when observation data become available. 

 One arbitrary crack growth trajectory in Virkler’s 

dataset is selected for fatigue crack length prediction 

updating from Ostergaard and Hillberry (1983). Five 

points in the early stage of the crack propagation are 

randomly chosen to represent the measured values of 

crack length a  obtained from health monitoring system 

or nondestructive inspection. The observation data 

points are shown in Table 1. 

Table 1: Data used for updating (Virkler’s dataset) 

Number Crack size (mm) Cycle 

1 9.7330 21269 

2 10.5272 42734 

3 11.2557 56392 

4 12.1708 73161 

5 15.0549 110487 

 

The predictions of MRE updating and Bayesian 

updating are shown in Figure 2 where MRE updating 

gives a narrower prognosis interval and a more accurate 

median prediction compared to classical Bayesian 

updating. It further justifies that the additional moment 

constraints posed on posterior yield a more satisfactory 

prognosis results with narrower confidence bounds. 

The prior estimation is the point estimation computed 

using Eq. (11) with prior information, specifically, in 

this example, ( ) 155.26log −=c  and 874.2=m  

reported in (Kotulski, 1998). 
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Figure 2: MRE and Bayesian prognosis (Virkler’s 

dataset) 

3.2 McMaster’s 2024-T351 aluminum alloy 

experimental data 

A large set of 2024-T351 aluminum alloy experimental 
data under constant and variable loading conditions was 
obtained in (McMaster and Smith, 1999) The 
experimental data of center-cracked specimens with 
length mmL 250= , width mmw 100= and thickness 

mmt 6=  under constant loading MPa7.65=∆σ  and 
stress ratio 1.0=R  are used in this paper. The priors of 
parameters are obtained by ( ) )log(~/log KdNda ∆  
regression using the experimental data. Five points 
shown in Table 2 are chosen arbitrarily as sensor 
measurements monitoring the process and are used for 
updating. 

Table 2: Data used for updating (McMaster’s dataset) 

Number Crack size (mm) Cycle 

1 11.3611 4875 

2 11.9282 8475 

3 12.3254 11550 

4 13.8563 17775 

5 14.8771 21375 

 
 The predictions of MRE and Bayesian updatings are 
shown in Figure 3, where interval predictions obtained 
by MRE updating is much narrower than that by 
Bayesian updating. In addition, the trend of median 
prediction of MRE updating is more accurate than that 
of Bayesian updating. 
 MRE updating shows the advantages over Bayesian 
updating in two application examples visually probably 
because of the additional statistical moment constraints 
of MCMC samples added to posteriors. To quantify the 
performance, prognosis metrics need to be considered 
to provide a rigorous comparison between MRE 
updating and Bayesian updating as shown below. 
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Figure 3: MRE and Bayesian prognosis (McMaster’s 

dataset) 

4 MODEL COMPARISON BASED ON 

PROGNOSIS 

The Various metrics are available to quantify the 

performance of prognosis algorithms (Saxena et al., 

2008). In this section, classical error based statistical 

measures and several prognosis metrics are applied to 

quantify the prediction performance of application 

examples in the previous section. 

4.1 Statistical metrics 

Metrics, such as mean squared error (MSE), mean 
absolute percentage error (MAPE), average bias, 
sample standard deviation (STD), and their variations 
are widely used in medicine and finance fields where 
large datasets are available for statistical data analysis 
(Saxena et al., 2008). The results for those classical 
metrics shown in Table 3 and Table 4, (rows 1-4) are 
computed using the prediction residuals (the difference 
between actual RUL and predicted RUL) obtained after 
the fifth updating. The proposed MRE approach shows 
its advantages over Bayesian method in all cases.  

4.2 Prognosis metrics 

The metrics mentioned in Section 4.1 are general 
purpose metrics and not specifically designed for 
prognosis. In (Saxena et al., 2008) authors proposed 
several metrics, such as Prognostic Horizon (PH), 
Alpha-Lambda (α-λ) Performance, Relative Accuracy 
(RA), Cumulative Relative Accuracy (CRA), and 
Convergence that were designed specifically for 
prognosis. These metrics help assess how well 
prediction estimates improve over time as more 
measurement data become available. For readers’ 
reference, we present brief definitions of these metrics 
here.  
1. Prognostic Horizon is defined as the length of time 
before end-of-life (EoL) when an algorithm starts 
predicts within specified accuracy limits. These limits 
are specified as ±α% of the true EoL. 
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2. α-λ Accuracy determines whether predictions from 
an algorithm are within ±α% accuracy of the true RUL 
at a given time instant, specified by the parameter λ. 
For instance a λ = 0.5 would specify midway between 
the first time a prediction is made and EoL. 
3. Relative Accuracy quantifies the percent accuracy 
w.r.t. actual RUL at a given time (specified by λ). It’s 
an accuracy measure normalized by RUL, signifying 
that predictions closer to EoL should be more accurate 
and precise. 
4. Cumulative Relative Accuracy is a weighted 
average of RAs computed at different time instances. 
Weights can be assigned to the predictions based on 
how critical it becomes as EoL approaches, and hence 
the accuracy of the predictions. 
5. Convergence quantifies the rate at which any 
performance metric of interest improves to reach its 
desired value as time passes by.  
 For more description, implementation details and 
application examples on these metrics reader is 
suggested to refer to (Saxena et al., 2009). In general, 
these metrics were designed to capture the time varying 
aspects of prognostics. As more data become available 
prognostic estimates get revised. It is, therefore, 
important to track how well an algorithm performs as 
time passes by as opposed to evaluating performance at 
one specific time instant only. Further, these metrics 
also incorporate the notion of increased criticality as 
EoL approaches, which capture the notion that a 
successful prognosis algorithm should improve as the 
system approaches its EoL. 
 In this paper we compare the two approaches based 
on Bayesian and MRE updating. In addition to 
evaluating performance based on prognosis metrics, we 
also include some classical statistical metrics. For this 
purpose, in our approach we include an additional 
updating point from the end of time series to establish 
EoL and compute the RUL curves. Results obtained 
from this evaluation exercise are presented next. 
 
Performance results for Virkler’s dataset 
 
The results for PH, α-λ accuracy, and RA metrics 
comparing Bayesian and the proposed MRE updating 
algorithms are shown in Figure 4, Figure 5, and Figure 
6, respectively. For computing CRA (see Table 3), the 
starting point is cycle zero because the specimens have 
initial cracks. We evaluated RA at 20, 40, 60, and 80% 
of EoL and did not use weighting factors. This assumes 
that relative accuracy is equally weighted at all time 
instants. Though this may not always be preferable, a 
simplistic evaluation was carried out to observe the 
natural behavior of the algorithm itself. 
 Figure 4 compares the prediction horizon for the 
two algorithms with 10% error bound around EoL 
value. Using the strict definition for PH as laid out in 
(Saxena et al., 2009) we observed that MRE yields a 
larger PH. The plot of PH performance in Figure 4 
shows that MRE prediction enters the 90% accuracy 
zone at the fourth updating, while Bayesian prediction 
enters the zone at the fifth updating showing that MRE 
is slightly better than Bayesian. In general it indicates 
that, for engineering practice, the proposed MRE can 

give an informative prediction at an earlier stage of the 
whole lifecycle.  
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Figure 4: Performance comparison for PH at α=0.1 

(10% error bound) on Virkler’s dataset 

 Figure 5 compares the accuracy at λ = 0.4 and as we 
can see both algorithms fail to satisfy 10% error 
bounds. But MRE performs marginally better than 
Bayesian method at this particular time instant. We 
chose λ = 0.4 arbitrarily, however, depending on a 
specific application it may be desirable to know how 
different algorithms compare at a given time instant (λ) 
that may hold specific significance related to time 
criticality due to the approaching failure. 
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Figure 5: Performance comparison for α-λ accuracy 

(α=0.1 and λ=0.4) on Virkler’s dataset 

 RAλ=0.4 value indicates that the proposed MRE 
approach achieves better relative accuracy. It can be 
shown in Figure 6 that in general, the prediction curve 
obtained by MRE approach is slightly closer to the 
actual RUL than that by Bayesian approach. This of 
course is dependent on the choice of λ. For instance, for 
some other time instances Bayesian might have 
performed better. 
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Figure 6: Performance comparison for RA at λ=0.4 on 

Virkler’s dataset 

 Other prognostics metrics like RCA and 
convergence were computed and are given in Table 3 
along with conventional statistical metrics. Looking at 
the table one can see that on Virkler’s dataset MRE 
performs better than Bayesian approach under all 
performance measures. One must note that although 
classical metrics conclude the same as the new 
prognostics metrics, they do not take into account the 
time varying nature of the prognostics and hence may 
not always be useful in practice. 

Table 3 Comparison of metrics between MRE and 

Bayesian approaches (Virkler’s dataset) 

Metric MRE Bayesian 

MAPE 8.66 10.93 

Average Bias 

(cycles) 
10956.27 14051.92 

STD (cycles) 7628.77 9115.78 

MSE(cycle2) 178.23 x 106 280.5 x 106 

RAλ=0.4 0.92 0.89 

CRA λ=0.4 0.89 0.87 

Convergence 74365.72 77349.24 

 

Performance results for McMaster’s dataset 

 
Next, we perform a similar analysis for the McMaster’s 
dataset. The results for PH, α-λ accuracy, and RA 
metrics comparing Bayesian and MRE updating are 
shown in Figure 7, Figure 8 and Figure 9, respectively. 
The rest of the metrics are included in Table 4. Looking 
at these results, the general conclusion about the 
superior performance of the MRE procedure from 
Virkler’s dataset is further strengthened. The MRE’s 
superior performance over Bayesian approach is 
attributed to the ability to incorporate additional 
knowledge about the system using additional 
constraints. 

Table 4 Comparisons of metrics between MRE and 

Bayesian approaches (McMaster’s dataset) 

Metric MRE Bayesian 

MAPE 4.06 22.53 

Average Bias (cycles) 418.76 4561.93 

STD (cycles) 1413.53 6888.38 

MSE (cycle2) 2.17 x 106 68.26 x 106 

RA λ=0.4 0.99 0.86 

CRA λ=0.4 0.95 0.87 

Convergence 13757.94 22175.16 

 
 For this dataset these metrics clearly distinguish the 
two approaches and show better outcomes from the 
MRE method. For example, the α-λ and RA 
performance metrics shown in Figure 8 and Figure 9, 
respectively, present clear visual comparisons.  
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Figure 7: Performance comparison for PH at α=0.1 

(10% error bound) on McMaster’s dataset 
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Figure 8: Performance comparison for α-λ accuracy 

(α=0.1 and λ=0.4) on McMaster’s dataset 
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Figure 9: Comparison of RA performance (McMaster’s 

dataset) 

5 DISCUSSION 

As observed in the previous section, there are a few 

aspects where these metrics can be further enhanced to 

improve performance evaluation. For instance, whereas 

it was straight forward to establish different PHs in 

these examples as per the original definition, it must be 

noted that the performance was established based on 

point estimates. However, the methods examined here 

produce PDFs. Depending which method is chosen to 

characterize the PDF, this may result in different 

performance outcomes. For instance, it is possible that 

PHs reverse order if mean or any other estimator is 

used instead of median. Furthermore, a point estimate 

representation of a PDF neglects to take advantage of 

the rich information a PDF affords. Performance 

metrics that incorporate the PDF are not currently 

available and need to be developed to allow a fair 

comparison of algorithms. 

 The significant difference between the PHs for the 

two algorithms may also be an artifact of the frequency 

at which these algorithms make a prediction. 

 We also observed that in a probabilistic prognosis 

updating scheme, the selection of priors may produce 

different prognosis results and affect the performance. 

Consequently, different updating methods may exhibit 

different robustness with inappropriate priors. Next, we 

discuss some of these issues as they relate to prognosis 

metrics. 

5.1 Convergence metric 

The convergence metric computes a value to quantify 
how fast prognostic estimates improve and converge 
towards the ground truth. A metric like convergence is 
meaningful only if an algorithm improves with time 
and passes various criteria defined by other prognostic 
metrics. For example, the convergence in terms of RA 
using Virkler’s data (Figure 10) shows a monotonic 

decreasing trend after the second update. But for 
McMaster’s dataset (Figure 11) the RE curve for MRE 
shows a non-monotonic trend and Bayesian curve 
shows a diverging trend. This suggests that a metric 
like convergence will not make complete sense if the 
algorithms do not show improvements with time and 
hence more fine tunings of the algorithms are required. 
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Figure 10: Comparison of convergence performance 

(Virkler’s dataset) 
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Figure 11: Comparison of convergence performance 

(McMaster’s dataset) 

5.2 Robustness metric 

From the examples explored here, we found that the 
selection of a prior PDF is critical for a meaningful 
prognosis using probabilistic updating schemes such as 
Bayesian and MRE. An inaccurate prior may render a 
poor prediction of RUL. For example, when the prior 
prediction (red solid line) shown in Figure 12 is very 
different from the actual distribution, the Bayesian 
predictions lead to inaccurate estimates with very wide 
confidence bounds. However, the proposed MRE 
updating methodology performs well while using the 
same inaccurate prior. On the other hand, starting with 
a relatively accurate prior prediction, both MRE and 
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Bayesian give similar predictions as shown in Figure 
13. This calls for a robustness metric that can quantify 
such effects. Such metrics may also be defined with 
respect to other factors like initial conditions, training 
data size, and prior knowledge. 
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Figure 12: MRE and Bayesian prognosis with an 

inaccurate prior (McMaster’s dataset) 
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Figure 13: MRE and Bayesian prognosis with an 

accurate prior (McMaster’s dataset) 

5.3 RUL distribution 

RUL prediction distributions are obtained by using a 
probabilistic framework for prognosis. Using only a 
central tendency point estimator like the sample mean 
or median will ignore useful information regarding the 
spread of the distribution of the RUL predictions. To 
tackle such situations we suggest plotting confidence 
intervals around median prediction. This will enhance 
the amount of visual information that most of these 
metrics tend to convey. As an illustration, we provide 
confidence intervals for predictions obtained for 
McMaster’s dataset. The plot in Figure 14 shows 
distributions of RUL with a 0.95 confidence interval. 
Beyond the information already deduced, it also shows 

that MRE gives a narrower interval prediction and can 
be trusted more than the Bayesian approach.  
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Figure 14: RUL median and 95% confidence intervals 

6 CONCLUSION 

A general framework for probabilistic prognosis using 

maximum entropy approach, MRE, is proposed in this 

paper to include all available information and 

uncertainties for RUL prediction. Prognosis metrics 

were used for model comparison and performance 

evaluation. Several conclusions can be drawn based on 

the results in the current investigation: 

- The proposed MRE updating approach results in more 

accurate and precise prediction compared with the 

classical Bayesian method. 

- The classical Bayesian method is a special case of the 

proposed MRE approach and MRE approach is more 

flexible to include additional information for inference, 

which cannot be handled by the classical Bayesian 

method. 

-The proposed prognosis metrics can be successfully 

used for algorithm comparison and can give 

quantitative values in model (algorithm) performance 

evaluation. 

- It is important to realize when to apply these metrics 

to arrive at meaningful interpretations. For instance, use 

of the convergence metric makes sense only when the 

algorithm predictions converge (get better) with time.  

- Metrics to evaluate the robustness or sensitivity of 

models with respect to prior information, training data 

size, model initial parameters, noise levels, etc. are also 

desired. Further studies are needed to establish such 

concepts. 

 To make further comparison between different 

updating and prognosis approaches, more data points 

and even the whole dataset can be used as observation 

data to see with enough measures of response whether 

MRE and Bayesian give similar prognosis results and 

show convergence. Though in practice it is more 

desirable to get an early stage accurate prognosis, it is 
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necessary to explore the characteristics of different 

updating algorithms using experimental data as we 

showed in previous sections. 
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NOMENCLATURE 

( )⋅I  Relative information entropy 

( )⋅µ  Prior PDF 

( )⋅p  Posterior PDF 

( )⋅L  Likelihood function 

( )⋅M  Model prediction of crack length 

( )⋅F  Geometric correction factor 

i
N  Number of cycles 

i
d  Actual crack length 
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