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ABSTRACT

Prognosis and Health Management methodolo-
gies require efficient parameter estimation ap-
proaches to enable systematic system reconfig-
uration and adaptive control to accommodate
faulty behaviors, and to predict future system
states. However, accurate and timely on-line pa-
rameter estimation of complex, nonlinear systems
is difficult and can be computationally expensive.
In this work, we propose a more efficient tech-
nique for on-line parameter estimation in TRAN-
SCEND. This new approach is based on previous
works on model decomposition and dependency
compilation. We generate a set of smaller estima-
tion tasks from the global estimation problem to
reduce the computational burden. We tested the
approach in a nonlinear three-tank system. Cur-
rent results demonstrate that our method is more
efficient and it does not compromise on the accu-
racy in the estimation.

1 INTRODUCTION

The need for increased performance, safety, and re-
liability in engineering systems provides the motiva-
tion for developing Integrated Systems Health Man-
agement (ISHM) methodologies that include efficient
fault detection, diagnosis, and recovery mechanisms to
reduce downtime and to increase system availability
through the life of the system. Prognosis also requires
efficient and accurate parameter estimation techniques
as a starting point for predicting future system states
under nominal and faulty conditions.

Our focus in this work is on model-based ap-
proaches to on-line fault isolation and identification
(FII) in complex nonlinear systems. However, accu-
rate and timely fault identification of complex, nonlin-
ear systems is difficult and can be computationally ex-
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pensive (Pouliezos and Stavrakakis, 1994; Isermann,
2006; Gertler, 1998).

Online methods for model-based diagnosis require
the use of quick but robust fault detection methods
to establish discrepancies between observed and ex-
pected system behavior. Discrepancies caused by
faults trigger the fault isolation and identification pro-
cesses that are responsible for determining the cause
of the fault, and the change in the magnitude of the
corresponding system parameter, respectively.

TRANSCEND (Mosterman and Biswas, 1999)
combines qualitative fault isolation methods with
quantitative parameter estimation techniques to isolate
and to identify single faults in dynamic systems (Man-
ders et al., 2000). Its main problem is that the esti-
mation process over the whole system is difficult and
time consuming for complex, nonlinear systems, mak-
ing the estimation process unsuitable for on-line appli-
cations.

System decomposition has been proposed to reduce
complexity in the parameter estimations tasks. The
goal of decomposition consists of generating a set of
smaller estimation tasks from the global estimation
problem. Williams and Millar (Williams and Millar,
1998) introduced the concept of dissent. A dissent
describes an overdetermined subsystem which can be
used to estimate the parameters within the subsystem
model.

Possible Conflicts, or PCs (Pulido and Alonso-
Gonzalez, 2004) are conceptually equivalent to dis-
sents, and can be used in the same way that dissents
are used to generate smaller estimation tasks for fault
identification. A structural approach based on possible
conflicts is applied to derive the minimal set of overde-
termined subsystems from the global system model.
Each subsystem contains a minimal number of equa-
tions that suffice for fault parameters estimation.

In this work, we use the analogies between dissents
and possible conflicts (Pulido and Alonso-Gonzalez,
2004), and the analogies between possible conflicts
and temporal causal graphs (Biswas er al., 2009;
Bregon et al., 2009) to propose a new fault isolation
and identification approach for TRANSCEND. Our
aim is to turn the global estimation problem in TRAN-



SCEND into a set of smaller estimation problems to
improve efficiency for the localization and identifica-
tion tasks.

We have tested the new identification strategy in
a nonlinear simulation system. Experimental results
demonstrate the computational improvement.

The rest of the article is organized as follows. Sec-
tion 2 briefly introduces TRANSCEND and its current
quantitative FII approach. Section 3 describes basic
ideas of system decomposition using dissents and its
relation with possible conflicts. Section 4 then briefly
presents the possible conflicts approach. Section 5
presents the way to derive minimal parameter estima-
tors using possible conflicts, and the new FII approach
for TRANSCEND. Section 6 describes the experimen-
tal results obtained for a three tank system. And, fi-
nally, section 7 presents the discussion and conclu-
sions.

2 THE TRANSCEND DIAGNOSIS APPROACH

TRANSCEND (Mosterman and Biswas, 1999; Man-
ders et al., 2000) uses a model-based diagnosis ap-
proach based on bond graphs that model the dynamic
behavior of the system. The approach combines quali-
tative fault isolation methods with quantitative param-
eter estimation techniques to isolate and identify single
faults in dynamic systems.

2.1 Qualitative Diagnosis from Transients

A fault (Blanke et al., 2006) is a deviation of the sys-
tem structure or the system parameters from the nomi-
nal situation. We can consider different kind of faults,
but this paper focuses only in abrupt faults:

Definition 1 (Abrupt fault) Abrupt faults are instan-
taneous and persistent changes in the parameter val-
ues that cause significant deviations from steady state
operations (transients).

Abrupt faults produce transients in system variables.
The TRANSCEND diagnosis approach assumes the
transients can only have discontinuities at the time of
fault occurrence, ty, that is, the behavior of the sys-
tem is continuously differentiable before and after the
occurrence of a fault. This implies that the transient
response to a fault after the time of fault occurrence
can be approximated by the Taylor series expansion:
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where t is the time of fault occurrence,and ¢ > ¢ ;.

If | y*+Y | is bounded and ¢ is close to ty,
then the Taylor series is a good approximation of the
true signal y(t). As ¢ increases from t; the Tay-
lor series approximation is going to increasingly dif-
fer from the true signal y(t), but higher order ap-
proximations follow the signal for a longer time in-
terval. This analysis is done to describe the fault tran-
sient signal as a fault signature (Manders et al., 2000;
Roychoudhury et al., 2009):

Definition 2 (Fault signature) Given a fault, f, the
time of fault occurrence, ty, and a measurement, m,
the fault signature, F'S(f,m), is the set of k + 1 fea-
ture values consisting of the predicted magnitude and
the 1% through k" order derivative values computed
at ty from the residual signal of measurement m.

The problem within this approach is that when the
fault occurs, the magnitude of change in the faulty pa-
rameter is unknown, so derivative values in the fault
signature have to be computed from subsequent mea-
surements. This is a difficult problem to solve for dy-
namic systems, and especially for systems that exhibit
complex, nonlinear behaviors. To address this prob-
lem, qualitative constraint analysis techniques based
on fault signatures have been developed for fault iso-
lation.

The fault signatures are derived from a Temporal
Causal Graph (TCG) that can be automatically de-
rived from a bond graph model. The signatures are
expressed in terms of qualitative values: below normal
(-), normal (0) and above normal (+), for the measure-
ments, and decreasing (-), steady (0) and increasing
(+), for the derivatives of measurement deviations.

2.2 The TRANSCEND Fault Diagnosis Approach

Fig. 1 illustrates the architecture of the TRANSCEND
fault diagnosis approach.
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Figure 1: Block diagram of the TRANSCEND diag-
nosis approach.

The bond graph model of the system is used to gen-
erate both the state-space and the TCG models of the
system. Using the state-space model, an Extended
Kalman filter observer is designed for tracking nom-
inal system behavior with noisy measurements. Us-
ing the estimation of the outputs given by the observer,
9(t), and the measurements, y(t), an statistical Z-test
(Kirk, 1999) is employed for the fault detection task. A
significant deviation in the residual, r(t), triggers the
symbol generation step. In this step, the measurement
and slope values from the residuals are transformed
into qualitative values (4, —, 0), s(t).

The fault signature generation algorithm combines
a backward propagation step to identify all possible
parameter deviations (fault hypotheses) that are con-
sistent with a deviated measurement, and a forward
propagation step that generates the fault signature, i.e.
the effect of each fault hypothesis on the available
measurements (Mosterman and Biswas, 1999). As
discussed earlier, the fault signature for the measure-
ment residual is expressed in terms of the magnitude



(zeroth order time-derivative), slope (first order time-
derivative), and higher order effects. All deviation
propagations start off as zeroth order effects (magni-
tude changes). When an integrating edge in the TCG is
traversed, the magnitude change becomes a first order
change, i.e. the first derivative of the affected quantity
changes.

Even though this process is carried out online and
triggered only when faults are detected, the predic-
tion step can be done offline to each potential fault
parameter to generate its fault signature (Mosterman
and Biswas, 1999).

The last step in TRANSCEND is called progressive
monitoring. In this step, the system compares signa-
tures of the hypothesized faults against measurements
as they change dynamically. This process tries to nar-
row down the number of fault candidates, generating a
reduced set of fault candidates, f;..

We will illustrate the significant issues in this paper
with the well-known laboratory plant model of a three-
tank system shown in Fig. 2. The plant is made up of
three tanks {74,7%,75}. A control loop defined by
a function f(z), where x is the pressure in tank 77,
determines the opening of valve V{. Valves V;, V5, and
V3 are completely open. We assume four sensors: two,
{P1, P,}, measure the fluid pressure in tanks 77 and
Ts, the third, { F }, measures the in-flow into tank 77,
and the fourth, { F»}, measures the outflow from tank
T5. For this study, seven different parametric faults
have been considered in the plant: change in tanks 77,
Ts, Ts capacities, and partial blocks in valves V;, V5,
V3, and in the input pipe.

Fig. 3 shows the bond graph model for the plant.
Measurement points shown as De and Df components
are connected to junctions, and the faults appear as
explicit parameters of the bond graph model. Fig. 4
shows the TCG for the plant.

Large fluid source

Figure 2: Diagram of the laboratory plant.
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Figure 3: Bond graph model of the plant. f(x) repre-
sents the control of R,y resistance through Vj aper-
ture as a function of 7} pressure (level).

Applying the fault signature generation process to
all possible faults that can arise in the system shown
in Fig. 2, we obtain the fault signature matrix for the
system (see table 1). In this table, P;, P>, F, and F5
columns represent the expected deviations (no change
(0), increasing or decreasing (+/-), or indeterminate
effect'(*)) in the measurements, and in the slope or
higher order effects, in the presence of faults. Column
I shows isolation capabilities of this approach? (faults
on parameters R,, and R,, cannot be completely iso-
lated).

P1 PQ F1 F2
Cry |+ ] 0+ | =« | 0+
Cr, [0+ 1] 0+ | Ox | O+
Cr, [0+ ] +—10x[+—
Ry, |[0—1] 0+ | 0x | 0+
Ry, [0—] 0+ | 0x | 0+
Ry, [0—1]0— 1] 0% | +—

Ryipe | 0+ 0+ [ +x | O+

= = O O = =] =~

Table 1: Signature matrix for the temporal causal
graph found for the laboratory plant.

2.3 Quantitative Fault Isolation and
Identification (FII) in TRANSCEND

TRANSCEND avoids some of the computational diffi-
culties associated with numerical schemes, but it lacks
discriminative power due to qualitative constraints us-
age. For example, table 1 shows that the approach
is unable to distinguish between fault hypotheses Ry,
and Ry, for the three-tank system. In these cases, a
parameter estimation procedure over the whole system
is carried out (Manders et al., 2000). The idea is to
estimate the parameter for each one of the hypothe-
sized faults from the available measurements. A sepa-
rate parameter estimator (using standard least squares)
will be initiated for each of the hypothesized faults in
fr using the measurements. Fault parameter with the
smallest least squares error will then be considered as
the faulty element. Moreover, the parameter estimator
will provide the fault magnitude.

This combined qualitative/quantitative fault isola-
tion scheme provides some advantages against the tra-
ditional numeric schemes, but it experiences compu-
tational problems when applied to on-line fault iso-
lation/identification for complex, nonlinear systems.
The problem is the complexity related to the real time
estimation process over the whole system. It becomes
more difficult and more time consuming as the dimen-
sion of the problem grows. This problem is even worse
if we are dealing with complex, nonlinear systems.
Our proposal consists of taking advantage of the strong
analogies between model estimation and consistency-
based diagnosis in the context of their respective de-

! An indeterminate effect means that there are at least two
paths of the same order that propagate + and - effects, and
the dominant effect is unknown.

%] means that the fault can be distinguished, during the
isolation task, from the rest of the faults considered for the
system; 0 means that it can not be isolated
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Figure 4: Temporal causal graph of the three-tank plant.

composition methods (Williams and Millar, 1998) to
reduce problem complexity.

3 MODEL DECOMPOSITION

Given a continuous time state-space model of a non-
linear dynamic system:

= f(x,u,b)

Yy = Q(Z, U, 9)
where f and g are nonlinear functions; x, u, and y
are the vectors of the state, input, and output variables
of the systems; and 6 is the set of model parameters.
We want to estimate an unknown parameter, 6, € 6.
The estimation procedure consists of solving a nonlin-
ear optimization problem:

Definition 3 (Nonlinear Optimization Problem)
Given a nonlinear system model and an estimator
e(u,0;), we can estimate 0; by solving the nonlinear
optimization problem:

07 = i - 6;))? 1
; arg;ian(y e(u, 0;)) 1)

The goal of model decomposition consists of gen-
erating a set of smaller estimation tasks from the
global estimation problem. Williams and Millar in-
troduced the concept of dissent in their proposal of
Decompositional Model-based Learning in Moriarty
(Williams and Millar, 1998). A dissent is a mini-
mal subset of equations from a system model which is
over-determined given a set of measured variables. A
dissent describes an over-determined subsystem which
can be used to estimate the parameters within the sub-
system model. Since we want to minimize the com-
plexity of the estimation task, we are only interested in
those subsystems that are minimal w.r.t. the number
of equations.

Williams and Millar pointed out the analogy
between model estimation using dissents and
consistency-based diagnosis using minimal conflicts:
conflicts are related to a discrepancy, and dissents
signal a potential error in the estimation process.
However, (minimal) conflicts are computed on-line
using a dependency-recording engine, while dissents
can be computed off-line. Therefore, dissents are also
closely related to several methods in the Artificial
Intelligence Diagnosis community to avoid on-line
dependency-recording (such as possible conflicts
(Pulido and Alonso-Gonzalez, 2004)), and they

are also close to the structural approach employed
in the System Dynamics and Control Engineering
community to find Analytical Redundancy Relations
(Blanke et al., 2006).

We exploit this similarity and we focus on the Pos-
sible Conflict approach, which has been proved to be
equivalent to conflict generation in the General Di-
agnostic Engine, GDE. In fact, Pulido and Alonso-
Gonzalez (Pulido and Alonso-Gonzalez, 2004) have
shown that both dissents and possible conflicts look
for the whole set of minimal over-determined sets of
equations in the model that can be solved using local
propagation (solving one equation in one unknown).
Their main difference comes from their use in model-
based reasoning: while dissents are used for successive
parameter estimation in Moriarty, Possible Conflicts
have been used as an off-line dependency-recording
for consistency-based diagnosis.

Summarizing, both approaches can be used to com-
pute the potential error between a subset of estimations
and a subset of measurements. Therefore, possible
conflicts can be useful to decompose a system in order
to reduce the complexity of the parameter estimation
process.

The integration of possible conflicts in the fault
isolation and identification task in TRANSCEND is
rather straightforward. The structure of each PC de-
fines a minimal subset of over-determined equations,
which can be easily obtained from the TCG in TRAN-
SCEND, i.e. PCs identify minimal over-determined
structures in TCGs (Bregon et al., 2009; Biswas et al.,
2009). Hence, our proposal is to use possible conflicts
to identify off-line those minimal structures in TCGs,
and then, use them as smaller estimation tasks for each
of the hypothesized faults.

Before we develop this methodology, we review
concepts related to possible conflicts in next section.

4 POSSIBLE CONFLICTS

Possible conflicts, PCs for short (Pulido and Alonso-
Gonzalez, 2004), represent sub-systems that may be-
come conflicts when faults occur within the Consis-
tency Based Diagnosis framework (Reiter, 1987), i.e.
minimal subsets of equations containing the analyti-
cal redundancy necessary to perform fault diagnosis
(Pulido and Alonso-Gonzalez, 2004).

Computation of PCs is performed on an abstract
model linked to the set of equations in the system
description, i.e. a hypergraph including just the con-
strains in the model, and their related known and un-



known variables. PCs are derived off-line using two
core concepts: minimal evaluation chains, or MECs,
and minimal evaluation models, or MEMs.

MECs are minimal over-constrained sets of rela-
tions, and they represent a necessary condition for a
conflict to exist. MECs represent a partial subhyper-
graph from the original system description.

Each constraint in a MEC has one or more vari-
ables. We call an interpretation to each feasible causal
assignment within a constraint, allowing to solve one
variable assuming remaining variables are known. In
the general case, not every interpretation is feasible for
non-linear dynamic models.

The set of interpretations, seen as causal links
among variables in each hyper-arc, define a causal
graph for each MEC. A MEM is a global consistent
causal interpretation for every constraint in a MEC.
Hence, a MEM is a subgraph for each MEC. Using
the whole set of available interpretations for each con-
straint in a MEC, algorithms used to compute PCs are
able to find every possible causal interpretation which
is globally consistent within a MEC, i.e., the whole
set of MEMs for each MEC. Each MEM describes an
executable model, which can be used to perform fault
detection. Possible Conflicts are defined as the set of
relations in a MEC that has, at least, one MEM.

If there is a discrepancy between predictions from
these models and current observations, the PC must be
responsible for such a discrepancy, and should be con-
firmed as a real conflict. Afterwards, diagnosis can-
didates are obtained from conflicts following Reiter’s
theory.

PCs calculation uses a minimality criterion in terms
of sets of constraints. Nevertheless, it is straightfor-
ward to obtain candidates based on components. It
has been demonstrated that the set of MEMs generated
with this approach is equivalent to the set of conflicts
computed by the GDE.

Moreover, if algorithms used to compute Analytical
Redundancy Relations, or ARRs, through structural
analysis use such a minimality criterion and provide a
complete solution —explores every possible causal as-
signment for every minimal ARR—, the set of PCs has
same detection and isolation capabilities as the set of
minimal ARRs.

Finally, if every MEM in every PC provides the
same solution—what is called the Equivalence assump-
tion in (Pulido and Alonso-Gonzalez, 2004)—, then
PCs, minimal ARRs, and minimal conflicts provide the
same solution in terms of fault detection and isolation
capabilities.

Cordier et al. (Cordier et al., 2004) introduced the
concept of support for an ARR (set of components
whose models are used to derive an ARR). Based on
such idea, off-line compiled conflicts and ARR’s sup-
port can be considered as equivalent (the support for
an ARR is a potential conflict, which is equivalent to a
possible conflict).

As we showed in (Bregon et al., 2009) the set of
possible conflicts of a system can be automatically ob-
tained from its bond graph model. For the three tank
plant, we found four possible conflicts. Table 2 shows
the components and the output variable estimated for
each one of the possible conflicts.

Components FEstimate
PCI Rpipe Fl
PCy CT1 s RV1 s CTQ ’ RV2 P
PC3 RVI,CTQ,RVQ,CTg, Py
PCy Ry, Py

Table 2: PCs found for the laboratory plant.

5 AN EFFICIENT FII APPROACH FOR
TRANSCEND

As we previously showed, our aim consists of mak-
ing use of the strong analogies between model esti-
mation and consistency-based diagnosis, and PCs and
TCGs, to turn the global estimation problem in TRAN-
SCEND into a set of smaller estimation problems. In
this section we will show how to generate these smaller
estimators from PCs, and how to integrate them into
the TRANSCEND diagnosis approach.

5.1 Using PCs to Obtain Minimal Parameter
Estimators

PCs have a set of equations, input variables, and one
output variable which can be estimated using only ob-
served variables. For a possible conflict PCY, this es-
timation can be defined in state space form as follows:

‘%I)Ck = fl)ck (mp% » Upcey s 910%)

Uper = Gpex (Tper s Upers Opey,)

where fpc, and g,., are nonlinear functions; &), ,
and u,,, are vectors for the state and input variables;
Upey, 18 the output variable; and 0, is the set of pa-
rameters for PC},.

For linear systems, Gertler established (Gertler,
1998; 2002) that changes in the parameters can be di-
rectly obtained from the residuals of parity relations,
and, consequently, parameter estimation can be per-
formed through parity relations. As PCs are equiv-
alent to ARRs (Pulido and Alonso-Gonzalez, 2004;
Armengol et al., 2009), PCs can be used to derive pa-
rameter estimators for linear systems.

That equivalence has been guaranteed for some
classes of non-linear systems (Gertler, 2002), but can
not be guaranteed in general. However, for those par-
ticular situations, PCs still can be used in the param-
eter estimation process, but in a different way: using
PCs we can derive the structure of a parametrized es-
timator, e, , for a nonlinear system (involves param-
eters, O, , and measured variables: wu,., and yp, ).
Then, e, can be used as a minimal estimator to solve
the nonlinear optimization problem defined in equa-
tion (1), as stated in the following proposition:

Proposition 1 A possible conflict, PCY, and a set of
input variables for PC}, upe,, can be used as a pa-
rameter estimator, Ypc, = €pe, (Upey,, 0i), by selecting
the measured variable estimated by the possible con-
flict as §pe,, , and solving Gy, in terms of the remaining
measured variables.

Each estimator is uniquely related to one PC, hence
it contains minimal redundancy required for parame-
ter estimation. In this case, each PC has an executable
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Figure 5: The new TRANSCEND FII approach.

model that can be used for simulation purposes. Ac-
cess to parameters in the simulation models is straight-
forward, because these parameters come directly from
the Bond-Graph model of the whole system. How
these models are used for fault identification in TRAN-
SCEND is shown in next section.

For the three tank system we have obtained four
minimal parameter estimators shown in table 3, one
for each possible conflict.

Table 3 shows that faults Ry;c, Cr, , C1y, and Ry,
can be estimated using only eq, es, e3, and e4 estima-
tors, respectively. On the other hand, faults in Ry,
Cr,,and Ry, can be estimated through both e, and e3
estimators.

When a parameter can be estimated by two or more
minimal estimators, it is possible to choose the pre-
ferred estimator in several ways (each estimator has
different properties and provides different results). In
this proposal we only provide the whole set of min-
imal estimators for each parameter, but we allow to
choose as preferred estimator the one that better fits
the requirements of the system. To select the preferred
estimator, several options can be considered:

e Select the estimator that minimizes the number of
equations needed for its computation.

e Select the estimator that maximizes the accuracy
in the estimation (trade off between the number of
equations and measurements involved in the PC).
In this work, we selected this option.

5.2 New FII Approach for TRANSCEND

To integrate these ideas in TRANSCEND, we need to
modify its current FII approach (Manders ef al., 2000).

Fig. 5 shows the new proposed FII approach for
TRANSCEND. It relies upon four steps: (7), model
decomposition by off-line computation of the set of
minimal PCs from the bond graph model, (i7), off-line
computation and selection of the better minimal esti-
mator for each fault candidate, (iii), on-line quantita-
tive parameter estimation procedure over the minimal
estimators related with the set of isolated fault candi-
dates, and (iv), decision procedure to select the faulty
candidate.

The parameter estimation block is triggered on-line
only after the progressive monitoring step. The out-
put of the progressive monitoring (a narrowed down

set of possible fault hypotheses, f;.), the inputs, and
the outputs of the system, are used as the inputs for the
parameter estimation. Within this block, a parameter
estimation process is carried out for each one of the hy-
pothesized faults, f, using its corresponding minimal
estimator (obtained in step (i7)).

Fig. 6 shows the parameter estimation process us-
ing the minimal estimators. A parametrized minimal
estimator, ey, , uses the inputs of the system, u., ,
and a parameter value, 6, to generate an estimation
of the output, §,.,. This estimated output is com-
pared against the observed output, y,., , by the Least
Squares, LS, error calculator block. This block com-
putes the least square error between ¥,., and yp., for
the fault candidate f, EJ% Then, the iteration engine
block, that contains a nonlinear optimization algo-
rithm, finds the minimum of the error surface £7%(6y),
by iteratively invoking the estimator with different pa-
rameter values.

The value of the parameter and its minimum LS er-
ror will be the output of the parameter estimation block
(and the input for the decision procedure block). Fi-
nally, for the decision procedure, a statistical test is
used to discard the faulty candidates whose quadratic
error, 52, do not converge to zero.

Fault candidate f (B/initial value)
2
outs: epc  estimator <E/ 0, >
npuls: Ueck (obtained from PCy) 7
Fra | T o,
outout: LS error E” Iteration
utput: Vpc, calculator Engine

Figure 6: Parameter estimation using the minimal es-
timator from PCs.

It is important to point out that the big computa-
tional effort of the approach is made to generate the
error surface by several estimations with different pa-
rameter values. The advantage of the new approach



Related
Estimator PC Parameters Inputs | Output
€1 PC Rpipe Se, Py I3
€2 PCs Cry,Rv,,Cry, Ry, | F1, P Py
es3 PCs Rv,,Cr,, Rv,,Cry | P1, F2 Py
€4 PCy Ry, P Iy

Table 3: Minimal parameter estimators found for the three tank system, and their related Possible Conflicts.

against the previous one is that now, these estimations
are carried out with minimal over-determined sets of
equations, instead of using the whole model.

6 RESULTS ON THE CASE STUDY

The laboratory plant shown in Fig. 2 has been used for
empirical studies for the proposed FII methodology.
The study was made on a data-set containing examples
obtained from several simulations for each fault mode
in the plant.

Models and simulations were developed using the
Simulink®) environment. Simulations lasted 1000
time steps. White noise (mean = 0, variance = 5% of
the measured signal) was added to the measurements.
To test the consistency and accuracy of the approach,
we carried out 10 experiments for each fault mode. Re-
sults shown in table 4 correspond with the mean values
of the 10 experiments for each fault mode.

Abrupt faults with a 10% fault magnitude in the
parameters were introduced at ¢ = 450. We com-
pared the results obtained using the new FII ap-
proach with the minimal estimators against the pre-
vious FII approach using the whole system model.
Table 4 shows the results obtained for each one of
the faulty parameters using 40 seconds (upper part),
and 100 seconds (lower part) data sets for the esti-
mation. Column Fault candidate shows the output
of the TRANSCEND progressive monitoring block,
i.e., the reduced set of hypothesized faults for each
faulty parameter. Column PC' used shows the pos-
sible conflict used for the estimation of each fault
candidate. Column Real value shows the current
value of the faulty parameters. Columns E'stimated
value, Confidence interval, and Elapsed Time
show the estimated value, the 95% confidence interval,
and the elapsed time for the parameter estimation, re-
spectively, using the minimal estimators and the whole
model.

For the sake of simplicity, a Nonlinear Least
Squares algorithm was used for the parameter estima-
tion task.

Possible conflicts isolate faults in R,, and R,,, us-
ing in average half the time needed to isolate the same
faults using the whole model. For example, using a 40
seconds data set for a fault in R,,, , the minimal estima-
tors are able to confirm R,,, and discard R,, in 0.056
and 0.047 seconds, respectively. For the same exam-
ple the whole system estimator lasted 0.104 and 0.106
seconds, respectively.

Regarding the identification results, table 4 shows
that for all the faulty situations considered we obtained
faster estimations without loosing accuracy in the es-
timation. Parameter values obtained with the minimal
estimators are pretty similar to those obtained using

the whole model. In some cases the estimation was
even better while reducing the time consumed to carry
out this estimation (see, for example, results obtained
for faults in parameters Cy, , Cy, , and R,,,). For exam-
ple, using a 100 seconds data set of a fault in 17, the
minimal estimators are able to provide better estima-
tion than the whole system, 109.98 vs. 109.89, while
improving almost 80% the elapsed time for the estima-
tion, 0.094 vs. 0.453.

To test the accuracy and validity of the parameters
estimated with the possible conflicts, we computed the
95% confidence intervals for every faulty situation for
the minimal estimators and the whole model. Inter-
vals are rather similar in both cases. We also carried
out more experiments using smaller and bigger data
sets (20 seconds and 200 seconds) for the parameter
estimation, obtaining similar results to those shown in
table 4.

7 DISCUSSION AND CONCLUSIONS

This paper has presented a novel architecture for
timely on-line parameter estimation in TRANSCEND,
using system decomposition and possible conflicts.
Our approach exploits the strong analogies between
Decompositional Model-based Learning and Model-
based Diagnosis to decompose the global estimation
problem into smaller estimation tasks, thus reducing
the computational problems for on-line parameter es-
timation. Based on these analogies, we have used pos-
sible conflicts to find minimal estimators derived from
TCGs.

Simulation results obtained so far using the new
approach show an improvement in the efficiency of
TRANSCEND without compromising the accuracy on
the estimation. This improvement comes from the re-
duced size of the estimation for the optimization task.

Several approaches have been proposed in the lit-
erature to solve the fault identification problem. Pure
on-line quantitative parameter estimation for nonlinear
models is usually very time consuming (Escobet and
Travé-Massuyes, 2001) and have strong requirements
for noise decoupling and input excitation (Patton er
al., 2000). To mitigate these factors, several authors
have proposed the combination of different methods
for fault detection and isolation, and fault identification
(Pouliezos and Stavrakakis, 1994; Isermann, 2006;
Gertler, 1998). Our proposal follows this trend.

The main task as we move forward is to test these
ideas in a more complex nonlinear system, such as
the reverse osmosis system that was developed for wa-
ter recovery in long duration human space missions
(Roychoudhury et al., 2009). Our guess is that us-
ing possible conflicts for the parameter estimation task
in a more complex model, computational effort will



40 seconds
Using PCs Using the whole system
Faulty Fault PC Real Estimated Confidence FElapsed | Estimated Confidence FElapsed
parameter | candidate | used | value value interval time value interval time
Cry Cry PCy 11 11.03 [10.95 — 11.11] 0.063 11.03 [10.99 — 11.07] 0.096
CT2 CT2 PC3 11 11.002 [10.94 — 11.05] 0.058 10.99 [10.86 — 11.12] 0.100
CT3 CT3 PCy 11 11.11 [11.05 — 11.18] 0.055 11.13 [10.99 — 11.27] 0.092
Ry Ry, PCy 110 108.79 [108.15 — 109.43] 0.056 109.50 [108.78 — 110.22] 0.104
1 RV2 PCy 110 E? does not convergeto zero 0.046 E? does not convergeto zero 0.106
Ry. va PCy 110 E2 does not converge to zero 0.047 EZ does not converge to zero 0.116
2 RV2 PC3 110 110.21 [110.05 — 110.37] 0.053 109.93 [109.19 — 110.66] 0.112
RV3 RV3 PCy 110 110.01 [109.71 — 110.30] 0.046 111.18 [110.52 — 111.84] 0.105
Rpipe Rpipe PCy 110 110.20 [109.01 — 111.40] 0.056 110.60 [110.01 — 111.18] 0.103
100 seconds
Using PC's Using the whole system
Faulty Fault PC Real Estimated Confidence FElapsed | Estimated Confidence FElapsed
parameter | candidate | used | value value interval time value interval time
CTI CTI PCy 11 11.04 [11.01 — 11.07] 0.122 11.04 [11.02 — 11.06] 0.339
CT2 CT2 PC3 11 11.004 [10.98 — 11.01] 0.111 11.01 [10.96 — 11.05] 0.326
CT3 CT3 PCy 11 11.02 [10.99 — 11.04] 0.145 11.02 [10.96 — 11.07] 0.314
Ry, Ry, PCy 110 110.38 [110.22 — 110.55] 0.136 110.09 [109.78 — 110.41] 0.378
1 RV2 PCy 110 E? does not convergeto zero 0.136 E? does not convergeto zero 0.381
Ry. RV1 PCoy 110 E? does not convergeto zero 0.166 E? does not convergeto zero 0.441
2 RV2 PC3 110 110.06 [110.02 — 110.10] 0.179 109.93 [109.61 — 110.25] 0.422
Ry, Ry, PCy 110 109.98 [109.83 — 110.13] 0.094 109.89 [109.68 — 110.09] 0.453
Rpipe Rpipe PCy 110 109.96 [109.36 — 110.56] 0.141 110.04 [109.85 — 110.24] 0.396

Table 4: Estimation results (estimated value, 95 % confidence interval, and elapsed time) for each one of the faults
considered using 40 seconds and 100 seconds data sets.

decrease due to the bigger complexity of the global causal graphs. In Proceeding of the 23rd Euro-

model. We also plan to test the performance of the
system with different optimization algorithms to im-
prove computational effort, and decrease the possible
negative effects of noise in the measurements in the pa-
rameter estimation process. Last task ahead will be to
integrate this approach within the FACT architecture.
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