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ABSTRACT

Existing research in Model-Based Diagnosis
(MBD) primarily concerns computation of a sin-
gle (possibly multiple-fault) diagnostic candi-
date. This is unrealistic, as often multiple candi-
dates cannot be discerned given a system descrip-
tion and an observation vector. It is also computa-
tionally more difficult to compute multiple mini-
mal-cardinality diagnoses, as opposed to a single
diagnosis. In this paper we analyze the theoretical
and practical aspects of computing multiple min-
imal-cardinality diagnoses. We propose an algo-
rithm, named SAFARI, which solves the compu-
tational complexity problem by trading-off com-
pleteness for efficiency. Our algorithm has the
desirable property of computing multiple-cardi-
nality diagnoses with probability which is nega-
tively exponential to the cardinality of the min-
imal-cardinality diagnoses. We also empirically
confirm the theoretical results with experiments
on a benchmark of 74XXX/ISCAS85 combina-
tional circuits. The efficiency of the algorithm
is evaluated in terms of metrics, and the results
are compared to other MBD algorithms partici-
pating in the First International Diagnostic Com-
petition (DXC’09). The results from the compe-
tition support our theoretical prediction that com-
puting all minimal-cardinality diagnoses maxi-
mizes the DXC’09 utility metric. The results also
show at least an order-of-magnitude speedup and
an order-of-magnitude decrease in memory con-
sumption while computing multiple minimal di-
agnoses of optimality similar to competing algo-
rithms.

1 INTRODUCTION

LYDIA (Feldman et al., 2006) is a declarative model-
ing language specifically developed for Model-Based
Diagnosis (MBD) (de Kleer and Williams, 1987). The
accompanying toolset currently comprises a number
of diagnostic engines and a simulator tool. SAFARI
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(Feldman et al., 2008a) (StochAstic Fault diagnosis
AlgoRIthm), is a LYDIA module that computes mini-
mal diagnoses while sacrificing guarantees of optimal-
ity, but for diagnostic systems in which faults are de-
scribed in terms of an arbitrary deviation from nomi-
nal behavior, SAFARI can compute diagnoses several
orders of magnitude faster than existing state-of-the-
art algorithms.

SAFARI competed in the synthetic track of the
First International Diagnostic Competition (DXC’09)
against the diagnostic algorithms NGDE (de Kleer,
2009) and RODON (Bunus et al., 2009). The CPU
and memory performance of SAFARI were an order-
of-magnitude better than the competing algorithms de-
spite the fact that NGDE and RODON performed bet-
ter than other MBD algorithms like CDA∗ (Williams
and Ragno, 2007) or HA∗ (Feldman and van Gemund,
2006).

The contributions of this paper are as follows. (1)
We introduce an algorithm for computing multiple
minimal-cardinality diagnoses. (2) We show that this
algorithm computes minimal diagnoses with probabil-
ity which is negatively exponential to the cardinality of
the diagnoses. (3) We define performance metrics and
compare SAFARI to other algorithms from DXC’09.

This paper is of great practical significance as it
bridges algorithmic and theoretical problems (com-
putation of multiple minimal diagnoses) and practice
(DXC’09). We believe that MBD algorithms which
can compute diagnoses in systems comprising of thou-
sands of variables and constraints would allow easier
modeling, automatic generation of models from design
specifications, proving model properties, etc.

This paper is organized as follows. Section 2 con-
tains basic definitions. Section 3 describes the SAFARI

algorithm. Section 4 explains properties of SAFARI in
computing multiple minimal diagnoses and presents a
Monte Carlo algorithm for simulating SAFARI. Sec-
tion 5 introduces the DXC’09 metrics and links them
to the theoretical claims made earlier. Section 6 con-
tains experimental results from DXC’09.

2 TECHNICAL BACKGROUND

This section formalizes some standard MBD notions,
and explains, on an intuitive level, the SAFARI infer-
ence algorithm. It is important to note that SAFARI

performs inference in a manner that is different to
“standard” MBD algorithms, such as GDE (de Kleer
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and Williams, 1987), in that it interleaves stochastic
search with SAT consistency-checking of potential di-
agnoses, as we will explain.

2.1 Diagnosis and Minimal Diagnosis

We adopt the traditional diagnostic definitions (de
Kleer and Williams, 1987), except that we use propo-
sitional logic terms (conjunctions of literals) instead of
sets of failing components.

Central to MBD, a model of an artifact is repre-
sented as a propositional Wff over some set of vari-
ables. Discerning two subsets of these variables as as-

sumable and observable1 variables gives us a diagnos-
tic system.

Definition 1 (Diagnostic System). A diagnostic sys-
tem DS is defined as the triple DS = 〈SD, COMPS,
OBS〉, where SD is a propositional theory over a set
of variables V , COMPS ⊆ V , OBS ⊆ V , COMPS
is the set of assumables, and OBS is the set of observ-
ables.

Throughout this paper we assume that OBS ∩
COMPS = ∅ and SD 6|=⊥. Although SAFARI deliv-
ers good results for a larger class of diagnostic models,
this paper focuses on the well-known weak-fault mod-

els2.

Definition 2 (Weak-Fault Model). A diagnostic sys-
tem DS = 〈SD, COMPS, OBS〉 belongs to the class
WFM iff SD is in the form (h1 ⇒ F1)∧ . . .∧ (hn ⇒
Fn) such that 1 ≤ i, j ≤ n, {hi} ⊆ COMPS,
Fj ∈Wff , and none of hi appears in Fj .

Note the conventional selection of the sign of the
“health” variables h1, h2, . . . , hn. Other authors use
“ab” for abnormal or “ok” for healthy. Weak-fault
models are sometimes referred to as models with ig-
norance of abnormal behavior (de Kleer et al., 1992),
or implicit fault systems. The traditional query in MBD
computes terms of assumable variables which are ex-
planations for the system description and an observa-
tion.

Definition 3 (Health Assignment). Given a diagnos-
tic system DS = 〈SD, COMPS, OBS〉, an assignment
HA to all variables in COMPS is defined as a health
assignment.

A health assignment HA is a conjunction of proposi-
tional literals. In some cases it is convenient to use the
set of negative or positive literals in HA. These two

sets are denoted as Lit
−(HA) and Lit

+(HA), respec-
tively.

What follows is a formal definition of consistency-
based diagnosis.

Definition 4 (Diagnosis). Given a diagnostic system
DS = 〈SD, COMPS, OBS〉, an observation α over
some variables in OBS, and a health assignment ω, ω
is a diagnosis iff SD ∧ α ∧ ω 6|=⊥.

1In the MBD literature the assumable variables are also
referred to as “component”, “failure-mode”, or “health” vari-
ables. Observable variables are also called “measurable”, or
“control” variables.

2DXC’09 provides the topology and nominal behavior of
the ISCAS85 circuits only. Participants may assume “stuck-
at” behavior but we have used weak-fault models only.

In the MBD literature, a range of types of “preferred”
diagnosis has been proposed. This turns the MBD
problem into an optimization problem. In the fol-
lowing definition we consider the common subset-
ordering.

Definition 5 (Minimal Diagnosis). A diagnosis ω⊆

is minimal if no diagnosis ω̃⊆ exists such that

Lit
−(ω̃⊆) ⊂ Lit

−(ω⊆).

The set of all minimal diagnoses characterizes all di-
agnoses given a weak-fault model, but that does not
hold in general (de Kleer et al., 1992). With no restric-
tions on the model, faulty components may “exoner-
ate” each other. In the latter case a health assignment
containing a proper superset of the negative literals of
a (minimal) diagnosis may not to be a diagnosis.

Definition 6 (Number of Minimal Diagnoses). Let the

set Ω⊆(SD∧α) contain all minimal diagnoses of a sys-
tem description SD and an observation α. The number

of minimal diagnoses, denoted as |Ω⊆(SD ∧ α)|, is

defined as the cardinality of Ω⊆(SD ∧ α).

Diagnosis cardinality gives us another partial ordering:
a diagnosis is defined as minimal cardinality iff it min-
imizes the number of negative literals. The cardinality
of a diagnosis, denoted as |ω|, is defined as the number
of negative literals in ω.

Definition 7 (Minimal-Cardinality Diagnosis). A di-

agnosis ω≤ is defined as minimal-cardinality if no di-

agnosis ω̃≤ exists such that |ω̃≤| < |ω≤|.

In this text we may refer to a minimal diagnosis
(Def. 5) as to a subset-minimal diagnosis. A min-
imal-cardinality diagnosis, though, will always spell
the word cardinality.

Definition 8 (Number of Minimal-Cardinality Diag-

noses). Let the set Ω≤(SD ∧ α) contain all minimal-
cardinality diagnoses of a system description SD and
an observation α. The number of minimal-cardinality

diagnoses, denoted as |Ω≤(SD ∧ α)|, is defined as the

cardinality of Ω≤(SD ∧ α).

A minimal cardinality diagnosis is a minimal diagnosis

(Ω≤(SD ∧ α) ⊆ Ω⊆(SD ∧ α)), but the opposite does
not hold. There are minimal diagnoses which are not
minimal cardinality diagnoses.

2.2 Diagnostic Inference: “Traditional” versus
SAFARI Methodologies

This section provides an intuitive comparison of SA-
FARI with “standard” MBD algorithms, in order to
clarify our novel algorithm, which will be explained in
more detail in the following section. SAFARI performs
inference in a manner that is different than “standard”
MBD algorithms. In the following, we first summarize
the standard MBD approach, and contrast it with that
of SAFARI.

Given an observation OBS denoting an abnormal
condition (or symptom), a standard MBD algorithm A
performs diagnosis in a two-step process. In the first
step, A computes the conflicts for OBS, i.e., a conflict
is a set of components which cannot all be operating
properly given a symptom. We denote a conflict ζ as
an assignment to a subset of health variables.
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Definition 9 (Conflict). Given a diagnostic system
DS = 〈SD, COMPS, OBS〉, and an observation α
over some variables in OBS, ζ is a conflict iff SD ∧
α ∧ ζ |=⊥.

Most MBD approaches will compute minimal con-
flicts, i.e., conflicts which are minimal with respect
to some preference criterion φ. Both subset- and
cardinality-minimal conflicts have been studied in
the literature. Conflicts are typically computed us-
ing constraint-propagation methods (de Kleer and
Williams, 1987). The minimal conflicts can be com-
puted by, for example, the ATMS (de Kleer, 1986).

In the second step, a standard MBD algorithm A
computes, from a set of minimal conflicts ζ, a diag-
nosis (or preferred diagnosis, using some preference
function φ). A diagnosis is a health assignment to each
system component, as defined before. Diagnoses (or
minimal diagnoses with respect to φ) are computed
using some logic-based consistency-checking mech-
anism, such as a SAT solver (McAllester, 1990) or
through computing a minimal hitting set of the min-
imal conflicts (de Kleer and Williams, 1987).

In contrast, SAFARI performs diagnostic inference
as follows. SAFARI avoids the conflict-analysis phase
by (1) guessing an initial diagnosis ω given an obser-
vation α, and then (2) trying to reduce the cardinality
of this initial diagnosis ω through flipping the values
of some health variables in ω from faulty to healthy,
performing a consistency-check after each flip. SA-
FARI uses an incomplete SAT-solver, BCP, for each
consistency-check (McAllester, 1990). This random-
ized search, in conjunction with the computationally
efficient consistency-checking, is what distinguishes
SAFARI from traditional algorithms, and also what
gives it its computational advantages over traditional
algorithms.

3 GREEDY STOCHASTIC COMPUTATION
OF DIAGNOSES

This section presents a more formal specification of
SAFARI, an algorithm for computing multiple-fault di-
agnoses using stochastic search.

3.1 The SAFARI Algorithm

As described earlier, SAFARI uses a two-step diagnos-
tic process. Step 1 involves randomly choosing candi-
dates. Step 2 attempts to minimize the fault cardinality
of these candidates.

Algorithm 1 shows the top-level pseudocode for
SAFARI. Step 1 takes place in line 3 of Algorithm 1;
the remainder of the pseudocode of Algorithm 1 per-
forms Step 2.

Algorithm 1 uses a number of utility functions,
which we briefly review. The IMPROVEDIAGNOSIS

subroutine takes a term as an argument and changes the
sign of a random negative literal. If there are no nega-
tive literals, the function returns the original argument.
The implementation of RANDOMDIAGNOSIS uses a
modified Davis-Putnam-Logemann-Loveland (DPLL)
solver (Davis et al., 1962) returning a random SAT so-
lution of SD ∧ α.

Similar to deterministic methods for MBD, SAFARI

uses a SAT-based procedure for checking the consis-
tency of SD ∧ α ∧ ω. Because SD ∧ α does not

change during the search, the incremental nature of
the Logic-Based Truth Maintenance System (LTMS)
assumption checking (McAllester, 1990) greatly im-
proves the search efficiency. The implementation of
SAFARI uses LTMS which is based on Boolean Con-
straint Propagation (BCP), to check for inconsisten-
cies. If a candidate is consistent, a subsequent DPLL
check is invoked for completeness.

The randomized search process performed by SA-
FARI has two parameters, M and N . There are N in-
dependent searches that start from randomly generated
starting points. The algorithm tries to improve the car-
dinality of the initial diagnoses (while preserving their
consistency) by randomly “flipping” fault literals. The
change of a sign of literal is done in one direction only:
from faulty to healthy.

Algorithm 1 SAFARI: A greedy stochastic hill climb-
ing algorithm for approximating the set of minimal di-
agnoses.

1: function SAFARI(DS, α, M, N ) returns a trie

inputs: DS = 〈SD, COMPS, OBS〉
a diagnostic system

α, term, observation
M , integer, climb restart limit
N , integer, number of tries

local variables: m, n, integers
ω, ω′, terms
R, set of terms, result

2: for n = 1, 2, . . . , N do
3: ω ← RANDOMDIAGNOSIS(SD, α)
4: m← 0
5: while m < M do
6: ω′ ← IMPROVEDIAGNOSIS(ω)
7: if SD ∧ α ∧ ω′ 6|=⊥ then
8: ω ← ω′

9: m← 0
10: else
11: m← m + 1
12: end if
13: end while
14: unless ISSUBSUMED(R, ω) then
15: ADDTOTRIE(R, ω)
16: REMOVESUBSUMED(R, ω)
17: end unless
18: end for
19: return R
20: end function

Each attempt to find a minimal diagnosis terminates
after M unsuccessful attempts to “improve” the cur-
rent diagnosis stored in ω. Thus, increasing M will
lead to a better exploitation of the search space and,
possibly, to diagnoses of lower cardinality, while de-
creasing it will improve the overall speed of the algo-
rithm.

It is possible that two diagnostic searches may re-
sult in the same minimal diagnosis. To prevent this,
we store the generated diagnoses in a trie R (Forbus
and de Kleer, 1993), from which it is straightforward
to extract the resulting diagnoses by recursively visit-
ing its nodes. A diagnosis ω is added to the trie R by
the function ADDTOTRIE, iff no subsuming diagnosis
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is contained in R (the ISSUBSUMED subroutine checks
on that condition). After adding a diagnosis ω to the
resulting trie R, all diagnoses contained in R and sub-
sumed by ω are removed by a call to REMOVESUB-
SUMED.

3.2 A Simple Example

We will use the Boolean circuit shown in Fig. 1 as
a running example for illustrating SAFARI. The sub-
tractor, shown there, consists of seven components:
an inverter, two or-gates, two xor-gates, and two and-
gates. The expression h ⇒ (o⇔ ¬i) models the
normative (healthy) behavior of an inverter, where
the variables i, o, and h represent input, output and
health respectively. Similarly, an and-gate is mod-
eled as h ⇒ (o⇔ i1 ∧ i2) and an or-gate by h ⇒
(o⇔ i1 ∨ i2). Finally, an xor-gate is specified as
h⇒ [o⇔ ¬ (i1 ⇔ i2)].

h2
d

h6

y

p h1

h3

h4j

i

h5

h7

x

m

k

b

l

Figure 1: A subtractor circuit

The above propositional formulae are copied for each
gate in Fig. 1 and their variables renamed in such a way
as to properly connect the circuit and disambiguate the
assumables, thus obtaining a propositional formula for
the Boolean subtractor, given by:

SD =































h1 ⇒ [i⇔ ¬ (y ⇔ p)]
h2 ⇒ [d⇔ ¬ (x⇔ i)]
h3 ⇒ (j ⇔ y ∨ p)
h4 ⇒ (m⇔ l ∧ j)
h5 ⇒ (b⇔ m ∨ k)
h6 ⇒ (x⇔ ¬l)
h7 ⇒ (k ⇔ y ∧ p)

(1)

The set of assumables is COMPS = {h1, h2, . . . , h7}
and the set of observable variables is OBS =
{x, y, p, d, b}.

Diagnostic inference with SAFARI proceeds as fol-
lows. In step 1, the stochastic diagnostic search for the
subtractor example will start from a random quintuple

candidate3. In this particular version of our algorithm,
once a component is marked as healthy, it cannot be
changed back to faulty. To compensate for that, we
perform multiple restarts from a random candidate. In
our subtractor example and for α3 = x∧y∧p∧¬d∧¬b,
if h1 ∧ h2 is in an initial “guessed” candidate, it will
prove inconsistent with SD∧α3 and another quintuple
fault candidate will be guessed.

3Feldman et al (2008b) describe a method for determin-
ing the initial candidates.

Assume that this second candidate is ω6 = ¬h1 ∧
¬h2∧h3 ∧¬h4 ∧¬h5∧h6 ∧¬h7. Clearly, SD∧α3 ∧
ω6 6|=⊥. The search algorithm may next try to improve
the diagnosis by “flipping” the sign of h7. The candi-
date ω7 = ¬h1 ∧¬h2 ∧h3 ∧¬h4 ∧¬h5 ∧h6 ∧h7 is a
valid quadruple fault diagnosis and it can be improved
twice more by “flipping” h2 and h5. This gives us the
final double-fault ω8 = ¬h1∧h2∧h3∧¬h4∧h5∧h6∧
h7. The actual algorithm is somewhat more involved
as during the variable flipping it is normal to find in-
consistencies. Instead of restarting, it will simply dis-
card these inconsistent candidates until some termina-
tion criterion is satisfied.

Intuitively, from our example, due to the large num-
ber of double fault diagnoses explaining the same ob-
servation, it is not difficult to randomly guess se-
quences of variables which need to be false in order
to explain the observation.

4 PROPERTIES OF SAFARI IN COMPUTING
MULTIPLE DIAGNOSES

We have shown (Feldman et al., 2008a) that for M =
|COMPS| and SD ∈ WFM, SAFARI is guaranteed
to find N (not necessarily distinct) minimal diagnoses
in each run.

Consider a system description SD (SD ∈ WFM)
and an observation α. The number of minimal diag-

noses |Ω⊆(SD ∧ α)| can be exponential in |COMPS|.
Furthermore, in practice, diagnosticians are interested
in sampling from the set of minimal-cardinality di-

agnoses Ω≤(SD ∧ α) (recall that Ω≤(SD ∧ α) ⊆
Ω⊆(SD ∧ α)) as the minimal-cardinality diagnoses
cover a significant part of the a posteriori diagnosis
probability space (de Kleer, 1990). In what follows,
we will see that SAFARI is very well suited for that
task.

Theorem 1. The probability of SAFARI, configured
with M = |COMPS|, computing a diagnosis of
cardinality |ω| in a system with |COMPS| com-

ponent variables approaches O
(

|COMPS||ω|
)

for

|COMPS|/|ω| → ∞.

Proof (Sketch). For notational brevity we will denote
γ = |COMPS|. Assume a minimal diagnosis of car-
dinality |ω| exists. From the Minimal Diagnosis Guar-

antee4 it follows that SAFARI configured with M = γ
is guaranteed to compute minimal diagnoses. Starting
from the “all faulty” assignment, consider a step k in
“improving” the diagnosis cardinality. If state k con-
tains more than one diagnosis, then at state k + 1, SA-
FARI will either (1) flip a literal belonging to this diag-
nosis (note that a literal may belong to more than one
diagnosis) and subsequently prevent SAFARI of reach-
ing this diagnosis or (2) flip a literal belonging to a
diagnosis which has already been invalidated (i.e., one
or more of its literals have been flipped at an earlier
step).

The probability that a solution of cardinality |ω|
“survives” a flip at iteration k (i.e., is not invalidated)

4Cf. Proposition 1 in the related paper of Feldman et al.
(2008a).
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is:

p (k) = 1−
|ω|

γ − k
=

γ − |ω| − k

γ − k
(2)

The probability that a diagnosis ω “survives” until it is
returned by the algorithm:

f(γ − |ω| − 1) =

γ−|ω|−1
∏

i=0

p(i) = (3)

=

γ−|ω|−1
∏

i=0

γ − |ω| − i

γ − i
(4)

Rewriting the right hand side of Eq. (3) gives us:

f(γ − |ω| − 1) =
(γ − |ω|)!

(|ω|+ 1)(|ω|+ 2) · · ·γ
= (5)

=
|ω|!(γ − |ω|)!

γ!
(6)

Since

(γ − |ω|)!

γ!
=

1

(γ − |ω|+ 1)(γ − |ω|+ 2) · · ·γ
(7)

it holds that

lim
γ/|ω|→∞

(γ − |ω|)!

γ!
= γ−|ω| (8)

As a result, for small |ω| relative to γ,

f(γ − |ω| − 1) = |ω|!O
(

γ|ω|
)

(9)

which gives us the above theorem.

The distribution hi(|ω|) of the cardinalities of the min-

imal diagnoses in Ω⊆(SD ∧ α) depends on the topol-
ogy of SD and on α; i.e., we can create SD and α
having any hi(|ω|). We denote the cardinality distri-
bution of the minimal diagnoses computed by SAFARI

as h(|ω|).
If we have Nc diagnoses of minimal-cardinality c

one wants to know when to stop (i.e., what is the prob-
ability of missing out a diagnosis). The number of
SAFARI runs for computing yet another diagnosis of
cardinality c, grows according to a first-order func-
tion (the probability of computing a new diagnosis de-
creases geometrically). After computing some con-
stant number of diagnoses we can simply fit the data
with a first-order function and estimate its parameters
(in this case Nc is the initial value, the decay constant
λc is of less interest) using a simple regression tech-
nique that also allows us to compute the confidence
interval.

Theorem 1 gives us a termination criterion for SA-
FARI which can be used for enumerating and count-
ing minimal-cardinality diagnoses. Instead of running
SAFARI with a fixed N it is sufficient to compute the
area under the output distribution function

∑

h. This
value will converge to a single value, hence we can
terminate SAFARI after the change of

∑

h drops be-
low a fixed threshold. Note that SAFARI is efficient
in enumerating the minimal-cardinality diagnoses as
they are computed with a probability that is exponen-
tially higher than that of the probability of computing
minimal diagnoses of higher-cardinality.

Corollary 1. SAFARI computes diagnoses of equal
cardinality with equal probability.

Proof (Sketch). From Theorem 1 it follows that the
probability of success f of SAFARI in computing a
specific diagnosis ω depends only on |ω| and not on
the actual composition of ω.

The above corollary gives us a simple termination cri-
terion for SAFARI in the cases when all minimal diag-
noses are also minimal-cardinality diagnoses; it can be
proven that in this case all minimal-cardinality diag-
noses are computed with the same probability.

We will see that, given an input cardinality distri-
bution hi(|ω|), SAFARI produces an output distribu-
tion h(|ω|) that is highly skewed to the right due to
Theorem 1. To facilitate the study of how SAFARI

transforms hi(|ω|) into h(|ω|) we will use a Monte
Carlo simulation of SAFARI. The advantage is that the
Monte Carlo simulation is much simpler for analyz-
ing the run-time behavior of SAFARI than studying the
algorithm itself.

Algorithm 2 Monte Carlo simulation of SAFARI.

1: function SAFARISIMULATE(Ω⊆, N ) returns a
cardinality distribution

inputs: Ω⊆, a set of minimal diagnoses
N , integer, number of tries

local variables: hi, h, vectors, card. distr.
b, vector, fault distribution
n, i, c, integers

2: hi ← CARDINALITYDISTRIBUTION(Ω⊆)
3: for n← 1, 2, . . . , N do
4: for c← 1, 2, . . . , |hi| do
5: b[c]← c · hi[c]
6: end for
7: for i← 1, 2, . . . , |Ω⊆| do

8: c← DISCRRND−1 (b/
∑

b)
9: b[c]← b[c]− c

10: end for
11: h[c]← h[c] + 1
12: end for
13: return h
14: end function

Algorithm 2 simulates which diagnoses from the in-
put set of minimal diagnoses Ω are “reached” by SA-
FARI in N tries. The auxiliary subroutine CARDINAL-
ITYDISTRIBUTION computes the input distribution hi
by iterating over all diagnoses in Ω⊆. We store the
input cardinality distribution hi and the resulting car-
dinality distribution h in vectors (note the vector sums
in lines 7 and 8 and the division of a vector by scalar
in line 8).

The outermost loop of Alg. 2 (lines 3 – 12) simu-
lates the N runs of SAFARI. This is done by computing
and updating an auxiliary vector b, which contains the

distribution of the component variables in Ω⊆ accord-
ing to the cardinalities of the diagnoses these variables
belong to. Initially, b is initialized with the number
of literals in single faults in position 1, the number of
literals in double faults in position 2 (for example if
there are three double faults in hi, b[2] = 6), etc. This
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is done in lines 4 – 6 of Alg. 2. Note that in order to
simplify the simulation algorithm, we assume that di-
agnoses do not share literals. This restriction can be
easily dropped by counting all the assumables in the

input Ω⊆. The latter assumption does not change the
results of this section as the fact that two diagnoses
ω1 and ω2 share literals does not change the individual
probability of ω1 or ω2 being “hit” or “invalidated”.

Lines 7 – 10 simulate the process of the actual bit
flipping of SAFARI. At each step the simulation draws
a random literal from the probability distribution func-

tion (pdf ) b
P

b ; this is done by the DISCRRND−1 func-

tion in line 8. Each bit flip “invalidates” a diagno-

sis from the set Ω⊆, i.e., a diagnosis of cardinality c
cannot be reached by SAFARI. After a diagnosis has
been “invalidated”, the vector b is updated, for exam-
ple, if the simulation “invalidates” a quadruple fault,
b[4] = b[4] − 4 (line 9). Note that the number of it-
erations in the loop in lines 7 – 10 equals the num-

ber of diagnoses in Ω⊆. As a result after terminating
this loop, the value of the integer variable c is equal to
the cardinality of the last “invalidated” diagnosis. The
latter is the diagnosis which SAFARI computes in this
run. What remains is to update the resulting pdf with
the right cardinality (line 11).

The simulation in Alg. 2 links the distribution of the

actual diagnoses in Ω⊆ to the distribution of the cardi-

nalities of the diagnoses returned by SAFARI. As Ω⊆

can be arbitrarily set, we will apply Alg. 2 to a range
of typical input distributions. The results of the simu-
lation as well as the results of running SAFARI on syn-
thetic problems with the same input distributions are
shown in Fig. 2.

Fig. 2 shows (1) that Alg. 2 predicts the actual be-
havior of SAFARI (compare the second and third col-
umn of plots), and (2) that SAFARI computes diag-
noses of small cardinality in agreement with Theo-
rem 1. The only case when the output distribution is
not a steep exponential is when the cardinalities in the
set of the input minimal diagnoses grow exponentially.
Table 1 summarizes the parameters of exponential fits
for the input cardinality distributions shown in Fig. 2
(a is the initial (zero) cardinality, λ is the decay con-
stant, and R2 is the coefficient of determination).

Input Distribution a λ R2

Uniform 576 −0.44 1
Normal 423 −0.34 0.99
Exponential 69 470 −4.26 1
Reverse Exponential 385 −0.33 0.95

Table 1: Fit coefficients to exponential and goodness
of fit for the cardinality distribution in Fig. 2

We have seen that SAFARI is suited for computing
multiple diagnoses of small probability. In the next
section we will provide an alternative argument lead-
ing to similar conclusions.

5 DIAGNOSTIC METRICS

We next define the metrics used in the synthetic track
of DXC’09. The two computational metrics Mcpu and

Mmem are straightforward: Mcpu is the total amount
of busy CPU time spent by SAFARI and Mmem is the
peak amount of allocated memory (cf. (Kurtoglu et
al., 2009)). Building metrics that measure the “cor-
rectness” of a diagnosis is more involved and we dis-
cuss two of them: classification errors (Mia) and utility
(Mutl).

5.1 Classification Errors

Mia is defined as follows:

Mia =
∑

c∈COMPS

∑

ω∈Ω merr(c, ω, ω∗)

|Ω| · |COMPS|
(10)

where merr(c, ω, ω∗) is defined as:

merr(c, ω, ω∗) =

{

0, if ω[c] = ω∗[c]
1, otherwise (11)

In (10) and (11) the injected fault is denoted as ω∗ and
ω[c] is the state of component c (healthy/faulty) in di-
agnosis ω.

Although Mia has been applied successfully to the
industrial track of DXC’09, it is considered as un-
suitable for the synthetic track of DXC’09. The Mia

metric credits too much a diagnostic algorithm when,
for example, this algorithm produces no diagnosis (in
this case the diagnostic algorithm is assumed to have
produced the “all healthy” diagnosis) and makes lit-
tle intuitive sense with multiple diagnoses. Note that
the DXC’09 industrial track contains fault scenarios of
small cardinality (mostly single and double faults) and
the system is sensor-rich, hence it is relatively easy to
compute a single diagnostic candidate.

Instead of Mia the DXC organizers have chosen to
compute the utility metric Mutl for the synthetic track
scenarios.

5.2 Utility Metric

Consider a truly injected fault ω⋆ (a set of faulty com-
ponents) and a diagnostic candidate ω. The number of
truly faulty components that are improperly diagnosed
by the diagnostic algorithm as healthy (false negatives)
is n = |ω⋆ \ ω| (cf. Fig. 3). In general a diagnostician
has to perform extra work to verify a diagnostic can-
didate ω, which must be reflected in the utility metric.
We assume that he or she has access to a test oracle
that states if a component c is healthy or faulty.
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Figure 3: Set operations on the diagnostic candidate ω
and the injected fault ω⋆
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Figure 2: Predicted and actual cardinality distributions
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We first determine what the expected number of tests a
diagnostician has to perform to test all components in
ω⋆\ω (the false negatives) if the diagnostician chooses
untested components at random with uniform proba-
bility. In the worst case, the diagnostician has to test
all the remaining COMPS \ ω components (the diag-
nostic algorithm has already determined the state of
all components in ω). On average the situation is less
worse. We denote N = |COMPS \ ω|. N is the size
of the “population” (of components to be tested). The
inverse hypergeometric distribution

f(k, s, n, N) =

(

n
s−1

)(

N−n
x−s

)

(n− s + 1)
(

N
x−1

)

(N − x + 1)
(12)

yields the probabilities for testing k healthy compo-
nents before we find s faulty components out of the
population (no repetitions). The expected value E′[k]
of f(k, s, n, N) is:

E′[k] =
s(N − n)

n + 1
(13)

As we are interested in finding s = n faulty compo-
nents, the expected value E′(n, N) becomes:

E′[k] =
n(N − n)

n + 1
(14)

The expected number of tests E[t] (as opposed to the
expected number of faulty components E′[k]) then be-
comes:

E[t] =
n(N − n) + n

n + 1
=

n(N + 1)

n + 1
(15)

Using E[t] in a metric is not enough as it only cap-
tures the effort to “eliminate” (test) all false negatives.
The size of the set of false positives is n̄ = |ω\ω⋆| (cf.
Fig. 3). To find all false positives, the diagnostician has
to test in the worst case all components in ω. Hence,
the general population is N̄ = |ω|. Repeating the ar-
gument for E[t] we determine the expected number of
tests for testing all false positives E[t̄].

Note that 0 ≤ E[t] ≤ N and 0 ≤ E[t̄] ≤ N̄ . Nor-
malizing E[t] and E[t̄] in the interval [0; 0.5] and sub-
tracting them from 1 (so bigger values means better)
gives us the utility metric (per candidate):

mutl = 1−
1

2

E[t]

N
−

1

2

E[t̄]

N̄
= (16)

= 1−
n(N − n)

2N(n + 1)
−

n̄(N̄ − n̄)

2N̄(n̄ + 1)
(17)

Table 2 summarizes all variables used in the formula
of mutl.

The utility metric (per scenario) is

Mutl =
∑

ω∈Ω

W (ω)mutl(ω
⋆, ω) (18)

where W (ω) is the weight of a diagnosis ω such that
∑

ω∈Ω

W (ω) = 1 (19)

Var. Set Description

n ω⋆ \ ω False positives.

N COMPS \ ω The set of healthy compo-
nents from the viewpoint of
the diagnostic algorithm.

n̄ ω \ ω⋆ False negatives.
N̄ ω The set of faulty compo-

nents from the viewpoint of
the diagnostic algorithm

Table 2: Notational summary of mutl
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Figure 4: mutl as a function of n and n̄

All weights W (ω), ω ∈ Ω, are computed by the diag-
nostic algorithm.

Figure 4 plots mutl for some ω and ω⋆. Clearly,
there is a global optimum mutl = 1 for n = 0 and
n̄ = 0, i.e., all components are classified correctly in
ω.

5.3 Maximizing the Utility Metric

A diagnostic algorithm can maximize Mutl by com-
puting a single diagnosis ω such that ω = ω⋆ (cf.
Fig. 4). In the latter case, the weight of ω should be set
to W (ω) = 1. A diagnostic algorithm, however, has
no way to know the truly injected diagnosis. Given a
system description SD and an observation α, an unin-
formed diagnostic algorithm can at most compute the
ambiguity group Ω(SD ∧ α).

In the following conjecture we assume that ω⋆ is a
minimal-cardinality diagnosis, i.e., the faults in ω⋆ do
not mask.

Hypothesis 1. Given a system description SD, an
observation α, and a truly injected fault ω⋆, a diag-
nostic algorithm can maximize Mutl by computing

Ω≤(SD ∧ α) and assigning equal weights to all diag-

noses in Ω≤(SD ∧ α).

The intuition behind Hypothesis 1 is the following. An
optimal diagnostic algorithm would compute an ambi-
guity group of minimal size, such that one of the diag-
noses in the ambiguity group is the truly injected fault.
It would then spread the weight amongst the diagnoses
in this ambiguity group. A diagnosis of non-minimal-
cardinality is clearly not the injected fault ω⋆, hence
adding it to the ambiguity group would be suboptimal.

In the previous sections we have shown that the am-
biguity groups computed by SAFARI are highly likely
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to contain diagnoses of small cardinality, hence scor-
ing high on Mutl. In what follows we will further sup-
port this claim with empirical results.

6 EXPERIMENTAL RESULTS

The DXC’09 synthetic track consists of the bench-
mark models of ISCAS85 circuits (Brglez and Fuji-
wara, 1985). These circuits are combinational, i.e.,
they contain no flip-flops or other memory elements.
Note that the high-level structure of the ISCAS85 cir-
cuits, which can be beneficial to MBD analysis, has
been flattened out. A reverse engineering effort had
resulted in high-level Verilog models (Hansen et al.,
1999). Table 3 summarizes the circuits used in the syn-
thetic DXC’09 track. In Table 3, |IN| and |OUT| de-
note the number of inputs and outputs respectively (at
present SAFARI does not use input/output information
for increasing the inference speed).

The size of the circuits in Table 3 can be reduced by
using cones (Siddiqi and Huang, 2007) for computing
single-component ambiguity groups (Kurtoglu et al.,
2009). To eliminate the need of expanding diagnoses
containing faulty components inside cones, we have
used the original (non-reduced) circuits.

Name |IN| |OUT| |COMPS| V C

74182 9 5 19 47 75

74L85 11 3 33 77 118
74283 9 5 36 81 122
74181 14 8 65 144 228

c432 36 7 160 356 1 028
c499 41 32 202 445 1 428
c880 60 26 383 826 2 224
c1355 41 32 546 1 133 3 220
c1908 33 25 880 1 793 4 756
c2670 233 140 1 193 2 695 6 538
c3540 50 22 1 669 3 388 9 216
c5315 178 123 2 307 4 792 13 386
c6288 32 32 2 416 4 864 14 432
c7552 207 108 3 512 7 232 19 312

Table 3: ISCAS85 models (V and C denote the total
number of variables and the number of clauses respec-
tively)

We have configured SAFARI with M = |COMPS|
and N = 10. The value of N we have computed em-
pirically. Increasing N to 20 or decreasing it showed
no significant change in the metric results. We have
also switched DPLL checking off, relying exclusively
on BCP for the consistency checking of the candidate
diagnoses. As a result of the BCP incompleteness, SA-
FARI produces inconsistent candidates, but this is rare
(we have estimated less than 20% such candidates) and
the overall effect on the metrics is positive.

6.1 Computing Multiple Minimal Diagnoses

We next show the results of some non-DXC’09 exper-
iments supporting the claims made in Sec. 4. For that,
we have first chosen 100 observations per circuit for

which we could compute |Ω≤(SD ∧ α)| with a deter-
ministic algorithm like CDA∗ or HA∗ (mostly obser-

vations leading to single or double faults). We have
then configured SAFARI with M = |COMPS| and

N = 10|Ω≤(SD ∧ α)|. Finally, from the diagnoses
computed by SAFARI we have filtered the minimal-
cardinality ones. The results are summarized in Ta-
ble 4.

Name |Ω≤| Mc Mf

74182 1− 25 100 0

74L85 1− 78 99.2 2
74283 1− 48 97.9 3
74181 1− 133 97.4 1

c432 1− 99 94.2 7.14
c499 1− 22 78.5 1.51
c880 2− 646 99.9 0
c1355 5− 2 770 79.4 1.02
c1908 2− 1 447 96.6 2.61
c2670 1− 76 100 2.34
c3540 1− 384 81.5 8.52
c5315 1− 235 97.7 1.74
c6288 1− 154 100 13.1
c7552 1− 490 93.1 2.17

Table 4: % of all minimal-cardinality diagnoses com-
puted by SAFARI

The data in Table 4 are to be interpreted as follows.

The columns marked with |Ω≤| show the minimal
and maximal number of minimal-cardinality diagnoses
per model as computed by a deterministic algorithm.
The columns Mc show the percentage of minimal-
cardinality diagnoses returned by SAFARI (from all
minimal-cardinality diagnoses) for those α for which

|Ω≤(SD ∧ α)| > 1. The columns Mf show the per-
centage of observations for which SAFARI could not
compute any minimal-cardinality diagnosis.

The results shown in Table 4 show that even for
moderate values of N (N ≤ 27 770), SAFARI was
capable of computing a significant portion of all min-
imal-cardinality diagnoses. This portion varies from
78.5% to 100% for weak-fault models and from 78%
to 100% for strong-fault models. The percentage of
cases in which SAFARI could not reach a minimal-car-
dinality diagnosis is limited (smaller than 13.55%) and
is mainly in the cases in which there exists only one
single-fault diagnosis. Note that even in the cases in
which SAFARI cannot compute any minimal-cardinal-
ity diagnoses, the result of SAFARI can be useful. For
example, a subset-minimal diagnosis of small cardi-
nality differing in one or two literals only, still brings
useful diagnostic information (a discussion on diag-
nostic metrics is beyond the scope of this paper).

6.2 Comparison to Other MBD Algorithms

Despite that Mia is not appropriate for the synthetic
track, we have computed it, and the results are shown
in Table 5 (cf. discussion in Sec. 5). Note that Mutl

is computed for each scenario. The “per system” met-
rics MUTL, MCPU, and MMEM are MUTL, Mcpu, and
Mmem (respectively), averaged over all scenarios of a
system.
Table 5 shows the results of all metrics for SAFARI as
well as the number of scenarios for each circuit and the
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LYDIA NGDE RODON

Name |COMPS| MCPU MMEM MUTL MCPU MMEM MUTL MCPU MMEM MUTL

74182 19 51 154 0.418 6 335 11 540 0.4831 3 043 19 773 0.4153
74L85 33 68 223 0.3772 6 365 11 784 0.4454 3 888 20 979 0.3338
74283 36 60 229 0.2653 6 385 12 231 0.2665 5 351 20 637 0.2119
74181 65 64 401 0.2772 6 619 14 625 0.3337 12 527 25 432 0.2626

c432 160 115 878 0.2355 7 520 17 868 0.3789 22 621 36 811 0.2484
c499 202 130 1 094 0.1069 20 347 32 649 0.1248 23 504 39 872 0.0443
c880 383 203 1 945 0.0946 13 718 28 622 0.1016 20 347 43 687 0.0526
c1355 546 296 2 759 0.1059 22 550 37 930 0.0808 23 253 33 530 0.0470
c1908 880 538 4 134 0.0962 26 171 39 843 0.0709 27 718 38 557 0.0560
c2670 1 193 937 5 867 0.1860 20 537 61 722 0.2715 35 680 43 063 0.1281
c3540 1 669 1 674 7 900 0.1608 27 022 82 045 0.1346 − − −
c5315 2 307 3 091 11 316 0.0862 30 926 93 116 0.1443 − − −
c6288 2 416 3 530 12 037 0.2499 17 483 102 420 0.2916 − − −
c7552 3 512 11 817 16 679 0.1492 37 989 125 910 0.1523 − − −

Averaged − 1 613 4 687 0.2006 17 855 48 022 0.2343 12 709 23 024 0.0311

Table 6: DXC’09 results.

Name Mia # of Mia per
total scenarios scenario

74182 145.6 50 2.9
74L85 73.6 28 2.6
74283 107.3 30 3.6
74181 258.9 54 4.8

c432 253.4 45 5.6
c499 2 326.4 141 16.5
c880 3 897.8 198 19.7
c1355 1 551.7 98 15.8
c1908 2 302.8 127 18.1
c2670 2 419.8 168 14.4
c3540 373.3 36 10.4
c5315 7 658.6 248 30.9
c6288 2 1 2
c7552 3 103 176 17.6

Table 5: Isolation accuracy of SAFARI (metrics not
used in DXC’09).

number of classification errors per scenario. It can be
seen that Mia depends on the number of diagnoses SA-
FARI produces and the latter depends on the parameter
N in Alg. 1.

Table 6 shows a comparison of SAFARI to the two
other DXC’09 synthetic track algorithms: NGDE (de
Kleer, 2009) and RODON (Bunus et al., 2009). It
can be seen that SAFARI achieved better MCPU and
MMEM than NGDE and RODON. MUTL of SAFARI

was worse than that of NGDE. It should be noted that
RODON could not compute any results for the four
largest ISCAS85 circuits due to a time limitation in
DXC’09 (we believe that this can be easily overcome
in subsequent competitions). Hence, the three algo-
rithms (SAFARI, NGDE, and RODON) showed very
similar results in the utility metrics.

7 CONCLUSION

In this paper we have discussed the properties of SA-
FARI in computing multiple minimal diagnoses. We
have seen that SAFARI computes diagnoses of small
cardinality with probability which is negatively expo-
nential to the cardinality of the diagnoses. As a result,
the set of diagnoses returned by SAFARI can be used
instead the set of all minimal-cardinality diagnoses of
a diagnosis system and an observation. Computing
the set of all minimal-cardinality diagnoses is a policy
which has been chosen by all synthetic track DXC’09
algorithms for maximizing the utility metric (the ex-
pected cost of repair).

To summarize the experimental results, SAFARI has
achieved good performance on the isolation accuracy
metrics while keeping the memory and CPU require-
ments very low. The low CPU and memory require-
ment is not a surprise considering the stochastic nature
of SAFARI. Our results show that computing multiple-
fault diagnoses close to the actually injected faults is
practical with a cheap and simple stochastic algorithm.

As future work we would like to investigate the
use of SAFARI for computing cardinality distributions
while learning the termination criterion (cf. Sec. 4) in-
stead of specifying the parameter N . This would give
us a very efficient algorithm for counting the number
of minimal-cardinality diagnoses, and (after extending
the SAFARI framework to handle probabilities) esti-
mating the entropy of the health space, the latter a key
component in testing or probing algorithms.
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