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ABSTRACT 

Tool failure may result in losses in surface finish 
and dimensional accuracy of a finished part, or 
possible damage to the work piece and machine. 
This paper presents a Fuzzy Neural Network 
(FNN) which is designed and developed for 
machinery prognostic monitoring. The FNN is 
basically a multi-layered fuzzy-rule-based neural 
network which integrates a fuzzy logic inference 
into a neural network structure. The fuzzy rules 
help to speed up the learning process of the 
complex conventional neural network structure and 
improve the accuracy in prediction and rate of 
convergence. A case study for prediction of tool 
life in a dry milling operation is presented to 
demonstrate the viability of the proposed FNN for 
tool condition monitoring. A comparison was made 
in the case study on prediction performances of 
different models established with the same set of 
experimental data. It is shown that the FNN is 
superior to conventional Multi-Regression Models 
(MRM), Backpropagation Neural Networks 
(BPNN) and Radial Basis Function Networks 
(RBFN) in term of prediction accuracy and BPNN 
in learning speed.* 

Key Words: Fuzzy neural networks, tool condition 
monitoring, tool wear estimation, milling machining.  
 

1. INTRODUCTION 

In metal cutting processes, tool condition monitoring 
(TCM) can play an important role in maintaining the quality 
of surface finishing. Monitoring of tool wear to prevent 
surface damage is one of the difficult tasks in the context of 
TCM (Sick, 2002). Currently, a general common approach 

                                                           
* This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author 
and source are credited. 
 
 

is to measure several process parameters that are indirectly 
correlated to the tool performance, such as cutting force, 
tool vibration and acoustics emissions, transform the 
measured data into useful reference models for condition 
and performance monitoring. Numerous condition 
monitoring methodologies have been proposed and 
evaluated during the past two decades. Among them, 
Yamaguchi [Yamaguchi et al., 2007] investigated the 
cutting force and acoustic emission (AE) signals to gauge 
tool life of diamond cutting tool; Vallejo Jr (Vallejo Jr et al., 
2005) presented online monitoring of the cutting tool 
condition based on Hidden Markov Models. 

Fuzzy-logic, neural-network and their combinations 
like Fuzzy-Nets (FN) are widely used in modeling and 
prediction in precision engineering. Haber (Haber et al., 
2003) applied intelligent process supervision for predicting 
tool wear in machining processes; and Li et al (Li et al., 
1996) applied the adaptive neuro-fuzzy inference system 
(ANFIS) (Er et al., 2003) and wavelet transforms to tool 
condition monitoring. Similar cases are also discussed by 
(Sick, 2002). A fuzzy-neuro adaptive surface roughness 
control is proposed for the prediction of the surface 
roughness and adaptive feed-rate control (Yang et al., 2006). 
A hybrid Taguchi-genetic learning algorithm is used to set 
up a nonlinear model to correlate the surface roughness 
values with distinct spindle-speed, feed-rate and depth-of-
cut (Ho et al., 2009). It is shown that Gaussian membership 
functions are suitable choices for fuzzy layer of the network 
for predicting the surface-roughness in (Ho et al., 2009; 
Aliustaoglu et al., 2009; Lo et al., 2003).  

Although fuzzy neural networks are widely used in 
modeling and prediction in milling machining processes, 
even the most promising methods are not easily adoptable 
in real industrial operations (Huang et al., 2000; Wang et al., 
2001; Dong et al., 2004), particularly due to insufficient 
generalisation capabilities (e.g. the use is restricted to a 
specific machine tool, only a small range of cutting 
conditions is allowed, or time-consuming ‘teach-in’ cycles 
are needed) or lack of precision.. As such, very limited 
effort has been reported on the development of a generic 
toolkit that provides reference models for on-line tool 
condition monitoring and remain useful life prediction.  It is 
therefore desirable to develop an intelligent predictive 
monitoring system (IPMS) (Zhou et al., 2005) (Li et al., 
2006) with capabilities in feature extraction, feature 
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selection, correlation modelling, and data clustering for tool 
condition monitoring, non-destructive characterization and 
tool life span prediction.  This paper focuses on an approach 
using fuzzy neural network (FNN) to establish tool wear 
reference models for prediction of tool life span in dry 
milling operation. Experimental study is carried out to 
establish reference models for predicting wear of a 6mm 
ball-nose two flutes tungsten carbide milling cutters in a 
milling operation, using the proposed FNN technique. The 
developed FNN models are benchmarked with the Multi-
Regression Models (MRM), Backpropagation Neural 
Networks (BPNN) and Radial Basis Functional Networks 
(RBFN) using the same set of experimental data.  

 
2. THE FNN ARCHITECTURE 

 Figure 1 shows the architecture of the FNN, which is 
basically a five-layer fuzzy-rule-based neural network. In 
accordance with the common neural network notation, a 
node in any layer n of the network has its input termed net-
inn or simply netn. The node performs a certain operation on 
the input and generates an output which is a function of its 
input, i.e. output  f(net-inn) or f(netn).  
 
Layer 1: The nodes in this layer transmit input values uk  

to next layer directly as ukq,  where uk  = ukq . 
That is, 

            
     net k

1  = uk  ;   f( net k
1 ) = net k

1  = ukq (1) 
     where  k = 1, 2, ... , p and   q = 1, 2, ..., n 
 
Layer 2: The nodes in layer 2 are the input membership 

functions. They work as a fuzzifier transforming 
a numerical input into a fuzzy set. The 
membership functions are normal distributions 
with a range between 0 and 1 (inclusive 1), 
governed by 
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    where  i = 1, 2, ..., h 

 
where mkq and σkq are the mean and variance of 
the input membership function, respectively. 

 
Layer 3: The nodes perform a fuzzy min-max operation 

on the node inputs, i.e. a fuzzy AND operation 
followed by a fuzzy OR operation. We have 

 
     net min u wi

3
qi qi= ⋅{ }    and     

     f( neti
3 ) = neti

3  = uij ,        where  i = 1, 2, ..., h 

    u max net net netcj 1
3

2
3

h
3= ( , , ... , )   (3) 

     where j = 1, 2, ..., m  and  c ∈ {1, 2,...., h}  

 
Here the link weight wqi is unity. The node c is 
termed the winner node of the fuzzy min-max 
operation.   
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Fig. 1: The architecture of FNN 

 
Layer 4:   The links in this layer represent the dampened 

outputs of the winner node. We have 
           
      net u rj

4
cj cj= ⋅     and   f net net uj

4
j
4

j( ) = =  (4) 

    where i = c and  j = 1, 2, ..., m   
   

The dampening coefficients are the rule values 
rijs. The initial rule values are either random 
values or assigned directly by an expert. They 
can also be established outside the network from 
historical data and then incorporated into the 
network. The rule values are subsequently fine-
tuned during learning. 
 

Layer 5:   This layer performs defuzzification of outputs. 
The defuzzification method used is the centre of 
gravity method (Kosko 1992), which uses the 
centroid of the membership function as the 
representative value. Thus if mj and σj are the 
mean and the variance of the output membership 
function respectively, then the defuzzified 
outputs are given by eq. 5 as follows: 

          f net
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the link weight,  j =1,2 , ......,m. 
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3. LEARNING ALGORITHMS 
 
3.1. Self Learning Algorithm 
 
The Kohonen’s Self-Organized Maps (SOM) algorithm 
(Kohonen, 1988) is used here to define the number of 
membership functions and their respective means and 
variances. For a given set of data X = (x1, x2, …, xn), initial 
mean values m1, m2, …, mk are assigned arbitrarily, where  
 

min (x1, x2, …, xn) < mi < max (x1, x2, …, xn) 
      
The data are then grouped around the initial means 
according to:  
 
| xj-mc | = min

i
{ | xj - mi | }  1 ≤ i ≤ k   and  1≤ j ≤ n   [6] 

 
where mc is the mean to which the datum xj belongs. The 
data grouping and the mean values are optimised by the 
following iterative process:  

Let xj(t) be an input and mc(t) the value of mc  at 
iteration t (t = 0,1,2,…), then  

 
 
mc(t+1) =  mc(t) + α(t)[ xj(t) - mc(t)]     [7] 

if  xj belongs to the group of mc, and  
 

mc(t+1) =  mc(t)     [8] 
if xj does not belong to the group of mc 

 
α(t) [0<α(t)<1] is a monotonically decreasing scalar 
learning rate. The iterations stop at either after a certain 
number of cycles decided by the user or when the condition 
|mc(t+1)-mc(t)| ≤ δ is satisfied, where δ is an error limit 
assigned by the user. The variances of membership 
functions can be determined by eq. (9) below: 
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where σ i is ith variance of membership function, mi  ith 
mean of membership function, xj  jth observed data sample, 
k  total number of membership function nodes, pi  total 
number of data samples in ith membership function group, 
and R  overlap parameter. 

For a given input or output variable, the number of 
initial mean values (m1, m2, …, mk) is assigned by trials and 
errors. This involves striking a balance between learning 
time and accuracy. Too small a number results in an 
oversimplified structure and might therefore adversely 
affect accuracy. On the other hand, too large a number 
increases network complexity unnecessarily, resulting in a 
considerable increase in learning time with very little or no 
increase in accuracy.  
 
 

3.2. Supervised Learning Algorithm 
 
A supervised learning algorithm has been developed. The 
objective of the supervised learning is to minimize the error 
function E as defined in eq. 10 below by means of a 
learning algorithm. 

 E y t y t= −
∧1

2
[ ( ) ( )]2    (10) 

where y(t) is the actual output, and y t
∧

( ) the predicted 
output.  

In FNN, the learning algorithm used is derived from the 
back-propagation algorithm of (Rumelhart et al., 1986). 
Thus if η is the assigned learning rate, the rule value rij are 
fine-tuned as follows: 
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From eqs. (4) and (5), we have 
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==== , the net-in to the node of 

layer 4, uk  is value of input in the 1st layer, k = 1,2,...,K, 
mkq  is mean of input membership function in the 2nd layer, 

σ kq   is variance of input membership function in the 2nd              

layer, η  is learning rate, r
ij

is rule value or damping 

coefficient, Y ta ( ) is actual output, Y tp ( )  is predicted 

output, m j  is mean of output membership function in the 
5th           layer, σ j is variance of output membership 
function in the 5th layer and u j is net-input to the node at the 
5th layer. 

The learning process is iterated until an acceptable 
minimum error between actual output Ya and predicted 
output Yp is achieved. 
 

4. EXPERIMENTAL  

4.1. Experiment Set-up and Data Acquisition 

A high speed CNC machine (Röders Tech RFM760) with 
spindle speed up to 42,000 rpm was selected for the 
experiment. The workpiece material used in the machining 
test was stainless steel (HRC52). The workpieces were cut 
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off from original stock and their surfaces were prepared 
through face milling to get rid of the original skin layer 
containing hard particles. The surface was then machined to 
have a slope with 60˚ to accommodate the 2-flute ball nose 
cutter. A Kistler quartz 3-component platform dynamometer 
was mounted between the workpiece and machining table to 
measure the cutting forces in the form of charges, and 
converted to voltages by the Kistler charge amplifier. Three 
Kistler piezo accelerometers were mounted on the 
workpiece to measure the machine tool vibrations of cutting 
process in X, Y, Z direction respectively. A Kistler acoustic 
emission (AE) sensor was mounted on the workpiece to 
monitor the high frequency stress wave generated by the 
cutting process.  

The outputs of these sensors were conditioned through 
corresponding signal conditioning accessories such as 
charge amplifiers or couplers. The voltage signals were 
captured by a NI DAQ PCI 1200 board with 12KHz 
frequency. The DAQ board generates 16-bit digitized data 
and directly streamed to a hard disk of an Intel Core 2 Quad 
2.66GHz based industrial PC with 8GB RAM.  

 Eight channels of signals (force_x, force_y, force_z, 
acce_x, acce_y, acce_z, AE_RMS, AE) were captured by 
the DAQ card with an accumulated sampling rate of 

kHzkHz 96812 =× . Fig. 2 illustrates the experimental 
setup.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure. 2: Tool Conditions monitoring in high speed milling 
process 

 
The machining tests were carried out in down milling 

operation with cutting speeds 4.7m/min and spindle speed 
23,600 rpm. The workpiece length in the feed direction L 
was 108 mm. After one horizontal cutting line along the y-
axis direction (1st), the cutter then retracted to another start 
with a cutting depth of 0.2 mm in z-axis (2nd) direction.  

In each experiment, the cutter was used to cut the 
workpiece slope in succession to machine a complete slope 
surface. The total length of cut for one surface (i.e. 252 
passes) was mmmm  27216252108 =× . The cutter’s flank 

wear was measured after a complete 27,216mm cutting 
distance using a LEICA MZ12 microscopy system.  
The National Instruments LabVIEW 8.2 is chosen to create 
a user-friendly graphical user interface (GUI). A GUI was 
designed to show real-time signals acquired from the 8-
channels. With the final GUI, users can observe the signal 
changes through the continuous graphical displays of the 
entire milling operation and can select various levels of 
response when registering anomalies or impending failure.  
 

4.2. Feature Extraction  

The tool wear estimation is mainly based on the force 
features in this work as the cutting force is highly sensitive 
to tool wear and can be measured with fairly good accuracy 
(Altintas et al., 1989). The first step is to filter out the noise 
and remove non-cutting signals using a joint time-frequency 
distribution algorithm (Li et al., 2007). Then sixteen main 
features were identified and captured from the force signals 
using statistical methods (Zeng et al., 2006), as summarized 
in Table 1.  

 
Table 1: Extraction features from force signals 

No Feature Notation Objective 
1 Residual Error re TBD 

2 First Order Differencing fod TWD 

3 Second Order Differencing sod TWD 

4 Maximum Force Level fm TWD 

5 Total Amplitude of Cutting 
Force fa TWD 

6 Combined Incremental 
Force Changes df TWD 

7 Amplitude Ratio ra TWD 

8 
Standard Deviation of the 
Force Components in Tool 
Breakage Zone 

fstd 
TBD 

9 Sum of the Squares of 
Residual Errors sre TBD 

10 Peak Rate of Cutting Forces kpr TBD 

11 Total Harmonic Power thp TWD 

12 Average Force Fa TBD, TWD, 
TWE 

13 Variable Force vf TBD 

14 Standard Deviation std TWD 

15 Skew skew TWD 

16 Kurtosis kts TWD 

* TBD: Tool Breakage Detection; TWD: Tool Wear 
Detection; TWE: Tool Wear Estimation. 

4.3. Feature Selection through Genetic Algorithms  

Although all of the 16 features listed in Table 1 are 
statistically significant, it has been observed that, beyond a 
certain point, involvement of all the features leads to an 
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unsatisfactory calculation performance in establish 
correlation models. Therefore, selection of most relevant 
feature subset is necessary for rapid establishment of 
desired correlation models with acceptable computing 
performance. The Genetic Algorithms (Beasley et al., 
1993) is used for feature subset selection since they are 
generally effective for rapid global search of large, non-
linear and poorly understood spaces.   

The basic concept of GAs are designed to simulate 
processes in natural system necessary for evolution, 
specifically those that follow the principles first laid down 
by Charles Darwin of survival of the fittest. As such they 
represent an intelligent exploitation of a random search 
within a defined search space to solve a problem. The 
fundamental mechanisms of the GAs are derived from the 
evolutionary process include selection, crossover and 
mutation within chromosomes.  Selection occurs on the 
current population by choosing the highly fit individuals 
to reproduce. The selected individuals reproduce new 
individuals as offspring by crossover with other 
individuals in the population. Mutation may happen in the 
reproduction. In this way, over many generations, good 
characteristics spread in the population, mixing and 
exchanging with other good characteristics as they go. 
GAs are computer programs that create an environment 
where populations of data compete and only the fittest 
survive. 

According to Darwin's theory of evolution the best ones 
survive to create new offspring (children). There are many 
methods in selecting the best chromosomes. In this work, 
we choose roulette wheel selection (Obitko, 1998) to 
evaluate how “good” a feature and the level of association 
of that feature with the measured tool wear values. 

The major design components of the GA system used 
in this work include the initialisation process, the crossover 
method, mutation method, roulette wheel selection and an 
objective fitness function. The input parameters, their 
representation and the optimum values used are summarized 
in Table 2. 

 
Table 2: GA parameter setting  

Parameter Representation Value 
Population Size The size of the population for every 

generation 
20 

Crossover points The number of crossover points to be 
defined when performing crossover 

1 

Crossover rate The chance of crossover being applied 
to a chromosome 

0.7 

Mutation rate The chance of a chromosome being 
mutated 

0.001 

Confidence level A limiting value on the required 
association r value. 

0.9 

Maximum 
Number of 
generation 

The maximum number of generations 
the GA is allowed to evolve to. Also 
the terminating condition of the 
algorithm. 

200 

Number of test 
sets 

The amount of data sets used for the 
calculation of r. 

2000 

  
In the feature subset selection system, a fitness function is 
used to evaluate how “good” a feature and the level of 

association of that feature with the tool wear. Pearson 
Correlation Coefficient (PCC) is adopted to give a score to 
each data set. PCC is a statistical measure of 
interdependence of two or more random variables. The PCC 
correlation coefficient is defined as r 
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where Sxy is the standard deviation of YX • , and Sx and Sy 

refers to the standard deviation of X and Y respectively. In 
our case, x represents the signal feature data and y represent 
the corresponding tool wear data.  

As the magnitude of r is needed for scoring of a 
particular bit of the chromosome, and its value can be 
negative, the absolute of r is returned as the score of that 
feature. To filter out low r value as zero association, a 
confidence level (set at 0.90) is introduced so that only r 
values above the confidence level are considered in the total 
score. Therefore, set bits that have a score less than the 
confidence level is given a score of 0, and the bit is reset to 
0. In this way, the results only consist of selected features 
whose r values are higher than the confidence level.  

 
There are three steps to implement a (GA): 
(1) Randomly generate  a initial population with 20 
 chromosomes represented with binary encoding. Each 

chromosome consists of 16 binary bits, corresponding 
to the number of features extracted from the 
experimental data, as shown Table 3. 0 means that 
feature is ignored while 1 the feature survives and is 
relevant. 

Table 3: Initial population  

Chromosome 1 1011001011001010 

…… …… 

Chromosome 20 1111111000001100 

(2) Create new population by repeating the following steps 
until 200 populations are generated:: 
a. Merge the chromosomes in the initial population 

with the following rule to generate a new 
chromosome:  if a feature bit in any of the 20 
chromosomes has a value of 1, the corresponding 
feature bit in the new chromosome is 1, otherwise 
0.   

b. Randomly select 2000 sets of feature data together 
with their corresponding interpolated tool wear 
data from the available 52,800 data sets and 
calculate the fitness r for each feature in the new 
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chromosome if the corresponding bit is 1.  
c. Put those features with bit 1 into a roulette wheel 

which is set up with partition area proportional to 
the value of the fitness r values. Spin the wheel for 
to generate two ‘parents’ consisting also 16 bits, 
spinning 20 times (same as the number of the 
chromosomes) for each parent. A winner feature in 
any spinning will result in a bit 1 while the failed 
ones with 0.  

d. Crossover to produce ‘offspring’ chromosomes -  2 
new offspring (children) chromosomes are formed 
by a crossover method from the two parents as 
shown Table 4. 

 
Table 4: Cross over example  

Chromosome 1 11011 || 00100110110 

Chromosome 2 11011 || 11000011110 

Offspring 1 11011 || 11000011110 

Offspring 2 11011 || 00100110110 

e. Mutation - switch a few randomly chosen bits from 
1 to 0 or from 0 to1. Mutation is intended to 
prevent falling of all solutions in the population 
into a local optimum. 

f. Repeat steps c and d until 20 new offspring 
chromosomes are generated. Take the new 
offspring chromosomes as a new population. 

(3) Select the features according to their fitness values in 
the 200th population. The features are selected if their r 
values are above the confidence level. 

 
Repeat steps (1) to (3) for 50 times for repeatability test. 
The feature selection results are shown in Table 5.  

Table 5: Experiment result  

 Data Set (50 runs) 

 Test No 
1 

Test No 
2 

Test No 
3 

Test No 
4 

re     
fod     
sod     
fm 49 47 47 44 
fa 50 48 47 47 
df     
ra     

fstd     
sre     
kpr     
thp     
Fa 49 48 48 47 
vf     
std 47 49 49 40 

skew    48 

 
 
 
 
 
 
 
 

Features 

kts    47 
 

To give an example for understand the meaning of the 
result, feature “fm” has been selected for 49 times in the 50 
runs in the first experiment, 47, 47 and 44 for another three 
experiments. It is obvious that “fm” is significant for the 
tool wear. According to the results shown in Table 5, four 
features, { fm, fa, Fa, std }, have the most significant 
influence to generate correlation models between tool wear 
and the features with fairly good accuracy (Zhou et al., 
2006).  
 

4.4. Self Learning, Rule Generation and Modelling 

The selected feature data and measured tool wear are then 
stored into the database. A total of 52,800 sets of feature 
data were generated from raw signals, acquisited from about 
490 m of cutting by the cutter in its entire life, matched with 
the interpolated tool wear data, half of which are used for 
rule training and the remaining for testing. The data samples 
were normalised to the range of {0,1} for further uses.  

The FNN establishment starts from feeding the training 
data sets, one at a time, to the network from layer 1 as 
represented by eq. (1). the input data are fuzzified in layer 2 
according to eq. (2).  The FNN then goes to its self learning 
of fuzzy membership parameters (mean and variance) with 
SOM (eqs. 6, 7 and 8). Fig. 3 shows the membership 
distributions of X1 before and after the self-learning. The x-
axis represents the normalization of the selected feature. 
With the adjusted means and variances, the data sets were 
then clustered according to its similarity.  

 

 
 

Figure 3:  Before-after self-learned fuzzy membership 
distributions 

 
The number of membership function nodes at the 2nd 

and 4th layer were determined through a trial-and-error 
procedure. Up to more than 10 combinations of node 
numbers in the two layers are selected manually and run 
through the system. The system will determine the best 
membership nodes combination according to final 
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performance results. In this case study, there were 10 nodes 
(very low, low, …medium, …high, very high) for x1, 12 
nodes for x2, 8 nodes for x3 and 12 nodes for x4 .   

After the membership functions have been constructed, 
the next stage is to identify the fuzzy rules at the 3rd layer as 
represented by eq. (3). The identification process starts with 
a fully-connected neural network structure. The total 
number of initial rules is determined by 
T x T x T x T xk p( ) ( ) ( ) ... ( )1 2⋅ ⋅ ⋅ ⋅ ⋅...  where T(xk) is the number 

of membership functions of the kth input variable (Li et al., 
1999). Therefore, the maximum number of possible fuzzy 
rules in the present case was 10×12×8×12 =11,520. 
However, many rules may not correspond to any real 
situation. To save data storage space and speed up the 
calculation operation, we only store those rules where the 
training data have been gone through the “winner” Node c 
as shown in Figure 4. The Node c is identified as a winner 
rule node of the fuzzy min-max operation in layer 3 and the 
relevant nodes in layer 2. In this case study, only 83 rules 
are real which have been trained and retained to represent 
the effective data clusters.  
 

Table 6: Examples of the learned fuzzy rules 

Rule # 
No of 

training 
data 

No of 
testing 
data 

  
Rule # 

No of 
training 

data 

No of 
testing 
data 

1 24152 24152   2275 13 13 
11 65 67   3332 20 23 
12 15 14   3333 78 76 
13 12 11   3334 71 72 
21 42 46   3343 145 145 
24 17 16   3344 26 24 
31 101 99   3345 27 27 

131 21 24   3353 31 28 
1111 61 61   3354 87 90 
1121 55 54   3355 13 15 
1124 57 58   3364 70 73 
1131 72 66   3365 25 27 
1132 80 81   3366 16 14 

 
 
 
 
 
 
 
 
 
 
 

 
Figure. 4: Example of fuzzy rule generation and clustering 

process 
 

Table 6 gives examples of the learned fuzzy rules. The 
rules here play the function of data clustering. Each rule 
captures similar data patterns. For example, Rule #11 holds 
65 training data sets which have the same patterns like {if 
x1 is high, x2 low, x3 medium, x4 high, then y medium}. 

The rule identification and clustering process are illustrated 
A fuzzy OR operation is performed at layer 4 according to 
eq.(4). The output is defuzzified at layer 5 as shown by eq. 
(5).  

Once the clustering and rule generation are completed, 
the FNN continues on correlation modeling with supervised 
leaning algorithm as shown in eq. (13) to fine tune the rule 
values till mean squared error reaches an accepted level. 

 

4.5. Prediction of Tool Wear and Retraining 

After the FNN has been trained, the test data were fed to it 
to obtain the forecasted values Ft. For a given new input 
data set, if the fuzzy rule generated does not match any of 
the existing rules, the system will choose as replacement a 
rule that is closest to the rule generated, and will proceed to 
prediction as usual. This will unavoidably introduce errors 
into the prediction result. It is therefore important that a 
sufficiently large pool of data samples be used during the 
training step to ensure that the trained rules are 
comperhensive. In general, the more the FNN is retrained, 
the more accurate it will be. The FNN can be retrained 
whenever new data become available. Retraining involves 
repeating stages 3.1 to 3.2 (see Section 3) to reconstruct 
membership functions, identify new fuzzy rules, if any, and 
update rule values.  

In this case study, the prediction accuracy is gauged 
with three commonly used measures, namely Mean  
Squared Error (MSE), Mean Absolute Percentage Error  
(MAPE) and R-squared Values (R2) (Damodar et al., 1995). 
The error measures for the 28,240 sets of test data were 
found to be: MSE = 1.743 x 10-5, MAPE = 0.01 and R2 = 
0.9957 as shown in Table 7. 

Through the FNN clustering, modelling and prediction 
test, it was noted that the amount of training time required 
was dependent on the number of fuzzy membership nodes 
assigned to each of the features. Therefore, for higher level 
of accuracy more membership items are required which will 
inevitably slow down the learning speed. However, the 
number of fuzzy membership items to be defined is not 
linear to the accuracy achieved. In other words, high 
accuracy is not guaranteed when more fuzzy membership 
items are defined. As such, auto-defining and optimizing 
the number of fuzzy membership items are still an unsolved 
problem.  

 
Table 7: Prediction Performance of FNN 

Error Measures FNN 
MSE 1.743 x 10-5 
MAPE 0.010 

2R  0.9957 

 

4.6. Comparison with MRM, BPNN and RBFN 

The same data sets were used for tool wear prediction with 
BPNN and RBFN and conventional MRM. Table 8 
summarizes the parametric set-ups and training 
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performance of the FNN, BPNN and RBFN. The BPNN 
model used comprises of 4 layers: 1 input layer, 2 hidden 
layers and 1 output layer while the RBFN model has 3 
layers: 1 input, 1 prototype and 1 output layer. The learning 
rules and transfer functions used for the BPNN are Delta 
and Sigmoid, respectively while the corresponding items for 
RBFN are Norm-Cum-Delta and Gaussian.  
 

Table 8: Parametric set-ups and training performance of FNN, 
BPNN and RBFN 

Parameters FNN BPNN RBFN 
Learning Rates 0.5 0.5 0.5 

Momentum - 0.4 0.4 

Learning Rules SOM Delta Norm-
Cum-Delta 

Transfer 
Function 

Gaussian Sigmoid Gaussian 

Number of 
Layers 

5 4 3 

Number of 
Nodes each layer 

4, 42, 
83,83,1 

4, 5, 5, 1 4, 50, 1 

Number of 
samples 28,400 28,400 10,000 

MSE 1.74 x 10-5 1.34×10-3 4.43×10-2 

 
 
Table 9 compares the prediction performance and training 
time used for FNN, MRM, BPNN, RBFN methods.  The 
FNN has the best performance with the smallest MSE and 
MAPE and comparable R2. The RBFN has the worst 
performance as compared to the rest of the experiment 
results even it is shortest training time. 

 
Table 9: Prediction performances of MRM, BPNN, RBFN 

and FNN 

Error 
Measures MRM BPNN RBFN FNN 

MSE 2.08 x 
10-3 1.34×10-3 4.43×10-2 1.74 x 

10-5 
MAPE 0.0934 0.06458 0.34053 0.010 

R2 0.9757 0.9836 0.5793 0.9957 
Training 

Time(hrs.) - 12 - 3 

 
The established FNN reference model has been tested with 
data from experiments with another three 6mm ball nose 
cutters under the same condition to evaluate its repeatability 
and the results are shown in Table 10. The results show that 
the FNN model established through the test outcome with 
one particular cutter exhibited quite good repeatability on 
the data generated with other three cutters. The predicted 
tool wear values were over 90% of their real values. Table 6 
compares also the prediction performance of FNN and 

MRM methods. It can be seen that FNN performance is 
better than MRM.  

Table 10: Applicability of the FNN model to data generated 
from different cutters under the same machining conditions 
and comparison of its prediction performance with FNN 
and MRM methods 

Test Results using Fuzzy Neural Networks 
Cutters G15N7 G14N8 G12N9 
MSE 0.00013221 9.57948E-05 0.000560187 
MAPE  0.243240049 0.200309348 0.318237011 
R2 0.9541 0.9145 0.9071 

Test Results using Multiple Regression Models 
Cutters G15N7 G14N8 G12N9 
MSE 0.000438 4.07E-05 0.001299 
MAPE  0.693563 0.789606 1.237696 
R2 0.8476 0.7597 0.4206 

The ultimate aim of the tool wear estimation is to predict 
the remaining life of a cutter during the process. We choose 
to use the distance that a cutter can cut through the work 
piece to represent the tool life. It is easy to understand the 
tool life is correlated to the tool wear and a cutter will come 
to its life end when it cannot cut the work piece anymore 
with the same required finishing quality. 

Figure 5 gives the correlation between the tool wear 
and tool life, where the tool wear is predicted based on 
signal features {fm, fa, Fa, std}. The figure shows that 
there are three points (D1 D2 and D3) at around cutting 
distance of 370m, 427m and 468m with predicted tool wear 
of 0.21mm and 0.33mm and 0.38mm, respectively, where 
the tool wear rate changes significantly from the previous 
data. These points could be taken as critical alarms 
indicating the degree of tool degradation. In our monitoring 
system with the FNN model, if a big tool wear changes 
before and after a cutting distance is predicted, the tool life 
with this distance is identified as a critical points 
immediately. Once the system gives the degradation of D3 
level, one should prepare to stop the cutting to avoid costly 
work piece surface damages.  
 

 
 

Figure 5: Correlation between predicted tool wear and tool 
degradation 
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In comparison with the experiment results with 
conventional neural network and multiple regression 
methods, it can be observed that the FNN outperforms the 
others in solving the problem of tool wear prediction on the 
dry milling operation. However, the limitation of the FNN 
lies in the fact that the optimal number of fuzzy 
membership items cannot be automatically defined. The 
reliability of FNN under different cutting conditions needs 
to be further investigated also. 
 

 
5. CONCLUSIONS 

 
A FNN algorithm is developed for tool degradation 
monitoring through tool wear prediction. The FNN is 
basically a multi-layered fuzzy-rule-based neural network 
which integrates the basic elements and functions of a 
traditional fuzzy logic inference into a neural network 
structure. The fuzzy rules help to speed up the learning 
process of the complex conventional neural network 
structure and improve the accuracy in prediction and rate of 
convergence. The viability of the FNN technique is tested 
with the prediction of tool life in a dry milling operation. 
The repeatability of the FNN model established under a 
fixed cutting condition is demonstrated by comparing the 
prediction data with the real data from different cutters.  A 
comparison was made on prediction performances of 
different models established with the same set of 
experimental data. It is shown that the FNN is superior to 
conventional MRM, BPNN and RBFN in prediction 
accuracy and BPNN in learning speed.  
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