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ABSTRACT

Many techniques for prognostics depend on estimating then
forecasting health indicators that reflect the overall health or
performance of an asset. For vibration data, health indicators
are typically calculated by combining various vibration mea-
surements along with derived features extracted from time,
frequency or time-frequency domain analysis. However, se-
lecting or handcrafting good features is a labor-intensive task.
On the other hand, deep learning models might be able to
learn health indicators automatically from vibration data but
require large amount of training data, which are typically
hard to obtain from real assets. In this paper, we propose
an innovative similarity-based feature extraction method for
vibration data which can then be used to learn health indi-
cators and estimate remaining useful life of equipment. The
method learns a set of representative templates of frequency
spectra for both normal and failure states, and then calculates
similarity-based features between new vibration data and the
set of learned templates. These features are used to estimate
health indicators which are then extrapolated to estimate the
future health condition of the asset and its remaining useful
life. The proposed method has been tested on the PRONOS-
TIA bearing dataset provided by FEMTO-ST Institute and
achieved a higher accuracy in estimating the remaining use-
ful life of bearings compared to other studies. The results
demonstrate the effectiveness of the proposed method for as-
sets with limited training data.

1. INTRODUCTION

Prognostics is concerned with predicting the future health or
performance of an asset and estimating its remaining useful
life. This task is referred to as Remaining Useful Life (RUL)
estimation. Accurate prediction of RUL prevents unexpected
failures, eliminate costly repairs, and accordingly increase as-
set availability.
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Vibration measurement has been widely studied for prognos-
tics tasks for industrial equipment, especially rotating ma-
chinery and equipment with bearings, motor and gearbox,
base on time, frequency or time-frequency domain analysis
(Plante et al., 2015; Doguer & Strackeljan, 2009; Singhal &
Khandekar, 2013; Al-Badour et al., 2011). Some implemen-
tations aim to develop Health Indicators (HIs) from vibration
data that represent the trends related to degradation condi-
tion from normal to failure based on domain expert know-
ledge or feature extraction methods. In (Doguer & Strack-
eljan, 2009), time domain features extracted from vibration
measurements are used to detect the roller bearing surface
defects. Frequency domain analysis performs effectively for
stationary signals. In (Plante et al., 2015), by comparing the
frequency spectrum of the vibration data for three fault cases
(unbalance, mechanical looseness and bearing fault) to that of
a healthy motor, the specific natural frequency corresponding
with each fault condition are identified. In (Al-Badour et al.,
2011), wavelet analysis is investigated for feature extraction
from rotating machinery with non-stationary vibration mea-
surements.

However, different features work for different problems.
Given a new problem, constructing health indicator by selec-
ting good features from all extracted features might require
laborious preliminary analysis. Handcrafting health indica-
tor or features requires domain knowledge which might be
hard to get in real application. On the other hand, deep lear-
ning is gaining popularity due to the robustness and superio-
rity in terms of accuracy when trained with huge amount of
data. Using deep learning method, health indicator can be
automatically constructed from vibration data. In the work of
(Zhang et al., 2020), implementations of various deep learn-
ing algorithms on vibration data for bearing fault diagnos-
tics were reviewed, including Convolution Neural Network
(CNN), Deep Belief Network (DBN), and Recurrent Neu-
ral Network (RNN). However, deep learning methods require
large amount of training data, which are typically hard to ob-
tain from real assets.

In this paper, we propose an innovative similarity-based fea-
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ture extraction method for vibration data which can then be
used to learn health indicators for prognostics. The method
uses Fast Fourier Transform (FFT) to learn a set of represen-
tative templates of frequency spectra for both normal and fail-
ure states. Then, for a new snapshot of vibration data, simi-
larity measures are calculated based on correlation coefficient
and Euclidean distance between the new snapshot and the set
of learned templates. These similarity-based features reflect
the deviation of the new vibration snapshot from vibration in
normal and failure conditions. These features are used to es-
timate health indicators using a model of multiple Long Short
Term Memory (LSTM) networks. The health indicators are
then extrapolated to estimate the future health condition of
the asset and the remaining useful life. The proposed method
is explained in Section 2.

The proposed method is then tested on the PRONOSTIA
bearing dataset provided by FEMTO-ST Institute for RUL
estimation (Nectoux et al., 2012). The PRONOSTIA bear-
ing dataset is a popular benchmark dataset for RUL estima-
tion since its usage in PHM 2012 data challenge. The win-
ner in the PHM 2012 data challenge presents three methods
with different features extracted including spectral kurtosis,
various time-frequency domain features using wavelet trans-
form, and human defined features after thorough inspection
of the data (Sutrisno et al., 2012). Another health indicator
named weighted minimum quantization error crafted by fus-
ing multiple features is used in a model-based RUL prediction
method with Particle Filter based algorithm (Lei et al., 2016).
In (Guo et al., 2017), related-similarity features are extracted
to construct health indicators using RNN but only the similar-
ities to the normal state are considered. In (Chen et al., 2019),
the frequency spectrum of the vibration measurements is used
directly as input to a RNN based encoder–decoder framework
to estimate health indicator and then predict RUL. In the pro-
posed method, similarity-based features from frequency do-
main are extracted by considering both the normal and fail-
ure state. Meanwhile, various typical time domain features
are also included. Since the learning data in PRONOSTIA
dataset is limited with only 2 run-to-failure bearings for each
of the three operating conditions, we construct an ensemble
model which contains multiple LSTM networks to estimate
the health indicator from the extracted features. The RUL
prediction result for the PRONOSTIA bearing dataset pro-
duced by our method has a higher accuracy compared to the
state-of-the-art studies. The case study on the PRONOSTIA
bearing dataset is described in Section 3.

2. METHOD

In this paper, we propose an innovative similarity-based fea-
ture extraction method for vibration data which can then be
used to learn health indicators and estimate the remaining
useful life. This section is organized as follows. Section 2.1
introduces the similarity-based feature extraction method,

which serves as data preprocessing for the followed prognos-
tic model. Section 2.2 describes the prognostic model with
LSTM networks for health indicator estimation. In model
testing stage, the trained HI estimation model is applied to es-
timate health indicator for any snapshot of vibration data from
a new device. The estimated health indicators are then used
to predict remaining useful life for the new device, which is
described in Section 2.3

2.1. Feature Extraction

In the proposed feature extraction method, we first learn a set
of representative templates of frequency spectra for both nor-
mal and failure states using Fast Fourier Transform (FFT).
Then, for a new vibration snapshot, similarity measures are
calculated based on correlation coefficient and Euclidean dis-
tance between the spectra of the new snapshot and the learned
templates. These similarity measures serve as similarity-
based features which reflect the deviation of the new vibration
snapshot from vibrations in normal and failure conditions.

Usually, vibration data is measured continuously at a prede-
fined sampling frequency from an asset and processed as a se-
quence of snapshots, where each snapshot corresponds to the
vibration data measured in a predefined time window. The
sampling frequency for vibration measurements could vary
in an extremely large span from Hertz level up to MegaHertz
level. Higher sampling frequency could cover frequency in-
formation in a wider frequency range which allows for more
information for building prognostic model. Typically, the
sampling frequency is within a few hundred Hertz to a few
hundred KiloHertz. For the cases with relatively large sam-
pling frequency, using the original frequency spectrum di-
rectly as features results in large dimensionality in feature
space and may degrade the performance of prognostic mod-
els. Therefore, we consider the similarity measures on top
of the original frequency spectrum as features which carry
the information of deviation from normal state or approach to
failure state.

Given continuous vibration measurements from a run-to-
failure asset, the initial period is usually considered as nor-
mal condition and the period approaching failure is consid-
ered as failure condition. In extracting similarity-based fea-
tures from frequency spectrum, the representative spectrum
templates for normal and failure condition are first learned
by averaging spectra from a number of vibration snapshots
measured in normal condition and failure condition respec-
tively. The spectrum templates for normal condition Fn and
failure condition Ff are two series represented as: Fn =
[fn1 , ..., f

n
i , ..., f

n
m] and Ff = [f f1, ..., f

f
i , ..., f

f
m], which span

the frequency range below half of the sampling frequency
based on Nyquist theorem.

For a new vibration snapshot, the similarities are measured
between its frequency spectrum F = [f1, ..., fi, ..., fm] and

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

the spectrum templates for normal (Fn) and failure (Ff ) con-
dition respectively. Two type of similarities are estimated
including Pearson correlation coefficient and Euclidean dis-
tance. Pearson correlation coefficient is a normalized statis-
tic measure for the linear correlation between two series as
shown in Eq. 1. The Euclidean distance is a popular mea-
sure for the point-wise distance between two series without
considering any lag or distortion as shown in Eq. 2..

ρ(X,Y) =
cov(X,Y)

σXσY
(1)

d(X,Y) =

√√√√1

n

n∑
i=1

(Xi −Yi)2 (2)

Given the case with vibration data measured in a high sam-
pling frequency, the full spectrum is equally divided into a
number of sub-frequency bands and similarities are calcu-
lated for each of the sub-bands.

Besides the similarity-based features, eight typical statisti-
cal time domain features are also included for prognostics.
Given a snapshot of 1-dimension raw vibration data: v =
[v1, ...,vj, ...vn], the eight statistical time domain features
are calculated from the absolute value in v as defined in Ta-
ble 1.

Table 1. Statistical Time Domain Features

Feature Definition
Mean(|v|) 1

n

∑n
j=1 |vj |

Min-to-Max max(|v|) – min(|v|)

Standard Deviation (SD)

√∑
(|v|−|v|)2

n

Skewness E[( |v|−|v|SD )3]

Kurtosis E[( |v|−|v|SD )4]

Energy
∑n

j=1 |vj |2

Shannon entropy (H) H(|v|) = −
∑m

i=1 pi log2(pi)

Energy/Entropy Energy/H

where E is the expectation operator

2.2. Health Indicator Estimation using LSTM Networks

After feature extraction, we estimate health indicator from
features using LSTM networks. We assume that the training
dataset includes a set of devices [D1, ...,Di, ...,Dm], where
each device has one run-to-failure sequence of features. In
training the HI estimation model with LSTM networks, the
training data sequence from all devices are formatted to be a
set of data samples: X,Y = {Xi

t, yit}, (t ∈ [0, ..., T i], i ∈
[1, ...,m]), where t is the time step and T i denotes the failure

Figure 1. Unfolded representation of a general example with
two LSTM layers followed by one dense layer. The input is a
data sample with a sequence of data points and output is the
final estimation of associated health indicator

time which also represents the lifespan of the ith device. Here,
each data sample Xi

t has the shape of L × R, represented as
follows:

Xi
t =


xt−L+1

...
xt−1
xt

 =


xt−L+1,1 xt−L+1,2 . . . xt−L+1,R

...
...

. . .
...

xt−1,1 xt−1,2 . . . xt−1,R
xt,1 xt,2 . . . xt,R


where L is the lag of historical data points considered in
learning the current health indicator and R is the number of
extracted features. yit is the health indicator label at time t
which is defined as degradation percentage using time infor-
mation: yit = t

T i . For each device, the health indicator at
the initial point is 0, which means there is no degradation
and possibly no chance of failure, and at the end of its run-
to-failure experiment is 1, which represents a high probabil-
ity of failure. After data preparation, a HI estimation model
will take feature data of X as the input data and Y as labels
to learn the estimation of health indicator from the extracted
features.

The HI estimation model is a composition of multiple lay-
ers of LSTM networks followed by fully connected multiple
dense layers. This complex deep recurrent learning network
allows the model to learn the temporal dependencies ver-
tically and complex relationship between different features
horizontally for different fault modes and degradation modes.
To show how the learning model works, we take a general ex-
ample of two LSTM layers followed by two dense layers as
shown in Figure 1.

Because of the complexity of the learning model, we include
dropout (Srivastava et al., 2014) during the training to pre-
vent overfitting. We apply dropout to the input connections
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Figure 2. Simplified representation of RUL prediction with
curve fitting on estimated historical health indicators

with the LSTM nodes for each LSTM layer. The dropout on
the input means that the data on the input connection to each
LSTM block will be excluded, at a given probability, from
node activation and weight updates. In training the proposed
model, mean square error (MSE) shown in Eq. 3 is used as
the cost function:

MSE =
1

N

N∑
i=1

(yt − ŷt)2 (3)

2.3. Remaining Useful Life (RUL) Prediction

Any equipment naturally degrades over time. RUL prediction
is usually needed after the device has been operated for a cer-
tain period of time and there is a chance of failure occurrence.
In the proposed method, we use the vibration measurement
data from history to predict the time of end-of-life in the fu-
ture. Then, the remaining useful life for the given device can
be deduced.

In RUL prediction, historical health indicators are first
calculated from historical vibration snapshots through the
aforementioned feature extraction and trained HI estimation
model. Then, a polynomial curve fitting is applied to the his-
torical health indicators to fit the degradation mode. Finally,
future health indicators can be predicted via extrapolating
the fitted polynomial curve and failure is predicted to hap-
pen when the predicted health indicator reaches the failure
threshold. In proposed method, the failure threshold of health
indicator is set to be 1. A simplified representation of the
RUL prediction is shown in Figure 2.

3. CASE STUDY ON IEEE PHM 2012 PROGNOSTIC
CHALLENGE DATASET (PRONOSTIA DATA)

The proposed method is tested on the PRONOSTIA bearing
dataset provided by FEMTO-ST Institute for remaining use-
ful life prediction (Nectoux et al., 2012). The process is com-
prised of two stages: Training and Testing. In training, the
input data is the sequences of vibration snapshots measured

from multiple run-to-failure bearings in learning set, and the
output is the representative spectra templates for each operat-
ing condition and the trained HI estimation model.

In testing stage, the input data will be the sequence of his-
torical vibration snapshots measured from new bearings in
test set. The HI estimation model learned in training stage
will be applied to estimate health indicators for the histori-
cal vibration data. Curve fitting algorithm is then applied to
fit the degradation mode from historical health indicators and
extrapolated to predict future health indicators. Failure is pre-
dicted to happen when the future health indicator reaches the
failure threshold. Finally, the remaining useful life of the new
bearings in test set can be predicted.

3.1. PRONOSTIA data

The PRONOSTIA data, a benchmark vibration dataset for
bearing failure prognostics, was used in IEEE PHM 2012
prognostic challenge. It contains a set of real experimental
data measured during the whole life span of bearings. The
experimental Platform of PRONOSTIA has been extensively
discussed in (Nectoux et al., 2012). There are multiple causes
of bearing failure, including inner race, outer race, ball, im-
proper lubrication, etc.. In PRONOSTIA experiments, cause
of bearing failure could be one or more types of failures,
which represents a real life situation. In the platform, there
are two accelerometers measuring the vibration along hori-
zontal and vertical direction respectively. In the data chal-
lenge, 3 operating conditions were considered:

• Condition 1:1800 rpm and 4000 N

• Condition 2: 1650 rpm and 4200 N

• Condition 3: 1500 rpm and 5000 N

As shown in Table 2, six run-to-failure bearing datasets are
provided to the participants as learning data to build the prog-
nostic models. For the 11 bearings in test set, vibration data
is truncated and provided till some point before failure. Thus,
the task will be using the learned prognostic model to predict
failure time and remaining useful life for the 11 bearings in
test set. The learning set is quite small with only 2 run-to-
failure bearings under each operating condition. Meanwhile,
the spread of the lifespan of all bearings is wide, which varies
roughly from 1.5 to 7.8 hours as shown in Table 3. Therefore,
learning a good model to accurately predict RUL becomes
difficult and challenging.

3.2. Scoring Function

To evaluate the effectiveness of proposed method, we calcu-
late the Percent Error (PE) of RUL prediction for test bear-
ings. PE (%Err) is defined in Eq. (4).

%Erri = 100× RULi
real − RULi

predict

RULi
real

(4)
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Table 2. IEEE PHM 2012 Prognostic Challenge Dataset
(Nectoux et al., 2012)

Datasets Operating Conditions
Condition 1 Condition 2 Condition 3

Learning set Bearing1 1 Bearing2 1 Bearing3 1
Bearing1 2 Bearing2 2 Bearing3 2

Test set

Bearing1 3 Bearing2 3 Bearing3 3
Bearing1 4 Bearing2 4
Bearing1 5 Bearing2 5
Bearing1 6 Bearing2 6
Bearing1 7 Bearing2 7
Bearing1 3 Bearing2 3

Table 3. Learning Data in IEEE PHM 2012 Prognostic Chal-
lenge Dataset

Learning set Operating Lifespan
Conditions (seconds)

Bearing1 1 Condition 1 28073
Bearing1 2 Condition 1 8700
Bearing2 1 Condition 2 9100
Bearing2 2 Condition 2 7960
Bearing3 1 Condition 3 5140
Bearing3 2 Condition 3 16360

where RULi
real and RULi

predict are the real and predicted
RUL for the ith test bearing respectively. To compare the pro-
posed method with related studies on the same dataset, the
mean and standard deviation (SD) of percent errors for all
test bearings are computed.

In IEEE PHM 2012 Prognostic Challenge, underestimates
and overestimates of the RUL were considered in different
manners by the scoring function in Eq. (5), where Ai is the
score for the ith test bearing calculated from its PE (%Erri).
The score is 1 when PE is 0 (the predicted RUL is exactly
equal to the real RUL). Non-zero PE will add penalty to de-
crease the score. Early prediction of failure (%Erri > 0,
where failure is predicted to happen earlier than the actual
occurrence) receives less penalty than late prediction.

Ai =

{
exp [− ln(0.5) · (%Erri/5)] if %Erri ≤ 0
exp [+ ln(0.5) · (%Erri/20)] if %Erri > 0

(5)

The overall score of RUL prediction result is defined as the
average of scores from all test bearings, as shown in Eq. (6)

Score =
1

11

11∑
i=1

(Ai) (6)

Figure 3. Scoring function of a RUL estimates according to
the percent error used in IEEE PHM 2012 data challenge

Figure 4. Normalized representative spectra for operating
condition 1. There are two vibration sensors. (a) and (b) are
the two spectra learned from vibration data measured when
the bearing is in good condition. (c) and (d) are the two spec-
tra associated with failure condition.

Figure 3 is the Fig. 15 in (Nectoux et al., 2012) which depicts
the scoring function.

3.3. Representative Spectra

In PRONOSTIA bearing data, there are three operating con-
ditions. We assume that bearings in the same operating con-
dition have similar failure modes while bearings in different
operating condition might have different failure modes. We
learn the representative spectra for each of the operating con-
ditions separately. The frequency spectrum is distributed in
the frequency range up to 12.5 kHz which is half of the sam-
pling frequency. We normalize the representative spectra be-
fore calculating the similarities between a new spectrum and
the representative spectrum template. The normalized repre-
sentative spectra for operation conditions 1, 2 and 3 are shown
in Figures 4, 5 and 6 respectively.
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Figure 5. Normalized representative spectra for operating
condition 2. Similar to Figure 4, (a) and (b) are spectra cor-
responding to good condition and (c) and (d) are associated
with failure condition.

Figure 6. Normalized representative spectra for operating
condition 3. Similar to Figure 4, (a) and (b) are spectra cor-
responding to good condition and (c) and (d) are associated
with failure condition.

3.4. Training of HI Estimation Model

In the model training stage, hyperparameter optimization is
first needed to determine a good set of hyperparameters to
control the learning process for an accurate mapping from
input data to the output. Grid search is a traditional hyper-
parameter optimization technique which scans exhaustively
through a predefined grid in the hyperparameter space and
finds the set of hyperparameters which produces best perfor-
mance (Hsu et al., 2003). Usually the performance is mea-
sured by evaluating the model accuracy on a held-out valida-
tion set.

When implementing the proposed deep learning model for
failure indicator estimation, we use grid search to determine
the optimal hyperparameters which include: number of nodes
in each of the two LSTM layers, number of nodes in the 1st

dense layer, dropout rate, optimizer, activation function and
batch size. In grid search, for each set of parameters, the
model is trained six times by leaving each of the six train-
ing bearings out as a validation set. The average of the mean

square error (MSE) from validation set is used as the perfor-
mance matric and we choose the set of parameters with the
smallest average MSE.

The determined parameters are shown in Tabel 4. For the
Adam optimizer, the default setting from Keras is used which
has learning rate equals to 0.001, beta 1 equals to 0.9 and
beta 2 equals to 0.999. Number of nodes in the 2nd dense
layer is set to be 16.

Table 4. Hyperparameters for the HI Estimation Model

Hyperparameters Value
Number of nodes

128
in each LSTM layer
Number of nodes

128
in the 1st dense layer
Dropout rate 0.1

Activation function Sigmoid
Optimizer Adam
Batch size 128

After determining the hyperparameters for a model structure,
model can be trained with learning data. In model training,
learning data needs to be well split into a training set and a
validation set for evaluating model’s generalizability. How-
ever, the learning data in PRONOSTIA bearing data is small
as mentioned in Section 3.1, which has six bearing datasets
in total and each operating condition only has two bearings
respectively. We use all six bearings to train an ensemble
model which includes six individual models, each is trained
by leaving one of the six bearings out as a validation set and
the remaining five bearings as a training set. The health in-
dicator estimated by the ensemble model is the average of
health indicator values from six individual models. Ideally,
health indicator is directly related to the degradation of the
device. Therefore, it should have a monotonic trend for an
operating device without any maintenance or repair. In the
proposed method, the estimated health indicator from the en-
semble model is corrected to ensure the monotonictiy by in-
terpolating each succeeding health indicator using preceding
health indicator if the succeeding one is smaller than preced-
ing one. Examples of the health indicator estimation result
for bearings in learning data are shown in Figures 7, 8 and 9.

3.5. Testing: RUL Prediction Results for Test Set

The bearings in test set have truncated vibration data which
stopped at some point before the failure happens. The task
is to estimate the remaining time to the occurrence of fail-
ure based on historical vibration measurements. We apply the
learned HI estimation model to bearings in test set to estimate
health indicators from provided historical vibration data. By
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Figure 7. Failure indicator estimation result for Bearing1 1
in learning set.

Figure 8. Failure indicator estimation result for Bearing2 2
in learning set.

fitting the estimated historical health indicators, a predictive
curve is learned which captures the historical health condition
and degradation mode of the bearing. Future health indicators
can be predicted using the learned predictive curve and fail-
ure is predicted to occur when future health indicator reaches
a predefined failure threshold, which is set to be 1 in the case
study. Finally, RUL is predicted to be the time duration be-
tween the latest point of the historical vibration data and the
predicted failure point.

The estimation of historical health indicators, learned predic-
tive curve and RUL prediction results for the bearings in test
set are shown in Figure 10 for 5 bearings in operating condi-
tion 1, and Figure 11 for 6 remaining bearings in operating
conditions 2 and 3. The real and predicted RUL from the pro-
posed method for the 11 test bearings are shown in Table 5.

We also compared the proposed method with the state-of-the-
art algorithms in the literature (Sutrisno et al., 2012; Lei et al.,
2016; Guo et al., 2017; Chen et al., 2019) on the same data set
by calculating PE of the RUL estimation for each bearing in
test set as shown in Table 6. The mean and SD of PE, and the
score produced using the scoring function in Eq. 5 are shown
in the bottom three rows in Table 6. The proposed method

Figure 9. Failure indicator estimation result for Bearing3 2
in learning set.

Table 5. RUL Prediction Results for Test Data

Test set
Actual RUL Our RUL
(seconds) Prediction

(seconds)
Bearing1 3 5730 1496
Bearing1 4 339 118
Bearing1 5 1610 1413
Bearing1 6 1460 1412
Bearing1 7 7570 6757
Bearing2 3 7530 1399
Bearing2 4 1390 1331
Bearing2 5 3090 2967
Bearing2 6 1290 1050
Bearing2 7 580 532
Bearing3 3 820 844

produces highest score, and lowest mean PE with smallest
variance.

The goal in RUL estimation is to predict the remaining time to
the occurrence of failure so that maintenance or repair actions
can be scheduled in time to prevent failure happens, which
helps to reduce equipment downtime and improve productiv-
ity. Therefore, early prediction (failure is predicted to happen
earlier than its real occurrence) is usually preferred than late
prediction. As shown in Table 6, our predicted RUL is smaller
than real RUL for all bearings except Bearing3 3, indicating
that the proposed method tends to make early prediction.

Similarity-based features are extracted from frequency spec-
trum. Time domain information from vibration measure-
ments could help in estimating health indicator and predicting
remaining useful life. Our proposed method used the combi-
nation of similarity-based features and eight statistical time
domain features, as shown in Section 2.1. To demonstrate
the effectiveness of the similarity-based features, we apply
the process of health indicator learning and remaining useful
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Figure 10. RUL prediction result for bearings in operating condition 1 in test set.

Table 6. Comparison of RUL Prediction Results

Test set
Percent Error (%Err)

Challenge Winner Model-based RNN RNN with encoder-decoder Proposed method
(Sutrisno et al., 2012) (Lei et al., 2016) (Guo et al., 2017) (Chen et al., 2019)

Bearing1 3 37 -0.35 43.28 7.62 73.89
Bearing1 4 80 5.60 67.55 –157.71 65.19
Bearing1 5 9 100.00 –22.98 –72.57 12.24
Bearing1 6 –5 28.08 21.23 0.93 3.29
Bearing1 7 –2 -19.55 17.83 85.99 10.74
Bearing2 3 64 -20.19 37.84 81.24 81.42
Bearing2 4 10 8.63 –19.42 9.04 4.24
Bearing2 5 –440 23.30 54.37 28.19 3.98
Bearing2 6 49 58.91 –13.95 24.92 18.60
Bearing2 7 –317 5.17 –55.17 19.06 8.28
Bearing3 3 90 40.24 3.66 2.09 –2.93

Mean 100.27 28.18 32.48 44.49 25.89
SD 173.28 35.41 37.57 47.00 29.69
Score 0.31 0.43 0.26 0.44 0.56

life estimation to similarity-based features and time-domain
features respectively. The percent errors are presented in Ta-
ble 7. With the similarity-based features, the percent error
and score are better than some of the related works shown
in Table 6. In proposed method, the combination of time-
domain features and similarity-based features from frequency

domain provides more comprehensive information and fur-
ther improves the model performance.

4. CONCLUSION

When estimating the remaining useful life of equipment, it
is important to capture time-dependent degradation patterns
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Figure 11. RUL prediction result for bearings in operating condition 2 and 3 in test set. The legend for this figure is the same
as the legend in Figure 10.

Table 7. Comparison of RUL Prediction Results

Test set
Percent Error (%Err)

Similarity-based features Time-domain features Proposed method
Bearing1 3 84.00 86.83 73.89
Bearing1 4 40.12 -317.11 65.19
Bearing1 5 11.43 66.40 12.24
Bearing1 6 -5.55 21.16 3.29
Bearing1 7 81.76 94.04 10.74
Bearing2 3 31.18 83.80 81.42
Bearing2 4 75.11 -19.35 4.24
Bearing2 5 0.32 0.91 3.98
Bearing2 6 15.35 71.94 18.60
Bearing2 7 4.83 88.28 8.28
Bearing3 3 7.68 45.85 –2.93

Mean 32.48 81.33 25.89
SD 31.38 80.52 29.69
Score 0.46 0.19 0.56

from long-term sequences of measurements. In this paper,
a similarity-based feature extraction method is proposed by
comparing the vibration with learned representative templates
in normal and failure states respectively. The similarity-based
features reflect the degradation information by considering
the deviation of current condition from normal and failure

condition. Then a HI estimation model is learned by training
LSTM networks over the extracted features. In the case study
on PRONOSTIA dataset, the result produced by the proposed
method has higher accuracy compared to multiple represen-
tative works on the same dataset. The proposed method pro-
duces smallest mean percent error with smallest standard de-
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viation. Furthermore, the proposed method tends to make
early prediction of failure, which is good for prognostics to
prevent failure occurrence.

The proposed RUL estimation method can be applied for
prognostics in industries in which vibration data are mea-
sured. Vibration data are commonly measured from rotating
components (such as bearings) or systems(such as assembly
manipulators). The proposed method can be trained with a
few failure cases and applied to predict the remaining time to
failure at a given time point using historical vibration mea-
surements.
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