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ABSTRACT 

Prognostics and Health Management (PHM) is attracting the 

attention from both academia and industry due to its great 

potential to enhance the resilience and responsiveness of the 

equipment to the potential operation risks. In literature, many 

methodologies are proposed to predict the Remaining Useful 

Life (RUL) of the equipment. However, there are two major 

challenges that limit the practicality of these methodologies. 

1) How to generate a quantifiable Health Indicator (HI) to 

represent the operation risks? 2) How to define a reasonable 

failure threshold to predict RUL? To answer these two 

questions, this paper proposes a novel methodology for 

failure threshold determination with quantifiable operation 

risk in machine prognostics. In the proposed methodology, 

Fisher distance and Mann-Kendall (MK) test are firstly used 

to extract useful sensors based on which HI is estimated by 

applying Principle Component Analysis (PCA). Then, Rao-

Blackwellized Particle Filter (RBPF) is employed to obtain 

the HI prediction and the uncertainties. Afterwards, a 

Bivariate-Weibull-distribution-based risk quantification 

model is designed to quantify the cumulative risk over time 

and over the increase of HI. The failure threshold, which is 

the ending point of the RUL, varies over different users and 

applications depending on the level of risk they want to 

tolerate. The validation of the methodology is based on the 

C-MAPSS data from the PHM data competition 2008 hosted 

by PHM society. The results validate the effectiveness of the 

proposed risk quantification method and its potential 

application on machine prognostics. 

1. INTRODUCTION 

Remaining Useful Life (RUL) prediction has been 

extensively studied in the literature, and many different 

methodologies are proposed to fulfill the prediction task. 

These methodologies include but not limit to Regression-

Based Method (RBM), Random Coefficient Method (RCM), 

Stochastic Process Method (SPM), State-Space Method 

(SSM) and Similarity-Based Method (SBM), as being 

summarized in (Cai, Feng, Li, Hsu, & Lee, 2020; Haoshu Cai, 

Xiaodong Jia, et al., 2020; H. Cai et al., 2020; Jia et al., 2019).  

Based on the literature survey, it is found that the failure 

threshold in most RUL prediction studies is often set 

empirically by referring to the engineering practices. There 

still lack a systematic approach to define failure threshold 

with quantifiable operation risk. This is important because 1) 

the predicted Health Indicator (HI) cannot be effectively 

converted to RUL without an effective failure threshold (N. 

P. Li, Lei, Lin, & Ding, 2015). 2) a quantifiable failure 

threshold is the key for a prognostic model to interface with 

the maintenance planning (Camci, 2014, 2015). This is 

essentially because the maintenance planning models expects 

the take the quantified risk 𝑃𝐹  as input to calculate the direct 

and indirect failure cost (Camci, 2014, 2015). Without a 

tunable failure threshold with quantifiable risk, it is difficult 

to build friendly interface between prognostic models and 

maintenance planning models. 3) A failure threshold with 

quantifiable risk will allow different manufacturers or users 
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to tune the tolerable risk based on their practical needs and 

application scenarios.  

As a branch of survival analysis, multivariate survival 

analysis models covariates and life indicators as clusters to 

analysis expected duration of time until machine failure. 

Commonly seen approaches to model the variation between 

life indicators and other factors are Cox Proportional Hazards 

Model (Breslow, 1975), Clayton Copula Model (Clayton, 

1978) and competing risks models (Prentice et al., 1978), etc. 

One major focus of multivariate survival is to address the 

correlation between life indicators and health indicators, 

which is sometimes picky for dependency measure selection 

and background knowledge (Georges, Lamy, Nicolas, 

Quibel, & Roncalli, 2001). In multivariate survival analysis 

applications, improper dependency measures can render the 

life indicator over-dominant in the model. 

To address this challenge, this study proposes a risk 

quantification model to assist the optimization of failure 

threshold (FT). The proposed model considers the joint 

effects of life indicator and health indicator, where the life 

indicators is essentially used in reliability analysis, and the 

health indicator is derived from sensory readings. The 

proposed risk model falls somewhat between reliability 

analysis and HI based failure statistics. Based on the 

proposed risk model, a systematic methodology for RUL 

prediction is proposed, and the effects of varying tolerable 

risk on the predictive distribution RUL are studied and 

discussed based on the well-known C-MAPSS data about 

aero-engines degradation (Jia, Huang, Feng, Cai, & Lee, 

2018). 

The rest of the paper is organized as follows. Section 2 gives 

an overview of the previous studies about the failure 

thresholding. Section 3 elaborates the proposed 

methodology. Section 4 illustrate the benchmarking results 

based on the public datasets. The conclusion remarks are 

given in Section 5.  

2. REVIEW 

In machine prognostics, a unit is often considered to have 

failed when its health indicator crosses a certain failure 

threshold(X. Li et al., 2020; Yang et al., 2020). Determination 

of certain threshold is largely depended on experience. Other 

than empirical determination, such threshold can also be 

determined from data-driven approaches for both 

continuously monitored degradation and discretely 

monitored degradation. (Javed, Gouriveau, & Zerhouni, 

2013) proposed a Fuzzy Clustering method determined by 

Subtractive-Maximum Entropy to dynamically determine the 

FT. (R.-y. Jiang, 2010) developed an online and offline alarm 

threshold determination methodology to optimize the 

inspection scheme in condition-based maintenance (CBM). 

The alarm threshold is optimized by trade off cost and 

machine degradation whose information is obtained and 

updated during last inspection. As for continuous monitoring, 

rather than a predetermined FT, uncertain FT or probabilistic 

FT are usually determined with adequate historical or peer 

information (Wang & Coit, 2007). (Emami-Naeini, Akhter, 

& Rock, 1988) use nonlinear inequalities to build a sensor 

threshold selector for fault detection and classification 

(FDC). The selector is based on errors from a statistical FDC 

model, signal noise properties and filters properties. 

(Chehade, Bonk, & Liu, 2017) develops a convex quadratic 

formulation which consider both historical and real time 

degradation data to online estimate the FT for each machine. 

An adaptive failure threshold method is proposed by (Hua, 

Zhang, Xu, Zhang, & Xu, 2013) to estimate reliability when 

there is degradation performance on a machine. The threshold 

is determined by estimating conditional probability density 

function using a sliding window based dynamic kernel 

estimation method. (Javed et al., 2013) also proposed an 

Extreme Learning Machine based method for dynamic 

threshold decision in continuous state prediction task. (L. 

Jiang, Feng, & Coit, 2011) developed a failure threshold 

determination model for dependent failure process. The 

method considers the dependency of coexisting soft and hard 

failure for both diagnosis and prognostics.  

The reviewed FT determination methods are hardly based 

upon risks the operator would directly want to shoulder. 

Some autonomous FT determination methods are hard to 

adjust according to additional constraints and some other 

methods my require large computation resources. To address 

these challenges and expand the horizon of FT determination 

in machine prognostics, this study proposes a risk 

quantification methodology to assist the optimization of FT. 

 
Figure 1. An overview of the proposed methodology 
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3. METHODOLOGY 

3.1. Overview 

The proposed methodology includes 3 three major steps, as 

shown in Figure 1.  

1) Health Indicator (HI) estimation: this step includes the 

selection of trended features that are useful for RUL 

prediction and the estimation of the embedded degradation 

trend. In this study, the feature selection is based on Fisher  

distance and Mann-Kendall (MK) test. The estimated HI is 

given by performing Principal Component Analysis (PCA) 

on the selected sensor readings. 

2) HI Prediction: The purpose of HI prediction is to predict 

the development of HI in future time horizons. Rao-

Blackwellized Particle Filter (RBPF) is employed to obtain 

the prediction and the uncertainties, as shown in Figure 1. 

3) Risk Quantification: The risk quantification model is 

designed to quantify the cumulative risk over time and over 

the increase of HI. The mathematical expression of the risk 

in this study is described as: 

 
𝑅 =  1 − 𝑆(𝑡, ℎ)  

    =  1 − 𝐏𝐫𝐨𝐛(𝐿 ≥ 𝑡, 𝐻𝐼 ≥ ℎ) 

(1) 

 

Where 𝐿, 𝐻𝐼  denotes the Life and Health Indicator, 

respectively, 𝑡, ℎ represents the current time and current HI 

value.  𝑆(𝑡, ℎ) is the joint probability of survival when 𝐿 = 𝑡 
and 𝐻𝐼 = ℎ. The risk 𝑅 is defined as 1 − 𝑆(𝑡, ℎ). 

In the following discussion, the primary processing steps in 

the proposed methodology are elaborated. 

3.2. HI Estimation 

Health indicator of aero-engine system is usually estimated 

according to sensor selection from monitoring sequences(H. 

Cai et al., 2020; Xu, Hou, Li, & Zheng, 2018).The results for 

feature selection are shown in Figure 2. The Fisher distance 

in Figure 2(a) measures the usefulness of the sensory data to 

distinguish the healthy and faulty. In this study, the mean of 

the first 15 operations cycles are specified as healthy, and the 

last 15 operation cycles prior to the maintenance are defined 

as faulty. Based on the preliminary screening according to 

Fisher distance, sensors 2, 3, 4, 11, 17 are identified as useful 

sensors for detection.  

The MK test further evaluates the presence of a gradual trend 

in the sensory data throughout the machine degradation. If the 

MK test is passed, there is a trend in the sensory data. In 

Figure 2(a), the pass rate of the MK test is utilized as an 

indicator to show the trend-ability of the data, which indicates 

that sensors 2, 3, 4, 11, 17 are trend-able. Therefore, in this 

study, the HI estimation is primarily obtained by performing 

PCA on the sensor 2, 3, 4, 11, and 17(Jia et al., 2019).  

(a) 

 

(b) 

 

Figure 2. Feature selection based on (a) Fisher distance 

between healthy and faulty (b) Mann-Kendall test for trend-

ability.  

3.3. HI Prediction 

The RBPF that is specified in Eq.(2) is employed to predict 

the HI. Compared with other particle filter methods, RBPF is 

employed because it can depict the prediction uncertainty, 

and it is efficient to do the computation (Cai et al., 2019).  

 {

𝑐𝑡 = 𝑐𝑡−1 + 𝜖𝑐
𝑏𝑡 = 𝑏𝑡−1 + 𝜖𝑏

𝑥𝑡 = (𝑥𝑡 − 𝑐𝑡) ⋅ 𝑒
𝑏𝑡⋅Δ𝑡 + 𝑐𝑡 + 𝜖𝑢

𝑦𝑡 = 𝑥𝑡 + 𝜖𝑦

 (2) 

Where 𝑐𝑡 , 𝑏𝑡  denotes the samples of the unknown model 

parameters. The 𝑥𝑡 is the state vector, which represents the 

estimated HI at time 𝑡 . The 𝑦𝑡  is the observed HI at time 𝑡. 
𝜖𝑐 , 𝜖𝑏 , 𝜖𝑢  and 𝜖𝑦  in Eq.(2) are assumed to follow Gaussian 

distribution with zero-mean. The variance of 𝜖𝑐 , 𝜖𝑏 , 𝜖𝑢 and 𝜖𝑦 

are tuned to the best performance.  

The third equation in Eq.(2) regulates an exponential 

degradation trend, and it is obtained by discretizing the 

exponential model below: 

 𝑦 = 𝑎 ⋅ exp(𝑏 ⋅ 𝑡) + 𝑐 (3) 

Where 𝑎, 𝑏, 𝑐 are the unknown parameters in the exponential 

model and 𝑦 is the observed HI at time 𝑡. 

The application of the RBPF includes the filtering process 

and the prediction process. The objective of performing 

filtering on the partial degradation is to estimate the unknown 

model parameters 𝚯 = {𝑏, 𝑐, 𝑥, 𝜎𝑢, 𝜎𝑦} . Based on the 

estimated 𝚯𝑡 at current time 𝑡, the prediction can be obtained 

by extrapolating the state equation (3rd equation) in Eq.(2). 

𝜎𝑏 , 𝜎𝑐  , which are standard deviation of 𝑏  and 𝑐 , are 

estimated based on the historical Run-to-Failure (R2F) data.  

In the proposed method, the following processing steps are 

followed: 
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1) Estimate {𝚯𝑘}𝑘=1,...,𝑀  for each historical R2F record, 

where 𝑀 denotes the number of historical R2F records.  

2) Estimate  𝜎𝑏 , 𝜎𝑐  based on historical data.  

3) For each testing unit with partial degradation data, 

initialize the filtering process by using entries in {𝚯𝑘}𝑘=1,...,𝑀. 

At the end of the filtering process, 𝑀  different filtering 

results at current time 𝑡 are obtained, which is denoted as  
{𝚯𝑘

𝑡 }𝑘=1,…,𝑀.  

4) Extrapolate the future trend by using entries in {𝚯𝑘
𝑡 }𝑘=1,…,𝑀 

as the starting point of the HI prediction.  

To convert the predicted HI distribution into RUL 

distribution, the failure threshold is required. A systematic 

way to obtain a failure threshold with quantified risk is still 

discussed in the literature. The discussion in the next 

subsection fills in this gap by utilizing a Bivariate Weibull 

model. 

3.4. Risk Quantification 

 

Figure 3. Risk surface given by the Bivariate Weibull model 

 

Figure 3 shows the risk surface and the iso-risk lines that are 

given by the proposed Bi-variate Weibull model. The iso-risk 

lines in Figure 3 can be used as a failure threshold by 

specifying the tolerable risk level. If a 5% risk line is adopted, 

it implies the user has a 95% probability of not encountering 

unexpected failure (Generazio, 2007). Typically, the optimal 

risk level can be obtained based on cost-benefit analysis in 

practice. Once the optimal risk is obtained, the failure 

threshold is fixed based on the bivariate model in Figure 3. In 

this study, the failure threshold is the ending point of the HI 

prediction. 

The definition of the risk is given in Eq.(1). The joint survival 

in Eq.(1) is obtained from the joint distribution Prob(𝑡, ℎ), 
which is a Bivariate Weibull distribution as in below: 

 𝑓(𝐻𝐼, 𝑡) =
𝛾𝑡𝛾𝐻𝐼
𝛼𝑡𝛼𝐻𝐼

(
𝐻𝐼 − 𝜇𝐻𝐼
𝛼𝐻𝐼

)
𝛾𝐻𝐼−1

⋅ (4) 

(
𝑡 − 𝜇𝑡
𝛼𝑡

)
𝛾𝑡−1

𝑒
−(
𝐻𝐼−𝜇𝐻𝐼
𝛼𝐻𝐼

)
𝛾𝐻𝐼

−(
𝑡−𝜇𝑡
𝛼𝑡

)
𝛾𝑡

 

The parameters in the Bivariate Weibull density function 𝜃 =
{𝛾𝑡 , 𝛾𝐻𝐼 , 𝛼𝑡 , 𝛼𝐻𝐼 , 𝜇𝑡 , 𝜇𝐻𝐼}  which represent shape, scale and 

location parameter of life indicator and health indicator 

respectively. 𝜃  is estimated by maximizing the likelihood 

function from the marginal pdf 𝑓(𝐻𝐼, 𝑡).  
In the Bivariate Weibull distribution model, the life indicator 

𝑡, and the health indicator ℎ are assumed to be independent. 

This assumption has significantly simplified the challenge of 

estimating multivariate PDF (Probability Density Function), 

and it is valid in most applications.  

Weibull distribution is widely used for life distribution in 

reliability engineering due to its flexibility. It is generally 

believed dozens of life samples would be sufficient to 

estimate a 3-parameter life Weibull distribution in practice. 

More samples would improve such estimation accuracy. 

Expert experience can also be applied by defining the 

distribution of HI and life when reference history is 

insufficient. 

Unlike the multivariate survival analysis, the proposed 

Bivariate risk model considers the life indicator and the 

health indicator as random variables with equal importance. 

In multivariate survival analysis, the HIs are modeled as 

predictors rather than random variables, and this renders the 

life indicator over-dominant in the model. To give an 

example, the risk surface and iso-risk lines given by the Cox 

Proportional Hazard Model, which is a typical model for 

multivariate survival analysis, are shown in Figure 4. It 

clearly indicates that the life indicator is over-dominant in the 

model, and the iso-risk lines cannot be utilized as the failure 

threshold for RUL prediction. 

 

Figure 4. Risk surface given by the Cox Regression Model 

4. RESULTS & DISCUSSIONS 

In this paper, the proposed methodology is illustrated in the 

aero-engine RUL prediction problem using C-MAPSS 

dataset. The details of the dataset is summarized in Table 1, 

where Fan degradation and Higher Pressure Compressor 

(HPC) degradation are two failure modes in different 
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datasets. The data processing, HI prediction and risk 

quantification are deployed sequentially following the 

procedures from Figure 1. The prediction performance is 

validated using RMSE and Score calculated using Eq.(5). As 

noticed from literature, a constant value 𝑅𝑒𝑎𝑟𝑙𝑦  is assigned as 

target RUL before degradation period (X. Li, Ding, & Sun, 

2018). In this case, 𝑅𝑒𝑎𝑟𝑙𝑦  is set to 125 for result evaluation. 

The selection of risk level for estimating RUL depends on 

whether 𝑅𝑒𝑎𝑟𝑙𝑦  is applied or not. When 𝑅𝑒𝑎𝑟𝑙𝑦   is not applied, 

a 75% risk level is selected for relatively conservative 

prediction. When 𝑅𝑒𝑎𝑟𝑙𝑦  is applied, the largest prediction 

RUL is limited to 125 therefore the risk level can be selected 

as large as possible. In this case 95% risk level is selected 

when 𝑅𝑒𝑎𝑟𝑙𝑦   is applied. To compare and evaluate the 

performance of the proposed method, some benchmarked 

methodologies are summarized from literature: DCNN and 

LSTM from (X. Li et al., 2018), DBN (Deep Belief 

Networks), MODBNE (Multi-Objective Deep Belief 

Networks Ensemble), RF (Random Forest), GB(Gradient 

Boosting), SVM (Support Vector Machine) and LASSO 

reported from (Zhang, Lim, Qin, & Tan, 2016), and 

RULCLIPPER from (Ramasso, 2014). 

 

 𝑆𝑐𝑜𝑟𝑒 =

{
 

 ∑ 𝑒−(
𝑑𝑖
13
) − 1, for 𝑑𝑖 < 0

𝑃

𝑖=1

∑ 𝑒(
𝑑𝑖
10
) − 1

𝑃

𝑖=1
, for 𝑑𝑖 ≥ 0

 (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑃
∑ 𝑑𝑖

2𝑃
𝑖=1   

where 𝑑𝑖 = 𝑦𝑖 − 𝑦𝑖
∗  (estimate RUL −  True 

RUL) 

 

Figure 5. RUL prediction for test unit 15 in FD001 

 

Figure 6. RUL prediction for test unit 59 in FD002 

 

Figure 5 and Figure 6 give two examples of the proposed 

methodology. The significant findings are summarized as 

following: 1) The filtered HI is a noise-free process; 2) The 

predicted HI follows an exponential trend; 3) The prediction 

uncertainty of HI can be effectively converted to the 

uncertainty of RUL by adopting the iso-risk line as failure 

threshold. 4) In regard to the RUL distribution, the effects of 

life indicators are dominant when a failure threshold with 

Dataset Degradation Mode 𝑁𝑡𝑟𝑎𝑖𝑛 𝑁𝑡𝑒𝑠𝑡 

FD001 HPC 100 100 

FD002 HPC 260 259 

FD003 HPC, FAN 100 100 

FD004 HPC, FAN 249 248 

Total -- 709 707 

Table 1. Result Comparison with Benchmarks. 

 

  
Proposed 

Method 

(Risk=95%) 

DCNN LSTM RULCLIPPER 

Proposed 

Method 

(Risk=70%) 

MODBNE DBN RF GB SVM LASSO 

FD001 
RMSE 16.72 12.61 13.52 13.27 26.41 15.04 15.21 17.91 15.67 40.72 19.74 

Score 592 273 431 216 4830 334 417 479 474 7703 653 

FD002 
RMSE 15.51 22.36 24.42 22.89 28.86 25.05 27.12 29.59 29.07 52.99 37.13 

Score 3837 14459 10412 2796 57239 5585 9031 70465 87280 316483 276923 

FD003 
RMSE 24.14 12.64 13.54 16 35.08 12.51 14.71 20.27 16.84 46.32 21.38 

Score 8014 284 347 317 33338 421 442 711.13 576 22541 1058 

FD004 

RMSE 27.97 23.31 24.21 24.33 49.1 28.66 29.88 31.12 29.01 59.96 40.7 

Score 1629800 12466 14322 3132 2704600 6557 7954 46567 17817 141122 125297 

𝑅𝑒𝑎𝑟𝑙𝑦 125 125 125 125 NA NA NA NA NA NA NA 

Table 2. Result Comparison with Benchmarks. 
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lower risk is chosen. However, the effects of HI on the RUL 

distribution are dominant when a higher risk is chosen.  5) 

The RUL ground truth in Figure 5 and Figure 6 indicate that 

a tolerable risk within [0.9, 0.99] can give rather good 

accuracy. However, it is important to note that the tolerable 

risk varies over different applications and over different units. 

Figure 7 shows the typical prediction trajectory of a training 

unit under the risk level 25%, 95% and 50% (where best 

prediction is achieved). The findings can be summarized as 

following: 1) With the increasing length of history, the 

predicted RUL gradually converges to the ground truth; 2) 

the prediction uncertainty bound is gradually shrinking to a 

very narrow range; 3) the prediction uncertainty bound is 

relatively narrow at all prediction horizon when selecting 

lower risk level compared with higher risk level; 4) the 

overall predicted RUL under higher risk level is larger than 

the lower risk level. These findings justify the importance of 

risk quantification in RUL prediction. 

The effects of varying tolerable risk on the prediction score 

are illustrated in Figure 7. It is found that an optimal score is 

found for FD001 and FD002 when varying the risk. In 

contrast, there is no optimal score for FD003 and FD004. 

This is essentially because FD003 and FD004 contains two 

degradation types: HPC degradation and FAN degradation, 

and FD001 and FD002 only have HPC degradation. This 

finding further implies that the risk model should be different 

for different failure modes. 

The RUL prediction result under the risk level 70% with 

𝑅𝑒𝑎𝑟𝑙𝑦  not applied and risk level 95% with 𝑅𝑒𝑎𝑟𝑙𝑦   applied for 

FD001 to FD004 is compared with benchmarked methods 

from literature in Table 2. It can be highlighted that 1) the 

prediction Score and RMSE of FD001 and FD002 very good 

and are compariable with other benchmarked methodologies; 

2) the RMSE of FD002 with 𝑅𝑒𝑎𝑟𝑙𝑦  is 15.51, which is 

significantly better than any other benchmarked methods; 3)  

the general prediction performance under the same risk level 

are significantly different among FD001 to FD004; 4) the 

performance of proposed methodology is largely depend on 

the selection of risk level. By using the proposed risk 

quantification method, the prediction accuracy can be further 

optimized. 

(a) 

 

(b) 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 7. The change of prediction score by varying the tolerable risk level. (a)-(d) indicates the prediction score when 

𝑹𝒆𝒂𝒓𝒍𝒚 = 𝟏𝟐𝟓. (e)-(h) indicates the prediction when no 𝑹𝒆𝒂𝒓𝒍𝒚 is applied 
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(c) 

 

Figure 8. Trajectories of predicted RUL for certain length 

of operation history of training unit 62 in FD001 at (a) 

risk level 25% (b) risk level 95% and (c) optimum risk 

level 50%. 

Figure 8 shows the trajectories of predicted RUL under 

different risk level when different length of operation history 

is given. The predicted RUL values tend to be smaller at low 

risk level because the failure threshold is set lower when a 

low risk level is given which result in early termination of 

degradation extrapolation. This justify the effectiveness of 

proposed risk quantification method. The RBPF prediction 

model is justified by that the uncertainty band gradually 

shrinks and predicted RUL converge to ground truth with 

training history increase. It should be addressed that 

prediction uncertainty and prediction threshold are different 

where the former is determined by prediction model while the 

latter is not. Prediction uncertainty is related to the historical 

data on itself while failure threshold is chosen based on 

tolerable risk in this case. Failure threshold will determine the 

end of life (end point of RUL prediction) but will not affect 

prediction uncertainty bound. 

 

Figure 9. Degradation mode detection of C-MAPSS dataset 

training samples using PCA+Kmeans 

 

In the C-MAPSS case, the degradation mode of training units 

can be detected and classified using PCA and Kmeans 

method as shown in Figure 9. Indexed by the FDC result, the 

risk surface of FAN degradation and HPC degradation can be 

compared from a) and b). It can be concluded that 1) the risk 

contour patterns are different between two types of failure; 2) 

the potential life under FAN degradation is much higher 

compared with the HPC degradation units under the same risk 

level; 3) the failure HI for FAN degradation is relatively 

smaller than the HPC degradation. These suggest that the 

prediction accuracy based on risk surface trained from all 

failure modes cannot at least perform high accuracy in 

predicting FAN degradation units RUL by giving relatively 

conservative (smaller) RUL estimation. Therefore, the 

proposed method has very poor prediction performance on 

FD003 and FD004. This also explains why the optimal risk 

level for FD003 and FD004 is 99% or 100% since nearly all 

of the predicted RUL is too small. It is important to build the 

risk quantification model with regard to different failure 

modes and conduct FDC before estimating the RUL. Another 

reason for less prediction accuracy can be the inferring 

method RBPF is simply randomly initialized. The prediction 

performance can be further improved by applying some 

enhanced methodologies for RBPF initialization.  

(a) 

 

(b) 

 

Figure 10. Risk surface of a) FAN degradation mode and 

b) HPC degradation mode given by the Bivariate Weibull 

model. 
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5. CONCLUSION 

This paper proposes a Bi-variate model, which can be easily 

extended to the multivariate case, to define the failure 

threshold with quantifiable operation risk. The model 

considers the joint effect of life indicators and health 

indicators by using a Bi-variate Weibull model. Based on the 

risk model, a systematic methodology for RUL prediction is 

proposed, and several important conclusions are achieved: 

1) The proposed risk model can effectively convert the 

predictive distribution of HI into the predictive distribution 

of RUL.   

2) If low risk can be tolerated, the reliability information 

estimated from life indicator should be primarily considered. 

If higher risk can be tolerated, the HI based failure threshold 

will be more meaningful. This indirectly implies the HI based 

RUL prediction can potentially extend the equipment life in 

some non-critical applications. 

3) The RUL prediction results can reach its optimal 

performance by varying the tolerable risk in RUL prediction 

tasks. 

4) In RUL prediction, it is crucial to pro-diagnose the 

equipment failure, and the risk model for different failures 

should be different.  

As for future works, multivariate risk models will be explored 

by removing the independence assumption in the current 

model. Besides, adopting the proposed method to interface 

prognostic models and maintenance planning models will be 

explored. 
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