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ABSTRACT

In this paper we propose a hybrid modeling approach for gen-
erating reduced models of a high fidelity model of a physical
system. We propose machine learning inspired representa-
tions for complex model components. These representations
preserve in part the physical interpretation of the original
components. Training platforms featuring automatic differ-
entiation are used to learn the parameters of the new represen-
tations using data generated by the high-fidelity model. We
showcase our approach in the context of fault diagnosis for
a rail switch system. We generate three new model abstrac-
tions whose complexities are two order of magnitude smaller
than the complexity of the high fidelity model, both in the
number of equations and simulation time. Faster simulations
ensure faster diagnosis solutions and enable the use of diag-
nosis algorithms relying heavily on large numbers of model
simulations.

1. INTRODUCTION

In model-based approaches, the diagnosis engine is provided
with a model of the system, nominal values of the parameters
of the model and values of some of its inputs and outputs. The
main goal of a diagnosis engine is to determine from only this
information the presence of a fault and to isolate it. There is
a rich literature on model-based diagnosis results proposed
independently by the artificial intelligence (de Kleer, Mack-
worth, & Reiter, 1992) and control (Gertler, 1998),(Isermann,
2005),(Patton, Frank, & Clark, 2000) communities. Model-
based diagnosis requires accurate models to detect and isolate
faults in physical systems. For real-time diagnosis, such mod-
els need to simulate withing an allotted time interval. Typi-
cally, the more accurate models are, the more complex be-
come and hence it takes more time to simulate them. Tra-
ditional model-based diagnosis include filters (e.g., Kalman
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filter (Kalman, 1960), particle filter (Arulampalam, Maskell,
& Gordon, 2002)), or optimization based-techniques that es-
timate a number of parameters whose deviation from their
nominal values indicate the presence of a fault. These meth-
ods rely on model simulations either for one sample period
(Kalman and particle filters) or for some time horizon (op-
timization based). The simulation time becomes even more
stringent in the case of the particle filter where a possibly
large number of particles require their own model simula-
tions. One may argue the many system admit ordinary differ-
ential equations (ODEs) models as representations and a one
time step forward propagation is not necessarily a complex
operation. Although this is true for some physical systems,
many others require differential algebraic equations (DAEs)
as mathematical representations. DAE simulations require
the use of the Newton-Rhapson algorithm that in turn requires
the inversion of a Hessian matrix. The Hessian matrix size de-
pends on the complexity of the model (e.g., number of equa-
tions and variables).

In this paper we propose a hybrid modeling approach to re-
duce the complexity of a high fidelity model of a physical sys-
tem. The reduced complexity model is used by a diagnosis-
engine to detect and isolate system faults. Since we use the
model for model-based diagnosis, here we care on the ef-
fects of the model complexity on the simulation time. The
hybrid modeling approach is based on: (i) identifying the sys-
tem components responsible for making the simulation time
taking a long time, (ii) finding new parameterized represen-
tations for such components, and (iii) learn the parameters of
the new components We make sure that the chosen represen-
tations preserve, at least in part, the physical meaning of the
original physical components. Such a meaning is particularly
useful in diagnosis since it points to a physical explanation of
a faulty behavior.
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2. PROBLEM DESCRIPTION

We consider physical systems whose behavior can be de-
scribed by a set of DAEs of the form

0 =
y =

F(z,z,u), (D
h(z,u), 2

where = represents the state vector, u is a vector of inputs,
and y is a vector of outputs. We consider parametric faults:
faults that can be described through changes in system pa-
rameter values. Parametric faults do not impose significant
constraints on the type of faults we can detect and isolate. In-
deed, as shown in our previous work (Honda & et al., 2014;
Minhas et al., 2014; Saha & et al., 2014), we can augment the
physical model with fault modes inspired by the physics of
failure. The physics-based fault augmentation process adds
additional equations to the model. These new equations are
dependent on parameters whose activation induces the simu-
lated faulty behavior. The type of faults introduced are do-
main dependent. We can cover electrical (short, open con-
nections, parameter drifts), mechanical (broken flanges, stuck
flanges, torque losses due to added friction, efficiency losses),
or fluid (blocked pipes, leaking pipes) domains.

Let F = {Fy, F1,..., Fr} denote a set of faults we would
like to detect and isolate, where F; denoted the normal be-
havior. The diagnosis objective is to determine a classifier
f:Y > {Fy, Fy,...,Fr}, where Y is a set of observations
of the system behavior, typically given as time series that are
processed sample by sample (online) or as a batch (offline).
We associate a set of fault parameters {61, ..., 01} to each of
the fault modes with nominal values 6} for i € {1,...,L}.
The classifier fault detection scheme is defined as a variation
of the observations from their expected values. The fault iso-
lation is based on the deviation of the fault parameters from
their nominal values, i.e., ||0; — 6| > ¢;, where ¢; is a fault
specific threshold that can depend on the noise statistics for
example. Several fault parameter deviations are simultane-
ously possible, hence there may be some ambiguity in the
fault diagnosis. This case happens when the sensor measure-
ments do not contain enough information to differentiate be-
tween distinct faults. The fault are tracked either online or
offline using filters or optimization based parameter estima-
tion techniques.

3. RAIL SWITCH MODEL

As a case study, we consider a rail switch system used for
guiding trains from one track to another. The rail switch is
composed of a servo-motor and a gear-mechanism for scaling
the rotational motion and for amplifying the torque generated
by the electrical motor. The rail load is composed by a me-
chanical adjuster, and tongue-rails. The rail switch model has
5522 equations, and the rail component on its own has 4768
equations. We note that the majority of the model complex-

ity is concentrated on the rail model which was obtained by
using a finite element analysis approach (FEA). In particular,
each beam was approximated as a sequence of connected 2D
mass-spring-dampers, where the springs and dampers oppose
the rotational motion. Hence producing a reduced represen-
tation of this model improves its usability, especially in real
time applications. The input for the rail switch signal is a
reference signal for the servo-motor controller for each of the
two direction of motions. The time horizon for each input ref-
erence signal is 7 sec. Using the high-fidelity model, it takes
more than 7 sec to simulate the model for 14 sec, simulation
time that includes the rail displacement in both directions.
Our objective is to replace the rail component with a simpler
representation, to significantly reduce the simulation time.

4. FAULT AUGMENTATION

In this section we describe the modeling artifacts that were
used to include in the behavior of the system four fault oper-
ating modes: misaligned adjuster bolts (left and right), obsta-
cle and missing bearings. These fault modes were reported to
be of interest by a rail system operator we collaborated with.
Obviously there are many other fault modes of interest at the
level of the point machine for example. Such faults are more
readily detected due to the rich instrumentation present at the
Servo-motor.

Misaligned adjuster bolts: In this fault mode the bolts of
the adjuster deviate from their nominal positions. As a re-
sult, the instant at which the drive rod meets the adjuster (and
therefore the instant at which the switch rail starts moving)
happens either earlier or later. For example, in a left-to-right
motion, if the left bolt moves to the right, the contact happens
earlier. The reason is that since the distance between the two
bolts decreases, the left bolt reaches the adjuster faster. As a
result, when the drive rod reaches its final position, there may
be a gap between the right switch blade and the right stock
rail. In contrast, if the left bolt moves to the left the contact
happens later. The model of the adjuster includes parameters
that can set the positions of the bolts, and therefore the effects
of this fault mode can be modeled without difficulty. Figures
1 and 2 show a comparison between the nominal behavior and
the misaligned left and right bolts, respectively on the motor
current and angular velocity.

Missing bearings: To minimize friction, the rails are sup-
ported by a set of rolling bearings. When they become stuck
or lost, the energy losses due to friction increase. A compo-
nent connected to the rail was included to account for fric-
tion. This component has a parameter that sets the value for
the friction coefficient. By increasing the value of this param-
eter, the effect of the missing bearings fault can be simulated.
Figure 3 shows a comparison between the nominal behavior
and the missing bearing behavior on the motor current and
angular velocity.
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Figure 1. Effects of a misaligned left adjuster bolt on the
motor current and angular velocity
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Figure 2. Effects of a misaligned right adjuster bolt on the
motor current and angular velocity
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Figure 3. Effects of missing bearings on the motor current
and angular velocity

Obstacle: In this fault mode, an obstacle obstructs the motion
of the switch blades. In case the obstacle is insurmountable, a
gap between the switch blades and the stock rail appears. The
effect on the motor torque is a sudden increase in value, as
the motor tries to overcome the obstacle. To model this fault
we included a component that induces a localized, additional
friction phenomenon for the switch blades. This component
has two parameters: the severity of the fault and the position.
For very high severity the switch blades cannot move beyond
a certain position. Figure 4 shows a comparison between the

nominal behavior and the obstacle present behavior on the
motor current and angular velocity.
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Figure 4. Effects of obstacle presence on the motor current
and angular velocity

Remark 4.1 The behavior of the angular velocity seems to
be little affected by the presence of rail switch faults. This
observation can be explain by the fact that the angular veloc-
ity is the controlled variable. Hence the motor will vary the
torque (current) in an attempt to track the angular velocity
reference.

5. ACAUSAL MODELING

Acausal models are physics based models typically con-
structed from first principles. Unlike the causal models used
in signal processing and control, components of acausal mod-
els do not have inputs and outputs but ports (connectors)
through which energy is exchanged with other components
or the environment. This is the modeling formalism used
in the Modelica (Fritzson, 2015) language or in Simscape.
Ports are characterized by variables whose type determines
how they are manipulated when two ports are connected.
For example at a connection point, all flow variables sum
up to zero (flow conservation), while all non-flow variables
are equal. Examples of flow variables include current, force,
torque while examples of non-flow variables include poten-
tial, velocity, angular velocity. Typically, the product between
a flow and a non-flow variable has the physical interpretation
of instantaneous power. The acausal modeling formalism is
an instance of the more general port-Hamiltonian formalism
(van der Schaft & Jeltsema, 2014). The behavior of acausal
components is determined by a set of constitutive equations
of the form f(x;w) = 0, rather than by a causal map (with
or without memory). The vector of variables x can include
port variables (flow, non-flow) and internal variables (states,
algebraic variables), while w is a vector of component param-
eters.

We use acausal models to give simplified representations of
the rail component initially constructed using a finite element
approach which typically induces a higher complexity. To
learn the parameters of the constitutive equations there are
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two main scenarios that can be considered. In the first sce-
nario, we assume that we can directly measure the compo-
nent variables. This has the advantage that we can in theory
perform the model learning in isolation, without considering
the entire model. For this approach to work we need to care-
ful choose the model representation to avoid learning trivial
models. The second scenario assumes we have only indirect
information about the behavior of the model through mea-
surements that do not include the rail component variables.
In this case, the learning must include the entire rail-switch
model and it is more computationally intense. Since we have
access to the high fidelity model and hence we can directly
measure every model variable, we consider the first scenario.
We use two type of representations for the (acausal) rail com-
ponent: causal' and acausal.

It the causal case we assume that some variables are inputs
while other variables are outputs. This assumption is not ad-
hoc. It comes from a causal analysis of the entire system
model that produces causal relationships between the sys-
tem variables. This causal analysis is typically performed
before simulating a dynamical system represented as a DAE
(Casella, 2011). Once the input/output variable assignment
is done, we select a representation for the constitutive equa-
tions e.g., a neural network (NN), and move to the parameter
learning step. Note that instead of assigning the component
variables to an input/output category, we can try to learn the
component parameters by assuming that all variables are in-
puts and the output is zero for all inputs. This approach can
only work when considering the entire system model, case
which introduces a regularization effect that prevents learn-
ing a trivial equation such as the constant zero map. Indeed, a
zero map playing the role of a constitutive equation can make
the system model unsimulatable due to a singular Jacobian of
the system DAE.

In the acausal case the constitutive equations emulate physi-
cal laws. In what follows, we discuss different options for the
constitutive equations that guarantee that the overall system
model can be simulated. Since the behavior of the component
can be fairly complex, we may need a large set of constitutive
equations. To avoid arbitrary choices of constitutive equation
maps, we propose using networks of generalized mass spring
dampers (gMSD). In such a network, each node is a composi-
tion of one generalized mass, spring and damper in a parallel
connection, and each link is a composition of one spring and
damper. To ensure that the component modeled as a network
of gMSDs does not destabilize the overall system model, we
impose conditions on the gMSDs that ensure that the model
can be simulated. Such a condition is dissipativity. A dissipa-
tive component cannot generate energy internally. A formal
definition of a dissipative component is given in what follows.

Definition 5.1 Let E(t) = E(to) — j;to p(T)dT be the en-

'We force a causal behavior for the acausal component.

ergy of a physical component, where p(t) is its power. The
component is dissipative if E(t) < E(to) for all t > t.

We propose two types of maps for the gMSD. The first type
if based on a polynomial representation as described in the
following proposition.

Proposition 5.1 Consider a component represented as a
network of gMSD where the behavior of the masses, springs
and dampers are given by:

n n
2041 L2
F, = E Maspr 2T + E o, sign(E)Z~",
=0 i—1
n n
N 241 Ly 9
F. = g Ccoipr (&) 4 g coisign(z)z”",
i=0 i=1
n n
F; = E doip12% + E doisign(z)E™",
i=0 im1

respectively, where the scalars m;, d; and c; are non-
negative, and n is the polynomial order. Then the component
is dissipative.

An alternative definition for the gMSD is given in the follow-
ing proposition.

Proposition 5.2 Consider a component represented as a
network of gMSD where the behavior of the masses, springs
and dampers are given by:

F,, =m(z,z,8)Z, F.=k(x)z, Fy =d(z, &)

respectively, where m(-, -, ), k(-) and d(-, -) are non-negative
scalar functions. Then the component is dissipative.

Note that we have a lot of freedom with respect to how we
can model the functions m(-,-,-), k(-) and d(-,-). We can
modeled them for example as NNs, where we make sure
that the last layer imposes a non-negative output through a
“ReLu” layer or by taking the square of the output of the
last linear layer. Since the constitutive equations may con-
tain differential equations, we will need to use learning plat-
forms with ODE solving capabilities (e.g., Pytorch (Paszke &
et al., 2017), TensorFlow (Abadi & et al., 2015), DAETools
(Nikoli¢, 2016)), if the state derivatives are not measured.

6. HYBRID RAIL SWITCH MODEL

In this section we introduce several approaches for simplify-
ing the rail switch component model. In addition to model
simplification, we will also focus on preserving the physi-
cal interpretation of the reduced model, through appropriate
choices of constitutive equation maps. We assume that we
have access to the variables at the connection point between
the adjuster and the rails. In particular, we assume we can
directly measure the force F’, position x, velocity v and ac-
celeration a. We use the two modeling approaches:

Causal approach: we determine a causal relation between the
force, position, velocity an acceleration and use a causal map
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such as a NN to model the relation between them. The result-
ing component model is still acausal though, with an imposed
variable dependence.

Acausal approach: we model the rail component as a com-
bination of generalized mass, spring, dampers as defined in
Propositions 5.1 and 5.2. We will show that one mass-spring-
damper component is sufficient. The training data is gener-
ated by simulating the high fidelity rail switch model. The
input signal is the current applied to the servo-motor, which
correlated with a desired velocity profile. Typically, pre-
determined current trajectories are fed to the servo-motor to
generate the rail motion. In our case, we will use random
inputs to push the rail. We will record the force, position, ve-
locity and acceleration trajectories and use them as training
data. Each time series corresponds to a time interval of 100
sec, sampled at 0.1 sec. When appropriate, we use one time
series for training or several of them.

6.1. Causal modeling

In this approach, we assign causality relations to the variables
at the connection point between the adjuster and the rails.
Since the serve-motor tracks a pre-specified speed pattern,
our intuition should tell us that the position and velocity of
the rails are set by the motor. This intuition is confirmed by
a causal analysis performed by looking at the block lower tri-
angular (BLT) transformation (Casella, 2011) that depicts the
causal relations between the system variables 2 Hence, we
model the rail behavior by using a causal map F' = g(u; w),
where ¢ : R® — R is a map described by a NN with
one hidden layer g(u) = WU (tanh (W y + bl01)) + bl
where, the input u = [z, &, &] is a vector containing the po-
sition, speed and acceleration, the output F' is the force, and
w = {WO Ol Wl plI} is the set of parameters of the
map g. We have employed a two steps training process. In
the first step we train the parameters of the map in isolation,
considering the map g only. We used 15 time series con-
taining trajectories of the force, position, speed and accelera-
tion. We used the Keras (Chollet & et al., 2015) deep-learning
training platform, proceeded by splitting the data into train-
ing (70%) and test (30%) data sets. We chose the hidden
layer dimension to be 50, and trained the NN parameters us-
ing a decaying learning rate. The validation results are shown
in Figure 5, where we depict the true vs. predicted output
samples using as input the test data set. The MSE for the val-
idation data is M SFE;.s; = 415.46. Although it may appear
a large value, it must be interpreted relative to the values of
the force used in training and validation, since the training
data was not normalized to maintain the physical interpreta-
tion. We used the weights of the Keras model to implement a
Modelica component with one port and the constitutive equa-
tion given by F' = W (tanh (W% + b)) + b}, where
u = [z, &,%]. Next, we executed a fine tuning of the com-

2The BLT transformation is too large to be included in a plot.
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Figure 5. Validation of the learned model

ponent parameters by performing a parameter learning step
using the entire rail switch model. This way, the rest of the
model equations are considered, adding an additional regu-
larization effect. We chose a gradient-free optimization al-
gorithm, namely the Powell algorithm, to avoid using gra-
dient approximations. The Modelica rail switch model was
converted into a functional mockup unit (FMU) (Blochwitz
& et al.,, 2011), and integrated with the Powell algorithm in
Python. Although gradient free algorithms are typically slow
for a large number of variables, we did not have to run the
algorithm for a large number of iterations since we used the
Keras solution as initial parameter values. The result of this
additional step was a 20% improvement of the loss function
applied to the test data. The newly learned Modelica compo-
nent has 8 equations.

6.2. Acausal modeling

We showed in the previous section how we can use causal
maps inside acausal components. The advantage of the causal
representation is that we can use main stream deep learning
platforms to learn the parameters of the causal map. There
is a significant disadvantage though: it is not clear if the
obtained component is reusable. By reusability we under-
stand the ability to use the component in different config-
urations and still behaving as expected. From a numeri-
cal perspective view, this means that we should be able to
compute the acceleration when the force becomes the in-
put (position and speed are state variables and considered
known from the previous simulation step). The acausal mod-
eling approach guarantees this. Using the observation that
the rail opposes motion, we modeled the rail as a combina-
tion of a generalized mass-spring damper in a parallel con-
nection. We use two types of gMSD models: polynomial
and NN. We considered a linear mass model: F,, = mI
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for both cases. In the polynomial case, we considered the
following models for the spring and damper, respectively:
Fe = co(r — zpix) + c1(z — 37fm)3 + e2(7 — $fiw)5 and
F; = doi + d12® + da2®. The set of parameters we have to
learnis w = {m, co, c1, ¢2, do, d1, d2, ;5 }. Unlike to previ-
ous section, we considered as input the force, and as outputs
the position and velocity. The model parameters are the solu-
tion of the following constrained optimization problem:

miny>o 55 iy [@(t:) — &(t)[° + @ (t:) — ()|
subject to:
mi(ti) + Fe(t:) + Fa(ts) = F(t:),
Fo(ti) = co(z(ts) — Tpia) + c1(x(ts) — Tpia)® + c2(z — Tfix)®,
Fu(ti) = doix(t:) + diix(t:)® + dai(t:)°,

w = {m, co, c1, c2,do, d1,d2, Tfiz }.

where t; are time samples of the time series. We chose to
include only the position and velocity since as states they are
automatically generated during the simulation process. The
optimization problem used one time series only and used a
nonlinear least square algorithm. We relied on the DAETools
(Nikoli¢, 2016) Python package to implement the optimiza-
tion algorithm since it provides access to the gradients of the
cost function, hence gradient approximations are not needed.
In particular we used the IDAS solver with default parameters
that is endowed with sensitivity analysis. The resulting opti-
mal parameters are as follows: cf; = 6.5 X 103, c] = 0.45,
cy = 415 x 104, df = 5.96 x 10%, di = 0, d5 = 0,

* = 1.5 x 102, s} = 1.077. We repeated the learning pro-
cess when the acausal rail model is represented using NN rep-
resentations. In particular we chose as models for the spring
and damper F, = c(z,4)?(z — xiy) and Fy = d(z, )4,
respectively, where ¢(z, &) and d(z, ) are modeled as a NN
with one hidden layer of size 15 and t anh as activation func-
tion. Using the DAETool, we solved the following optimiza-
tion problem:

min, g7 S0, [le(ts) — 2(6)|17 + |2 (t) — @ (t:)||?
subject to:
mi(t;) + Fe(t:) + Fa(t:) = F(t:),
Fo(ti) = e(a(ti), &(t:))* (x(ti) — 2 i),
Fy(ti) = d(x(ti), &(t:))*a(t:),
c(a(t:), #(t:)) = W“]tanh((w [w(t), & (t:)]T +b[°]))+b“1
d(x(t;), i(t:)) = W tanh( (WO )]T+b ))+b§],

w = {m WC[1]7 bc bl WC[()]y b[00]7 d I’ b[1] b[0]7 xfza:}?

With the neural network representation we are able to recover
a more detailed behavior for the speed. The number of equa-
tions of the rail component under the acausal polynomial and
NN representations are 7 and 11, respectively.We validated
the learned models by integrating them within the overall rail
switch model. We generated 25 time series with random in-
puts for the servo-motor used for the four rail switch models:
the high fidelity one, and three low fidelity corresponding to
the causal NN, acausal polynomial and acausal NN represen-

tations, respectively. An example of such time series that cor-
responds to the force applied to the rail is shown in Figure
6.

Forces acting on the rail
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o
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Figure 6. Rail force for the high and low fidelity models

We used the 25 time series to compute MSE statistics for the
position, velocity and force. The results are shown in Fig-
ures 7, 8 and 9, shown as box plots. A first observation is
that the MSEs corresponding to the force have large values
as compared to the position and velocity. This should not
be a surprise since the absolute values of the force are in the
thousands. The position and velocity MSEs are similar for
all three cases. In the case of the force, the acausal represen-
tations have roughly the same statistics, while in the causal
case, the MSE has both the variances and mean comparable,
but slightly smaller. This again should not be a surprise since
the rail causal model is tailored for our scenario. In other
words the model may be overfitted. In a different usage sce-
nario, the casual representation may not even simulate. Hence
we have a trade-off between accuracy and generalizability.

MSE: Causal rail representation

1.2e-7 7e5 6e2

position velocity

Figure 7. Validation statistical results: causal rail representa-
tion
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MSE: Acausal polynomial rail representation
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Figure 8. Validation statistical results: acausal polynomial
rail representation

MSE: Acausal NN rail representation
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Figure 9. Validation statistical results: acausal NN rail repre-
sentation

7. FAULT DIAGNOSIS

We use the high-fidelity model as the ground truth, and use
the fault component and parameters to generate faulty behav-
ior. Note that since the faults are not at the level of the rail
component, there is no need to train surrogate models for the
rail in each fault mode. For the adjuster bolt misalignment,
we consider one at a time, 50 mm and 200 mm to the left and
to the right bolt misalignment. Two parameters have been
introduced in the adjuster model that allow for bolt misalign-
ment modeling, whose nominal values are zero. In the case
of the missing bearing fault, the missing bearing component
introduces a viscous type of friction corresponding to a vis-
cous coefficient of d = 5000 Ns/m. If necessary we can
model other type of friction models, e.g., Coulomb friction.
The component responsible for the simulation of an obstacle
has two parameters: the fault intensity and the obstacle loca-
tion. The fault intensity dictates how much opposing force
the obstacle generates against the rail motion induced by the
motor. We model the opposing force as a localized viscous
force. The localization of the force was achieved by allowing
the viscous coefficient to be non-zero only in a neighborhood
of the obstacle location. For example d can be modeled as
d=10° x (1(x — z, + ) — 1(x — x, — §)) Ns/m, where
x, is the obstacle location, 1(x) is the step function and J is

a small positive scalar. This means that d is non-zero only
inside the interval [z, — J, 2, 4+ J]. The obstacle position is
chosen at 10 cm from the left side initial position of the rail.
The effects of the fault modes on the motor current and angu-
lar velocity for the chosen parameter were shown in Figures
1-4. The objective of the fault diagnosis is to detect which of
the four fault modes is present by tracking the parameters of
the fault modes. We consider the single fault scenario, that is
only one of the four fault modes is active at some time instant.
We can use simultaneous parameter tracking (all parameters
of the fault model are tracked) or we can run in parallel track-
ing algorithms that estimate the parameters of one of the four
fault modes only. In our case we would have four parallel al-
gorithm. Based of the parameter deviation from their nominal
values we declare the presence of a fault mode.

7.1. Optimization-based parameter estimation

Filtering based techniques either have constraints on the class
of models they can work with (e.g., Kalman like filters), or
they require significant computational resources (e.g., parti-
cle filter). In this work we estimated the fault parameters
for each of the four fault modes using an optimization-based
parameter estimation algorithm. The loss function was de-
fined as the mean square error (MSE) between the simulated
variables and the “observed” variables (motor current, mo-
tor angle and angular velocity). The observed variables were
generated using the high-fidelity models and contain simula-
tions over a time horizon of 14 sec containing both switch
motions: left to right and right to left. The variables are
sampled at 0.1 sec. The optimization algorithm requires loss
function evaluations that in turn requires model simulations.
The model simulations were done using Functional Mockup
Units (FMU) (Blochwitz & et al., 2011) representations of the
Modelica models. We tested the optimization algorithm for
the three versions of the reduced complexity models: causal
NN, acausal NN and acausal polynomial representations of
the rail. We tested the parameter estimation using several op-
timization algorithm including gradient-based and gradient-
free algorithm. The best results were produced by the the dif-
ferential evolution algorithm and they are presented in what
follows. Since such an algorithm requires many loss func-
tion evaluations it is imperative for the model simulations to
be fast. In average, the acausal polynomial, acausal NN and
causal NN representations take 0.3 sec, 0.5 sec and 0.9 sec,
respectively over the 14 sec time horizon. For the same time
interval, the high fidelity model takes 7 sec. The FMUs were
used in Python scripts implementing the parameter estima-
tion algorithms. The model simulations were executed on PC
with a 12 cores Intel Xeon 3.5 GHz CPU, with 64 GB of
RAM. We recall that the starting position of the rail is 1 m,
value dictated by the initial conditions of the motor and the
positions of the different reference points in the rail model.

Left bolt fault: the left bolt fault mode is active with a devia-
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tion from its nominal value of 50 mm. Tables 1-3 present the
results of the parameter estimation algorithms correspond-
ing to the three representations, when tracking separately the
fault parameters. Using as metric the MSE it is clear that we
are correctly identifying the left bolt fault as the current fault
mode. In addition, the fault parameter values are within 3%
of the value used to generate the faulty behavior.

Tracked fault parameters | Paramater value | MSE
Left boltfmm] 49.53 0.006

Right boltfmm] 6.03 0.324
Missing bearing[Ns/m] 39.73 0.326
Obstacle{[Ns/m],[m]} {1.5x10°,1.49} | 0.334

Table 1. Left bolt fault mode (acausal polynomial representa-
tion)

Tracked fault parameters | Paramater value MSE
Left boltfmm] 48.69 0.011

Right boltfmm] 11.26 0.352
Missing bearing[Ns/m] 28.45 0.353
Obstacle{[Ns/m],[m]} {1.67x10°,10.04} | 0.386

Table 2. Left bolt fault mode (acausal NN representation)

Tracked fault parameters Paramater value MSE
Left boltfmm] 50.42 0.005

Right boltf[mm] 8.91 0.344
Missing bearing[Ns/m] 33.67 0.304
Obstacle{[Ns/m],[m]} {6.31x10%,0.0772} | 0.341

Table 3. Left bolt fault mode (causal NN representation)

We estimated simultaneously all the fault parameters as well.
The results for the three representations of the rail model are
shown in Table 4. We obtained reasonable small MSE values,
but it is more challenging to distinguish between the faults
modes. Recalling that the obstacle was introduced at 1.1 m
we can exclude the obstacle fault mode (the fault intensity is
irrelevant outside the obstacle position). The parameter corre-
sponding to the missing bearing fault mode has a value in the
hundreds for two of the rail representations. Although they
may appear not to have a significant impact on the behav-
ior of the rail switch, without some prior information about
what is a significant value it is difficult to draw a conclusion
about this fault mode. The good news is that the left bolt fault
parameter was reasonably well estimated. Although not zero,
the right bolt fault parameter values are small enough to elim-
inate this fault mode as a possible source of faulty behavior.

Right bolt fault: the bolt fault mode is active with 200 mm
deviation from its nominal value. Tables 5-7 present the re-
sults of the parameter estimation algorithms corresponding to
the three representations, when tracking separately the fault
parameters. The MSE values show that we can indeed iden-
tify the correct fault mode. Moreover, the fault parameter
values are within 6% of the value used to generate the faulty
behavior.

Tracked fault | Acausal Acausal Causal NN
parameters poly NN

Left boltffmm] 49.69 50.097 48.22

Right boltlmm] 0.151 1.624 0.394
Missing bear- | 244.37 1.624x107 | 6.186x107
ing[Ns/m]

Obstacle{[Ns/m], | {7.58x10%, | {1.297x10°,| {1.381x10°,
[m]} 1.769} 1.7314} 1.223}

MSE 0.004 0.005 0.012

Table 4. Left bolt fault mode: simultaneous parameter esti-
mation

Tracked fault parameters | Paramater value | MSE
Left boltffmm] 72.75 1.025

Right boltfmm] 197.35 0.029
Missing bearing[Ns/m] 35.71 1.767
Obstacle{[Ns/m],[m]} {1.11x10°,0.191} | 1.786

Table 5. Right bolt fault mode (acausal polynomial represen-
tation)

Tracked fault parameters | Paramater value | MSE
Left boltffmm] 71.84 1.03

Right boltfmm] 187.66 0.091
Missing bearing[Ns/m] 49.12 1.818
Obstacle{[Ns/m],[m]} {6.12x10%,1.04} | 1.855

Table 6. Right bolt fault mode (acausal NN representation)

Tracked fault parameters | Paramater value | MSE
Left boltlmm] 73.97 1.022

Right boltfmm] 198.42 0.01T
Missing bearing[Ns/m] 20.20 1.792
Obstacle{[Ns/m],[m]} {1.05x10%,0.977} | 1.792

Table 7. Right bolt fault mode (causal NN representation)

Bearing fault: the bearing fault mode is active with the vis-
cous coefficient taking the value 5000 Ns/m. Tables 8-10
present the results of the parameter estimation algorithms,
when tracking separately the fault parameters. The smaller
MSE values correspond to the bearing fault mode. We note
the parameter estimation error variance is roughly 3%.

Tracked fault parameters | Paramater value | MSE
Left boltfmm] 0.04 0.412

Right boltfmm] 4.40 0.3869
Missing bearing[Ns/m] 5060.706 0.03
Obstacle{[Ns/m],[m]} {3.5x10°, 1.37} 0.367

Table 8. Bearing fault mode (acausal polynomial representa-
tion)

Tracked fault parameters | Paramater value MSE

Left boltffmm] 0.06 0.377

Right boltfmm] 16.42 0.365
Missing bearing[Ns/m] 4919.18 0.00744

Obstacle{[Ns/m],[m]} {1.83x10°, 1.04} 0.404

Table 9. Bearing fault mode (acausal NN representation)
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Tracked fault parameters | Paramater value | MSE
Left boltfmm] 0.126 0.377

Right boltffmm] 5.25 0.361
Missing bearing[Ns/m] 4845.50 0.0032
Obstacle{[Ns/m],[m]} {1.84x10°,1.04} | 0.378

Table 10. Bearing fault mode (causal NN representation)

Obstacle fault: we simulated the high fidelity model with
an obstacle at 1.1 m and a viscous coefficient with the value
10° Ns/m. The parameter estimation results when tracking
the fault parameter separately are shown in Tables 11-13.
The smallest MSE values were obtained for the correct fault
parameters. In addition, the maximum estimation error for
the fault intensity and fault location parameters is 0.2% and

0.09% of the nominal values, respectively.

Tracked fault parameters | Paramater value MSE
Left boltffmm] 3.17 69.618

Right boltfmm] 49.57 69.20
Missing bearing[Ns/m] 5915.78 67.67
Obstacle{[Ns/m],[m]} {1.01x10°, 1.099} | 0.020

Table 11. Obstacle fault mode (acausal polynomial represen-

tation)

Tracked fault parameters | Paramater value MSE
Left bolffmm] 0.178 69.40
Right boltfmm] 44477 69.054
Missing bearing[Ns/m] 5870.32 67.62
Obstacle{[Ns/m],[m]} {9.98x10%, 1.099} | 0.047

Table 12. Obstacle fault mode (acausal NN representation)

Tracked fault parameters | Paramater value MSE
Left boltfmm] 0.679 69.384

Right boltfmm] 54.353 69.071
Missing bearing[Ns/m] 5867.27 67.560
Obstacle{[Ns/m],[m]} {9.98x10%, 1.099} | 0.0122

Table 13. Obstacle fault mode (causal NN representation)

8. CONCLUSIONS

We proposed a hybrid modeling approach to simplify a high
fidelity model of a rail-switch system. In particular, we used
simplified representations for the rail component using ma-
chine learning inspired models. The representations pre-
served the physical interpretation of the rail component. The
model complexity of the model abstractions (i.e., number of
equations) is reduced by two orders of magnitude. A similar
reduction in the order of magnitude is obtained with respect
to the simulation time of the rail switch model over a full
motion cycle of the rail. The new model abstractions were
used for the rail fault diagnosis. The rail switch model was
augmented with additional behavior to include parameterized
fault modes. An optimization based approach was used to

estimate the fault parameters. We demonstrated that using al-
gorithms that track separately the fault parameters of each of
the four fault modes produce accurate diagnosis results. The
MSE:s and the parameter values are used by the diagnosis en-
gine to produce a diagnosis solution.
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