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ABSTRACT 
Operational readiness, reliability and safety are all enhanced 
through condition monitoring. That said, for many assets, 
there is still a need for a prognostic capability to calculate 
remaining useful life (RUL). RUL allows operation and 
maintenance personnel to better schedule assets, and 
logisticians to order long lead time part to help improve 
balance of plant/asset availability. While a number of RUL 
techniques have been reported, we have focused on fatigue 
crack growth models (as opposed to physics or deep learning 
of based models). This paper compares the performance of 
stress intensity models (linear elastic model, e.g. Paris’ Law), 
to Head’s theory (geomatical similarity hypothesis) and to 
Dislocation/Energy theories of crack growth. It will be shown 
that these models differ mainly in the crack growth exponent, 
and that this leads to large differences in the estimation of 
RUL during early state fault propagation, though the results 
of all three models converge as the RUL is shorted.  

1. INTRODUCTION 

This paper should be taken in the context of the Health and 
Usage Monitoring System (HUMS), which supports 
condition monitoring of helicopters. HUMS typically include 
functions for engine performance checks, automated 
reporting of limitations/exceedances, rotor track and balance, 
and aircraft regime (in order to determine when it is 
appropriate to acquire data). 

In general, helicopters have inspections ever 50 hours of 
flight time, with heavier maintenance being conducted at 100 
and 300 hours. Aircraft also have annual inspections. 
Typically, the number of hours flown per month is very 
dependent of the operator’s mission. It is not surprising to see 
fleets that average 300 to 500 hours per annum. Of course, 
for operators that fly inspection (inventorying power poles 

and examining power lines for encroachment) or other 
missions which are seasonal (firefighting, by dropping water 
or delivering man/material), these aircraft can fly as much as 
25 to 40 hours per week.  

The importance of having a valid RUL calculation is not 
academic. It allows the fleet operation manager to order parts, 
schedule the right personnel to perform maintenance, and 
turn an unscheduled maintenance action into scheduled 
maintenance. For example, as in Figure 1, this bearing has 
been trending for 150 hours. The operations manager knows 
that in 30 hours the aircraft has a 100-hour inspection. While 
the aircraft is down for maintenance, the maintenance 
manager will schedule the bearing to be replaced. This 
prevents a potential unscheduled maintenance activity in the 
future. 

 
Figure 1 Trending Upper Mast Ball Bearing with RUL of 83 

Hours 

For the light helicopter market, or cases where the aircraft has 
no extended overwater flights, HUMS is more of a logistic 
support tool to improve availability (e.g. allowing the 
generation of revenue flights) rather than safety of flight 
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requirement. The aircraft, having been type certificated and 
properly maintained, is inherently safe. For the bearing in 
Figure 1, the worst possible outcome would be that the pilot 
sees a chips light (annunciator indicating metal debris in the 
gearbox) and is forced to land. Obviously, one goal of HUMS 
is to generate a maintenance action prior to a chips light, so 
that this maintenance is done opportunistically while the 
aircraft is down for some scheduled inspection.  

2. RUL: INHERENT REQUIREMENTS   

Inherent in calculating RUL are at least four pieces of 
information.  

1. An estimate of the current component health. 
2. An estimate of when it is appropriate to do 

maintenance, e.g. the threshold. 
3. An estimate of the future component load. 
4. A model of the component degradation process, 

which takes the current component health, the 
estimated future load, and calculating the 
time/cycles to when it is appropriate to do 
maintenance. 

A condition monitoring system, such as HUMS, can acquire 
vibration data, and through signal processing techniques and 
configuration, can calculate condition indicators  
representative of component health. This addresses issue 1. 
Without loss of generality, Veccer (2005) gives an excellent 
review of many common condition indicators.  

The estimate of when it is appropriate to do maintenance is a 
threshold setting problem. We have approached this as 
hypothesis testing (Bechhoefer, 2007, 2011). That is, does the 
measured set of condition indicators have enough evidence to 
suggest that the component is no longer good (e.g. reject the 
Null Hypothesis that the component if normal). While many 
classification problems have been solved using artificial 
neural networks (ANN) or deep learning techniques, this 
problem is better suited to this hypothesis testing process. 
Data driven techniques such as ANN excel in the 
classification of know-knows (e.g. there is a training set of 
known nominals and known faults to train against). 
Hypothesis test functions in the domain of know-unknows. 
Know-unknowns is used to describe systems or components 
which are typically nominal, and where fault cases are rare. 
This is the condition normally found in condition monitoring, 
as the vast amount of data collected is asymmetric – there are 
few in any examples of damage and most of the data set are 
nominal. 

For example, on the Bell 407 drivetrain, there are 30 bearings, 
each with at least four fault modes. The aircraft has 22 shafts 
(three failure modes) and 15 gears (at least six failure modes: 
chip, crack, pitting, micro pitting, scuffing, wear). The total 
number of training cases for this gearbox would be at least 
552. Due to high quality of the gearbox, and regular 
maintenance, failures are rare. This suggests that training sets 

would require seeded fault testing – which is not practical. As 
such, hypothesis testing is a good option. Typically enough 
data is needed to estimate the condition indicator covariance 
matrix, perhaps 50 to 100 data point. For a helicopter, this 
can represents three hours of flight time assuming 20 to 30 
acquisitions per hour. 

2.1. Threshold Setting  

All condition indicators (CIs) have a probability distribution 
function (PDF). Any operation on the CI to form a health 
index (HI) is then a function of distributions. The HI function 
for this paper is defined as the norm of n CIs (e.g. the 
normalized energy of n CIs): 

𝐻𝐼 = 	0.35 𝑐𝑟𝑖𝑡- √𝒀!𝒀                   (1) 

where Y is the whitened, normalized array of CIs, and crit, is 
the critical value. In hypothesis test, the critical value is 
calculated from the inverse cumulative distribution function, 
for a given probability of false alarm. For Eq. (1), the ICDF 
is the Nakagami where h is the number of CIs in the array, 
and = n, and w = h/(2-p/2)*2, see Bechhoefer et. al (2011) 
for the proof. From a hypothesis testing perspective, a 
normalized HI > 0.35 indicates a rejection of the Null 
Hypothesis that the component is nominal. These threshold 
values have been set based on the experience of monitoring 
numerous helicopters, wind turbines and seeded fault testing 
on 60+ gearboxes. The level of damage for an HI of 1.0 is 
seen in figure 3.  

This function (1) is valid if and only if the distribution (e.g., 
CIs) are independent and identical (e.g., IID). As an example, 
for Gaussian distribution, subtracting the mean and dividing 
by the standard deviation will give identical Z distributions. 
The issue of ensuring independence is much more difficult.  
In general, the correlation between CIs is non-zero. This has 
been measured on numerous tests, see Bechhoefer et. al. 
2007, 2011.  

This correlation between CIs implies that for a given function 
of distributions to have a threshold that operationally meets 
the design probability of false alarm (PFA), the CIs must be 
whitened (e.g., de-correlated). In Bechhoefer et. al (2011) it 
was shown that a whitening solution can be found using 
Cholesky decomposition.  

The Cholesky decomposition of Hermitian, positive definite 
matrix results in A = LL*, where L is a lower triangular, and 
L* is its conjugate transpose. By definition, the inverse 
covariance is positive definite Hermitian.  It then follows that 
if: 

LL* = S-1, then Y = L x CIT          (2) 

The vector CI is the correlated CIs processed as a result of 
data acquisition on the aircraft, which are used for the HI 
calculation. The transformed vector Y is 1 to n independent 
CIs with unit variance (one CI representing the trivial case). 
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The Cholesky decomposition, in effect, creates the square 
root of the inverse covariance. This, in turn, is analogous to 
dividing the CI by its standard deviation (as in the case of one 
CI). It can be shown that Y = L x CIT then creates the 
necessary independent and identical distributions required to 
calculate the critical values for a function of distributions. 

The critical (crit, eq. 1) value is taken from the inverse 
cumulative distribution function for the HI. The CIs used 
have are assumed to have Rayleigh like PDFs (e.g., heavily 
tailed). For magnitude-based CIs, it can be shown that for the 
nominal case, the CI probability distribution function (PDF) 
is Rayleigh (Bechhoefer, 2005). For Gear CIs and Bearing 
CIs (where magnitudes which are biased by root mean square 
(RMS)), a transform is used to make the CI more Rayleigh 
like. The transform “left shifts” the CI. For example, a shift 
such that the .05 CDF (cumulative distribution function) is 
assigned to 0.0. 

Consequently, the HI function is based using the Rayleigh 
distribution. The PDF for the Rayleigh distribution uses a 
single parameter, b, defining the mean µ = b*(p/2)0.5, and 
variance s2 = (2 - p/2) * b2.  The PDF of the Rayleigh is: 
x/b2exp(x/2b2).  Note that when applying these operations to 
the whitening process, the value for b for each CI will then 
be: s2 = 1, such that: b = s2 / (2 - p/2)0.5 = 1.5264.  

For the HI equation in (1), the normalized energy of the CIs, 
it can be shown that the function defines a Nakagami PDF 
(Bechhoefer et. al, 2011). As note previously, the statistics 
for the Nakagami are h = n, and w = 1/(2-p/2)*2*n, where n 
is the number IID CIs used in the HI calculation. 

2.2. The Concept or RUL 

To be clear, for HUMS, RUL is taken as when it is 
appropriate to do maintenance, and not when it fails. For 
aviation application, maintenance is a process to restore the 
equipment to the original design reliability. Warn or damaged 
parts have reduced reliability – and as such, maintenance 
triggered by an HI exceeding 1, is complimentary to existing 
maintenance practices. For an example of a critical system, 
the design reliability is typically "six-nines," e.g., the 
probability of failure of the part under design loads is less 
than 10"# per hour. For the damaged part, the reliability may 
be reduced to three-nines or a probability of failure of 10"$. 
The appropriateness to repair the faulty component, then, can 
be seen as an action to restore the designed reliability of the 
system as a whole. From a maintainer perspective, then: 

• HI ranges from 0 to a positive value, where the 
probability of exceeding an HI of 0.35 is the PFA. 

• A warning (yellow) alert is generated when the HI is 
greater than or equal to 0.75. Maintenance should be 
planned by estimating the RUL until the HI is 1.0. 

• An alarm (red) alert is generated when the HI is greater 
than or equal to 1.0. Continued operations could cause 
collateral damage. 

This threshold setting model ensures that the probably of 
false alarm is exceedingly small when the HI reaches 1. In 
practice from numerous installations and seeded fault test, a 
bearing at HI 1 has easily seen physical damage (figure 3).  

Note that this nomenclature does not define a probability of 
failure for the component, or that the component fails when 
the HI is 1.0. Instead, it suggests a change in operator 
behavior to a proactive maintenance policy: perform 
maintenance before the generations of collateral or cascading 
faults. By performing maintenance on a bearing prior the 
bearing shedding extensive material, costly gearbox 
replacement can be avoided, and the reliability of the gearbox 
is restored to its design requirements. 

Thus, we define the RUL as the time from the current HI, 
until the HI is greater than or equal to 1.  

2.3. Estimating Future Loads 

If the cyclic loading/stress level is sufficiently high, 
microcracking will propagate across the surface of the 
component, and eventually penetrate into the body of the 
material. For any material, to predict the RUL, an estimate of 
the future load is needed. If the future load is below the plain 
fatigue limit of the material, the component will run 
indefinitely.  

For HUMS, there is limited knowledge of load except for 
gross measure such as torque (Figure 2), or airspeed. For 
many accessory components (oil pump, hydraulics), the loads 
are relatively unchanged by load or mission. What can be said 
is that some missions require more power/load than other 
missions, based on factors such as altitude, temperature and 
regime (hover requires more power than level flight at 40 
knots, etc.).  

 
Figure 2 PDF of Torque on a Light Helicopter 
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Because of the limited knowledge available for strain, it is 
proposed that three cases would be used to bound the RUL 
corresponding to: low, medium and high loads. The low 
estimate is 10% lower than the medium load/torque (e.g. 
average mission), whereas high load is 10% higher.  

It was found that the mean load was easily calculated after 20 
flight hours. 

3. MODELING COMPONENT DEGRADATION 

Generally speaking, fatigue crack growth can be 
characterized as (Beer, 1992): 

Mode1 (opening mode), the crack surface moves directly 
apart, 

Mode 2 (edge sliding mode), where the crack surfaces move 
normal to the crack front, remaining in plane, and,  

Mode 3 (shear mode), the crack surface moves parallel to the 
crack front and remains in the crack plane.  

These three modes can describe, through superposition, most 
general cases of surface displacement. It is assumed that 
cracks are stress-free boundaries adjacent to the crack tip. As 
such, loading forces affect only the intensity of the stress field 
at the crack tip. These fields correspond to the three modes of 
crack surface displacement and are characterized by the stress 
intensity factor K (which is a function of the component 
dimension and loading condition). K is proportional to the 
gross stress and the square root of the crack length. The 
opening mode intensity factor is given by:  

𝐾 = 𝜎(𝜋𝑎)% &' 𝛼    (3) 

Where s is the gross stress, a is the crack length and a is 
the shape factor. When K is known, stress and displacements 
near the crack tip can be calculated. For example, for a 
displacement in the x direction, the strain is (see  Frost, 1999): 

𝜎( = 𝐾
(2𝜋𝑟)% &'9 𝑐𝑜𝑠<𝜃 2- >?1 − 𝑠𝑖𝑛<𝜃 2- >𝑠𝑖𝑛<3𝜃 2- >B  (4) 

This representation of crack tip stress field by a stress 
intensity factor is a basic concept in fracture mechanics. In 
the analysis of fatigue crack growth, the fatigue cycle is 
usually described by DK, which is the difference between the 
maximum and minimum stress field. It has been seen, 
experimentally, that DK, and not the maximum K, causes 
crack growth, and that if DK is constant, the crack growth rate 
is constant (Frost, 1999).  

3.1. A Linear elastic fracture mechanics model 

For many materials, such as steel used in gears and bearings, 
which are subject to tensile loading cycle, the fatigue crack 
growth can be expressed as: 

 
)*
)+
	= 	𝐷(Δ𝐾),            (5) 

where  
• da/dN is the rate of change in the half crack length 

per cycle 

• D is a material constant 

• m is the crack growth exponent, typically 3 to 5. 

Substituting in DK :  
)*
)+
	= 	𝐷 ?2𝜎(𝜋)% &' 𝛼B

,
𝑎, &'       (6) 

Inverting and integrating to get N, the number of cycles gives: 

𝑁 = ∫ 𝑎", &'

𝐷 ?2𝜎(𝜋)% &' 𝛼B
,9 𝑑𝑎*!

*"
   (7) 

By taking a as ao to get the crack growth rate, the constants 
cancel out leaving: 

𝑁 = 𝑑𝑁
𝑑𝑎- 𝑎- − 𝑎.<𝑎- 𝑎.⁄ >

,
&'

𝑚
2- − 19          (8) 

If m is allowed to be 4, this give: 

𝑁 =	𝑑𝑁 𝑑𝑎- × 𝑎- × 𝑙𝑛 ?
𝑎. 𝑎-- B	               (9) 

For constant rate machines, such as a helicopter gearbox, N 
is proportional to time.  

If one makes the assumption that the component health (the 
HI) is proportional to damage, the Eq. (9) defines the RUL 
estimate. 

3.2. Head’s Theory as a fracture mechanic model 

Head’s theory makes a number of simplifying assumptions 
about the stress field. Essentially, material near the crack Is 
treated as an array of independent elastic tensile bars of 
modulus E, each carrying the remotely applied stress s, 
which transmitted the load to the bars both directly and 
through shear. The model gave for an applied stress s,  

)*
)+
	= 		 &/0

#*
#
$%

$/&(∆0)4
	∝ 𝐾$     (10) 

This is interesting because in effect, other than a constant, Eq. 
(10) can be reduced to Eq. (6), where the exponent m is 6. 
Inverting and taking the integral gives the following alternate 
RUL algorithm:   

𝑁 =	𝑑𝑁 𝑑𝑎- × 𝑎- × M2𝑎.	 − 2 N𝑎-9 O  (11) 

3.3. Dissociation theory as a potential fracture 
mechanics model.  

In the case where crack loading is in the anti-plane strain (e.g. 
Mode 3), the plastic zone at the crack tip can be represented 
as a continuously distributed array of small dislocations at on 
the crack plane. It is assumed that crack growth occurs when 
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the accumulated plastic strain distribution at the crack tip 
exceeds some critical value and continues as this value is 
exceeded at the crack tip. The rate at which the crack grows 
per stress cycle in terms of displacement leads to:  

𝑑𝑎 = 	 *
$0'()

*

4/0#
                 (12) 

This again is similar to Eq. (6), with an exponent of 2. 
Inverting, integrating and changing terms gives: 

𝑁 =	𝑑𝑁 𝑑𝑎- × 𝑎- × <2𝑎.	 − 2N𝑎->  (13) 

4. COMPARISON OF THE THREE FRACTURE 
MECHANICS MODELS  

In order to compare the performance of these three models, a 
data set is needed. We used data acquired from a 2.2 
Megawatt (MW) high speed bearing, with a known fault (HI 
value 1.1, Figure 3). 

 
Figure 3 Damaged High-Speed Bearing, HI 1.1  

This data set was collected over 55 days, one acquisition 
every 10 minutes (144 acquisitions per day).  
 
Note that the fault starts to propagate at approximately time -
700, which corresponded to high loads from a winter storm 
(Figure 4). All three of the fracture mechanics models require 
a crack length (a), and the rate of change of the crack length 
(da/dN).  
 
A simple state reconstruction model (α-β tracker as in “alpha-
beta”) was used to filter the component health (HI) and 
estimate the rate of change of the component health (e.g. 
dHI/dt). Figure 5 shows the estimated rate of change of health 
using the α-β tracker. 
 
By making the simplifying assumption of stationarity, we 
will substitute the α-β tracker for Kalman filters or some other 
Ricote equation. 
 

 
Figure 4 Measured and Filtered HI for a High-Speed 

Bearing  

As such, taking the limit as time moves toward infinity of the 
Kalman filter, the coefficients for the α-β tracker (used for 
HI, and dHI/dt) can be calculated as a constant (Bar-Shalom, 
1992): 

λ = 6+78$

6,
,             (14) 

	r = 9:;"<=;:;$

9
,                                (15) 

 
Figure 5 Estimated dHI/dt for the High-Speed Bearing  

Where the process variance is sw2, and plant noise variance 
is  sv2. The filter gains are: 

α = 1 − r&,	              (16) 

β = 2(2 − α) − 4√1 − α.                  (17) 
 
The state equation are then: 
For each HI update: 

  fHI = fHI + dHI * dt; 
  rk = HI - fHI;       
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  fHI = fHI + alpha*rk; 
  dHI = dHI + (beta*rk)/dt; 

Observer in figure 4 and Figure 5. that before -700 hours, the 
HI, and DHIT/dt is relatively flat, and in effect the RUL 
would be large or infinite. One would expect that as the fault 
starts to propagate, the RUL reduces quickly, as can be seen 
in figure 6.  

4.1. Comparing the Models 

It is assumed in this construct that there is no physical 
measure of component damage, e.g. crack length. It is 
proposed that the current crack length is proportional to the 
current HI, with that measurement being corrupted by 
additive Gaussian noise. Further, the crack rate of growth, is 
dHI/dt. Using this definition, the RUL values for the three 
models, derived from Eq. (9), (11), and (13), are seen in 
Figure 6. 

 
Figure 6 Comparison of RUL models 

The ideal model is one in which the RUL is the number of 
hours prior to perform maintenance. The slope of the RUL is 
-1 hr/dt, e.g. one hour of life is consumed for each are the 
machine is run. This an idealized construct is based on an 
average future load. Note that from the start of the data 
acquisition until time -700, the rate change of health if 
effectively zero. As such a minimum degradation rate is used 
(1 over the mean time between failure). This is done 
numerically to prevent a divide by zero error. Figure 7 Shows 
a model performance from the start of the fault propagation 
until the HI value of 1 is reached.  
 
As observed, all three models converge and would provide 
useful information to a maintainer or aircraft scheduler. 
Conceptually, the model with the best dynamics (best fit) 
should have a derivative that approaches the idealized RUL 
model of -1 hr/dt. 

 
Figure 7 RUL model performance from -700 hours unto HI 
of 1 

Using an α-β tracker, the derivate of each model was 
calculated to evaluate the model dynamics performance 
(Figure 8). Both linear and dislocation models seem to 
outperform Head Theory model. In term of quantifying 
performance, we us the simple mean, median and RMS of the 
derivate from say, time -350 to 0 (Table 1). 

 
Figure 8 First Derivative of models 

 
Table 1 Model Derivative Performance 

Model Mean Median Std 
Linear -1.11 -1.09 0.21 
Heads -1.49 -1.45 0.27 
Dislocation -0.8 -0.88 0.20 

 
It is clear that modeling errors exists. Sources of error maybe 
that that the crack growth exponent may be a non-integer 
value between the linear elastic model and dislocation theory 
model. Alternatively, the CIs may not be linearly related to 
crack growth. Note that for an ideal RUL model, the mean 
and median for the derivative of RUL would be -1. As the 
linear elastic model has better performance than either the 
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Heads or Dislocation model, it can be stated that fatigue crack 
growth can be characterized as Mode1 (opening mode), 
where the crack surface moves directly apart. 

4.2. Predicting the Future Component Health 

One can compare the predicted component health by solving 
for af for some given time in the future. For example, from 
equation (9), the predicted HI for the linear elastic model 
would be: 

𝑎. = 𝑒𝑥𝑝 Y+	
)*

)>'

*-
Z × 𝑎?     (18) 

 
Where da/dn is the current calculate HI derivative and ao is 
the current calculate filtered HI (Figure 9).  
 
Figure 9 shows an example at time -400 hours (that is, given 
that in 420 hours, the filtered HI is at 1, as we have this 
knowledge post processing), we can see that the actual 
trajectory of the fault propagation lies somewhere between 
the linear elastic (RUL of 429, or 7% error), and the 
dislocation model (RUL of 360 hours or -10% error), whereas 
Heads theory has an RUL of 463 hours (16% error).  

 
Figure 9 Predicted HI trend for the three models 

4.3. Estimating the crack growth exponent 

If one assumes from the data that at time -700 until zero, there 
is a fault propagation and that the RUL decreases linearly, 
then by rearranging terms in eq 8, one gets: 

𝑑𝑎
𝑑𝑁- =

*""*.@
*" *.' A

'
$%

+B, &' "%C
          (19) 

 
In an ideal linear RUL model, one could solve for m with (18) 
using the calculated dHI/dt and HI values with a0 equal to the 
current HI, with af set to 1. It would be expected that the 
exponent is between 2 and 6, given the results from Table 1, 
however, the results of this were mixed (Figure 10). 

 
Figure 10 Calculated exponent from data 

Conceptually, the rate of change of health and any time index 
t (e.g. when we acquire data), is going to be dependent on the 
accumulated load (strain) from t-1 until t. This typically is not 
well captured when measuring data periodically and is a 
source of error. Other possible sources of error, or why the 
model exponent was not exactly 2, may be the result of lag 
resulting  in the calculation of the filtered health, or errors in 
the estimation of the rate of change in health. These error 
sources are a continuing research interest.  

5. DISCUSSIONS 

For many owners and operators, a helicopter is a utility 
vehicle used to accomplish a mission. These missions’ 
requirements are not easily met by other types of vehicles. 
The operator only generates revenue when the aircraft is 
flying. The only time a helicopter can’t fly, other than 
weather conditions, is when it’s in maintenance. Most of the 
maintenance activities can be scheduled. Manufacturers 
provide planned maintenance to restore the aircraft to its 
design reliability. Maintenance is done on the aircraft to 
replace parts (for those affected by a retirement life). 
Inspections, with their appropriate intervals, allows operators 
to find and replace wear items on the helicopter.  

These are easily manageable and are scheduled in advance by 
maintainers. Unscheduled events and incidents (chips light) 
remove the aircraft from service and negate the opportunity 
to generate revenue. For example, a bearing that starts to wear 
is usually found during a scheduled inspection or overhaul of 
the components. If the bearing is damaged between an 
inspections or overhauls, the helicopter is designed to identify 
the fault (e.g., a “Chip” light would illuminate in the cockpit 
identifying an issue has occurred). These types of defects 
result in removing the aircraft from service to perform 
maintenance.  

Implementation of a prognostics system on the helicopter 
allows the maintainer/operator to identify the component, 
converting an unscheduled maintenance event into scheduled 
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maintenance. A prognostic system, giving a maintainer an 
estimate of the Remaining Useful Life (RUL) allows the 
following: 

· Operations to schedule the aircraft for maintenance 
opportunistically with a current event. 

· Maintainer to order parts to marshal any specialized 
tool/capabilities needed for the repair. 

For helicopter manufacturers supporting customers around 
the world, the goal is to keep customers helicopter in the air 
ensuring it is safe to fly. One of the hardest things to do is to 
say to an operator, “we do not recommend that you continue 
to fly, this part should be replaced before next flight.” This is 
especially the case when the aircraft is needed for a search 
and rescue or some other critical mission: a recommendation 
to not fly means that the aircraft is not mission capable.  

The Prognostics health monitoring system should provide 
specificity of the damaged component and an estimate of 
RUL. Giving owners, operators, and maintainers these types 
of tools, allows for improved operational readiness, more 
opportunities for revenue, and an enhanced sense of safety.  

As noted, a RUL allows the maintainer to determine which 
tools, capabilities, and parts are needed for a repair. 
Unscheduled events can cause unanticipated aircraft 
grounding if spare parts are not readily available. Many 
operators fly on a contract with a penalty clause. Unless they 
have spares in their inventory, they will need to find the 
component from the OEM or another source, place the order 
and have the part shipped to you. The cost of replacement 
components is very dependent on availability and urgency. 
Having the availability to see the component wear before it 
starts failing is a huge advantage, improving logistics and 
reducing spares. Knowing the RUL of the component gives 
you time to order your part in advance, which reduces the cost 
and time to schedule the replacement.  

6. CONCLUSION 

The use of a fracture analysis model gives insight into the 
development of a remaining useful life model. In this paper, 
three high cycle fatigue models where tested and compared 
with respect to their ability to estimate the remaining useful 
life of a bearing. These models were used to measured 
vibration data which was collected over 55 days on a wind 
turbine. The vibration data was used to extract features that 
are correlated with bearing damage. These condition 
indicators were fused into a health indicator. The health 
indicator was constructed such that when the HI is 1, it is 
appropriate to do maintenance. The RUL was then the time 
from the current HI until the HI is 1.  

All three models (linear elastic fracture mechanics, Head’s 
theorem and a dislocation theorem model) gave satisfactory 
result, the greatest difference being the RUL estimate prior to 
propagation of the fault.  

It was hypothesis that the “best” model would have a 
derivative of the RUL of -1. Even though the degradation 
process is nonlinear, the RUL, based on some mean load, is 
linear: In a high confidence model, for each hour consumed 
in operation, the RUL would decrease by 1. Even in the 
highly variable loads seen in a wind turbine, it was shown 
that is a valid assumption.  

It was found that the linear elastic model has a mean, and 
median derivative close to one, confirming that it is the best 
model. That is, the fatigue crack growth can be characterized 
as Mode1 (opening mode), the crack surface moves directly 
apart 

The Heads theorem RUL derivative was greater than one 
(indicating it was overestimating the RUL). The dislocation 
theorem model RUL derivative was less than 1, indicating 
that it was underestimating the RUL.  

As the linear elastic model is shown to be the most accurate, 
then the crack growth exponent value should be 
approximately 2. Calculating this from the data, the exponent 
ranged between 3 and 1.  

All three models could detect the fault propagation and gave 
an acceptable RUL (e.g. meaning the data could be used for 
maintenance planning) 400 hours prior to when it was 
appropriate to do maintenance.  
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