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1,2,3 Alstom R&D Services, Santa Perpètua de la Mogoda, Barcelona, 08130, Spain
alexandre.trilla@alstomgroup.com

veronica.fernandez@alstomgroup.com
francesc-xavier.cabre@alstomgroup.com

ABSTRACT

Energy supply for high-speed trains is mainly attained with
a high-voltage catenary (i.e., the source on the infrastructure)
in contact with a sliding pantograph (i.e., the drain on the
rolling-stock vehicle). The friction between these two ele-
ments is minimised with a carbon strip that the pantograph
equips. In addition to erosion, this carbon strip is also subject
to abrasion due to the high current that flows from the cate-
nary to the train. Therefore, it is of utmost importance to keep
the degradation of the carbon material under control to guar-
antee the reliability of the railway service. To attain this goal,
this article explores an accurate (i.e., uncertainty bounded)
predictive method based on a robust online non-linear mul-
tivariate regression technique, considering some factors that
may have an impact on the degradation on the carbon strip,
such as the seasonal condition of the contact wire, which may
develop an especially critical ice build-up in the winter. The
proposed approach uses a neural ensemble to integrate all
these sources of potential utility with the carbon strip data,
which is convoluted in time with a set of spreading filters to
increase the overall robustness. Finally, the article evaluates
the effectiveness of this prognosis approach with a dataset of
pantograph carbon thickness measurements over a year at the
fleet level. The results of the analysis prove that it is definitely
possible to deploy a fine prediction, and thus yield a new av-
enue for business improvement through the application of the
predictive maintenance approach to pantograph carbon strips.

1. INTRODUCTION

The railway environment in general, and the maintenance
of rolling-stock in particular, are recently experiencing great
benefits with the deployment of data-driven Prognostics and
Health Management (PHM) technology (Atamuradov, V.,
Medjaher, K., Dersin, P., Lamoureux, B., and Zerhouni, N.,
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Figure 1. Alstom TrainScanner deployment at the Manch-
ester Traincare Centre.

2017; Tsui, K. L., Chen, N., Zhou, Q., Hai, Y., and Wang,
W., 2015). In line with this source of innovation, Alstom
has developed the TrainScanner, which is a track-side train
monitoring system that is aimed at optimising the mainte-
nance of brake pads (Trilla, A., Dersin, P., and Cabré, X.,
2018), pantograph carbon strips, and wheelsets (Trilla, A.,
and Cabré, X., 2018), see Figure 1. This product is based on a
set of computer vision technologies with lasers and 3D cam-
eras that capture the degradation-related measures for each
component as the trains traverse its portal. Then, it automat-
ically triggers the analysis of the collected data, and advises
the maintenance team with data-informed prescriptions. This
work is particularly focused on the pantograph prognostic en-
hancement that may be attained with the carbon strip thick-
ness measurements over time.

The British Rail Class 390 rolling stock is an electric high-
speed passenger train that conducts the current collection
through a pantograph. Therefore, the pantograph is an es-
sential element of the traction chain because it provides ac-
cess to the power to drive the traction motors, among other
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Figure 2. British Rail Class 390 pantograph showing the two
carbon strips. One of them leads the contact with the catenary.

systems. In order to draw the current while the train is in
motion, the pantograph equips two carbon strips that are in
constant sliding contact with the overhead line, also known
as the catenary, see Figure 2. Given the permanent friction
regime of this means of power transfer, each carbon strip is
subject to wear. And in addition to this main degradation
mode, there are many other factors that may impact the con-
dition of this asset, such as the amount of current flow (Bucca,
G., and Collina, A., 2015; Ding, T., Xuan, W., He, Q., Wu,
H., and Xiong, W., 2014), the irregular contact height relative
to the rails (Shing, A. W. C., and Wong, P. P. L., 2008), the
specific carbon material (Auditeau, G., Bucca, G., Collina,
A., and Tanzi, E., 2011; Auditeau, G., 2016), and the ambient
temperature (Ocoleanu, C. F., Popa, I., Manolea, G., Dolan,
A. I., and Vlase, S., 2009). The combined effect of all these
phenomena may produce chips and cracks on the surface of
the carbon strip, although the most critical degradation factor
that can be directly observed is the season.

This work conducts a thorough analysis of the pantograph
carbon strip degradation at the fleet level in order to en-
hance the performance of its thickness prediction at 30,000
km into the actual operating life of each asset, which is ex-
pected to show a great deal of variation according to the sea-
sonal weather. Given the intense mission profile of the fleet,
this horizon for the prediction is assumed to provide enough
notice time for the maintenance team to schedule the depot
resources effectively. The proposed model of the degrading
carbon thickness sequence exploits its diversity in time (or
distance) through a set of spreading convolutions. Finally,
the prognosis evaluation is performed with a rolling window
prediction technique, focusing on the uncertainty of the pre-
dicted error, which is given by the maximum variability of the
error distribution for a given confidence interval.

The article is organised as follows: Section 2 describes the
analysis procedure that has been explored, including the de-
scription of the data, the evaluation technique, and the prog-
nosis enhancements, along with their preliminary results.
Section 3 discusses the overall outcomes and the limitations

0 200 400 600 800 1000
Length [mm]

0

5

10

15

20

25

Th
ic

kn
es

s 
[m

m
]

Profile

Figure 3. Acquired pantograph carbon strip profile. Note that
the figure is not to scale: the carbon strip is a very wide asset.

of the approach, and Section 4 concludes the manuscript and
reflects on its impact on the current maintenance plan.

2. METHODS AND RESULTS

This section describes process that has been followed in order
to obtain a robust pantograph carbon strip prognosis method.
Thus, the development is incremental and preliminary results
are provided.

2.1. Carbon Strip Data Preprocessing

The carbon strip is a rectangular piece of carbon material that
is mounted at the top of the pantograph. It is 20 mm thick, 30
mm wide and 1,000 mm long. Each pantograph equips two of
these strips, and the leader always precedes the contact with
the overhead line. Additionally, there are two cars on each
train that equip a pantograph, although only one of them is
active at a time (i.e., in contact with the catenary). Its rated
operating voltage is 25kV AC.

The TrainScanner acquires a cloud of points for each panto-
graph carbon strip. Based on this data, the carbons are re-
constructed with a triangulation technique, and a thickness
profile is extracted for each asset, see Figure 3. It can be ob-
served that the degraded area spans from 200 mm to 800 mm,
and the most critical part is at the centre, from 400 mm to 600
mm. The system automatically identifies this region and ex-
tracts the minimum thickness value for further wear analysis.

This article evaluates the effectiveness of carbon strip prog-
nostics with a dataset of thickness measurements at the fleet
level, acquired between June 1 2016 and June 1 2017 at irreg-
ular intervals (the monitoring operations are not scheduled).
It comprises an amount of 224 strip elements, and each se-
quence of carbon thickness needs to be preprocessed to add
robustness to the prediction. To this end, the following issues
are taken into account:

1. Asset replacement: steep positive thickness increments
(greater than 5 mm) with a final value close to a new asset
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measure, i.e., 20 mm, need to be segmented and treated
as different assets.

2. Acquisition failures: extreme values out of strip range
(over 20 mm) or zeroes are regarded as invalid data and
thus they need to be discarded from the analysis by re-
moving them from the carbon thickness sequence.

3. Stability/Monotonicity: each thickness segment needs
to be asserted an overall monotonic negative trend ac-
cording to the nature of the carbon material erosion, and
a monotonic positive progression regarding the accumu-
lated mileage. To this end, a monotonicity index is use-
ful to quantify the amount of regularity in the evolution,
which is based on the difference between the number of
positive and negative increments (Davydov, Y., and Zi-
tikis, R., 2017).

4. Sensor precision: TrainScanner’s rated measurement
precision is 0.5 mm. The prediction method needs to be
robust to this inherent data acquisition system variability.

The resulting set of data should be smooth enough to be
subject to further analysis following the ISO 13374 stan-
dard (ISO, 2003), which is the main PHM development
guideline considered in this work, although similar structured
approaches have also been developed for overhead monitor-
ing systems (Brahimi, M., Medjaher, K., Leouatni, M., and
Zerhouni, N., 2016). Obviously, the primary interest here is
focused on the Prognosis module and the dynamic properties
of the carbon strip degradation.

2.2. Rolling Window Prediction Evaluation

A rolling window is a prediction performance estimation pro-
cedure that is essentially based on the idea that “the past is
used to predict the future”. It is an iterative process that
frames a history window at some point in the evolution, learns
the trend from it in order to make a prediction over a given
horizon frame, and finally scores the error difference with the
remaining coming data (Hota, H. S., Handa, R., and Shrivas,
A. K., 2007), see Figure 4.

Ultimately, the distribution of the resulting error score is used
to estimate the performance of the prediction method, which
is mainly driven by the amount of variability (Trilla, A., Der-
sin, P., and Cabré, X., 2018). To this end, the maximum de-
viation of the error distribution around its mean value is de-
termined for a confidence interval of 95%. This quantity is
here referred to as the “uncertainty”. Obviously, the error in-
creases as the prediction horizon is extended into the future.

2.3. Robust Online Linear Regression

The Class 390 tilting Pendolino trains run a steady mission
profile on the West Coast Main Line in the UK, featuring a
very high availability (running 1,000 miles a day on average),
which leads to expect a uniform degradation behaviour. In
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Figure 4. Diagram of the rolling window prediction evalua-
tion for carbon strip data.
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Figure 5. Histogram of the prediction error with robust on-
line linear regression (ROLR). The 95% confidence interval
indicates the uncertainty.

order to get a baseline for this study, the model linearity is as-
sumed for the carbon strips in this high-speed rail scenario,
following other carbon-based degradations like the brake
pads (Trilla, A., Dersin, P., and Cabré, X., 2018). There-
fore, a robust ordinary linear regression approach (ROLR)
based on weighted least-squares fitting is evaluated. The re-
gression is applied to each window of carbon thickness his-
tory after the aforementioned robust data-weighting process,
and the prediction is obtained by extrapolating the evolution
over the horizon frame. It is to note that the squared-error
cost function of use here is very convenient to deal with the
data-acquisition precision instability, which may be positive
or negative. Finally, given the limited amount of data that is
available at the sequence level, the history window is set to
be equal to the prediction horizon, i.e., 30,000 km. Figure 5
shows the resulting distribution of this prediction error.

It can be seen that the linear method for the baseline shows an
uncertainty of 2.89 mm. However, the resulting distribution
shape is asymmetric because it displays a skewed centrality,
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instead of the normal Gaussian distribution that would be ex-
pected with the least-squares optimisation procedure of use.
This might be indicative that the linear assumption is not ad-
equate and perhaps it needs to the questioned. The following
sections, though, first delve into the particular bits of infor-
mation that may be obtained from external context variables,
and how they may be used to enhance the prediction.

2.4. Potential Improvement with Seasonal Context

One of the main extrinsic factors that may affect the degra-
dation of the pantograph is the season. Variations of temper-
ature (Ocoleanu, C. F., Popa, I., Manolea, G., Dolan, A. I.,
and Vlase, S., 2009), humidity, rain, wind... may cause an
unsteady wear on the surface of the carbon material of the
strip. It is well known that in the winter the contact wire
freezes with the icing temperatures, possibly causing abnor-
mal degradation. The spring, instead, is the driest period (al-
though the rain is fairly well distributed throughout the year
in the UK).

Further insight into these issues may be displayed through
the seasonal wear rates, which grossly indicate the dynamic
behaviour of the carbon degradation (i.e., the pace of the de-
terioration) due to these factors. In order to capture this in-
dicator, the slope parameter of the linear regression on the
strip thickness sequence is taken. Figure 6 shows the distri-
bution of wear rates throughout the year using a Gaussian ker-
nel density estimation procedure. It is to note that the winter
and spring seasons are located on the extremes of the over-
all multimodal density. Winter shows the highest rates (over
12·10−5 mm/km), whereas spring shows the lowest rates (un-
der 5 ·10−5 mm/km). Given that the prediction method of use
here is linear (this may be interpreted as the derivative of the
wear function), the extremely different error values related to
these two sequential seasons prove that a non-linearity is in-
herently present as seasons gradually change. Therefore, this
justifies the specific consideration of the seasonal factor as
discrete context variables corresponding to the three modes of
wear rate: winter, spring, and summer/autumn (note that their
centrality conflates into the same value). The representation
of the season as a nominal one-hot encoded vector (instead of
a scalar ordinal encoding) is a convenient and effective solu-
tion with neural networks (Hancock, J. T., and Khoshgoftaar,
T. M., 2020), the use of which is explored further in the fol-
lowing sections.

2.5. Data Blending through Neural Networks

In order to take advantage of the seasonal non-linear con-
text variables discussed in Section 2.4, this section explores
blending these different sources of information with a neural
network ensemble. Regardless of the difficulty of the predic-
tion task, the neural technique unifies the way of approaching
this problem.
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Figure 6. Density distribution of the wear rates according to
season throughout the year.

2.5.1. Feature Ensemble with a Multilayer Perceptron

The Multilayer Perceptron is a general-purpose neural net-
work architecture that can seamlessly integrate extrinsic data
from different sources in order to refine a prediction (Trilla,
A., Dersin, P., and Cabré, X., 2018). It is based on a feed-
forward structure with a hidden layer in the middle, which
provides the capacity to learn non-linear relationships be-
tween the inputs (i.e., the present features) and the output
(i.e., the future thickness value). Moreover, its industrialisa-
tion is straightforward through a series of matrix multiplica-
tions that any platform can efficiently implement with a stan-
dard linear algebra library.

For the pantograph carbon strip scenario presented in this
work, the baseline prediction result with linear regression is
provided as a real-valued feature along with the rest of the
aforementioned seasonal context variables (as binary flags
with one-hot encoding). Moreover, the strip thickness value
within the 30,000 km horizon is provided as the supervised
output target prediction, see Figure 7. The hidden neurons
are designed with a Rectified Linear Unit activation function
to learn the non-linearities (Nair, V., and Hinton, G. E., 2010).
The neural network is ultimately trained with a stochastic
gradient descent protocol using backpropagation, an adaptive
learning rate with momentum (Kingma, D. P., and Ba, J. L.,
2015), and considering a squared-error cost function.

In order to get the network to learn effectively, its expres-
siveness (i.e., the capacity to represent the learnt knowledge)
needs to match the complexity of the data within the objec-
tive prediction problem. To do so, the number of hidden units
H needs to be adjusted because they modulate this learn-
ing ability. Note that the input dimensionality of this net-
work is 4 (i.e., 3 context variables plus the result of the lin-
ear prediction), therefore, every hidden unit adds 6 new pa-
rameters to the model (4 inputs, 1 output, and 1 bias). In
order to determine the optimum size of the hidden layer so
that underfitting and overfitting learning problems may be
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Figure 7. Multilayer Perceptron architecture blending the Ro-
bust Online Linear Regression (ROLR) with the set of three
seasonal context variables to obtain a better refined predic-
tion.
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Figure 8. Expressiveness analysis of the neural feature en-
semble. The bias represents the mode of the error distribu-
tion, and the variance represents its uncertainty.

avoided, a range of values are evaluated with Monte Carlo
cross-validation (Dubitzky, W., Granzow, M., and Berrar, D.,
2007), applying 10 rounds of repeated random sub-sampling
with a train/test split of 95%/5%. This procedure yields over
70 evaluation points, which is a sufficient sample size to reli-
ably estimate the prediction uncertainty. Figure 8 shows the
results of this study through a bias/variance tradeoff analy-
sis using the mode and the uncertainty values of the expected
skewed error distributions, following customary descriptive
statistics tools.

It can be seen that the most interesting performance score
(i.e., the variance, or uncertainty) shows a randomly decreas-
ing evolution as the expressiveness of the network grows (i.e.,
H increases), until the amount of hidden neurons reaches 9.
From that point forward, the uncertainty rises, so the network
stops generalising and begins to memorise the data, which is
a sign of overfitting. Therefore, the optimum size for the hid-
den layer is of 9 units (it is to note that any residual bias can be
corrected a posteriori with this estimation). It can be seen that
the resulting system outperforms the previous linear approach
as it now shows an uncertainty of 1.59 mm. This improve-
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Figure 9. Impulse response of the spreading filtersG(s) (with
α = 10) for the time-delay convolution.

ment is mainly due to modelling the inherent non-linearities
in the extrinsic seasonal context variables. Nevertheless, this
result is still driven by the assumed linear evolution of the
carbon thickness, which is a clear point of improvement that
is explored in the next section.

2.5.2. Time-Delay Neural Network Embedding

This section builds upon the former feature ensemble ap-
proach, drops the questionable linearity assumption that
drives the baseline prediction from Section 2.3, and pro-
poses integrating the carbon thickness data directly through
a neural structure known as a Time-Delay Neural Network
(TDNN) (Peddinti, V., Povey, D., and Khudanpur, S., 2015).
This approach maps the decreasing dynamic evolution of the
data into a fixed spatial pattern using a weighted average op-
eration in time with a set of spreading filters G(s) defined
by Eq. (1), where L is the size of the delay line (input data
buffer), α is the spreading factor, and s is the spatial shift.
Note that S is a normalisation factor that ensures that all shifts
may deliver the same amount of energy, see Figure 9.

Gs = G(s) =
1

S

L∑
n=0

x[n]

(
n+ 1

s+ 1

)α
exp

(
−α n

s+ 1

)
(1)

In addition to empowering the system to deal with the thick-
ness data evolution directly (i.e., an autoassociation that does
not assume any specific behaviour, like the linearity), the con-
volution with the spreading filters exploits the local features
of the data and reduces the searchable weight space for the
learning stage. Furthermore, it increases the robustness to
uneven sampling, which is to be taken into account as the in-
spections through the TrainScanner are not scheduled. This,
in turn, enables the neural network that follows to handle se-
quences with different lengths, which is a clear limitation of
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the ordinary multilayer perceptron (where the input dimen-
sionality is fixed). Also, the use of variable history lengths
may be of help to reduce the high uncertainty of strips show-
ing a faster wear rate (Trilla, A., Dersin, P., and Cabré, X.,
2018; Greitzer, F. L., and Ferryman, T. A., 2001).

The enhanced solution that this work suggests first builds the
time-series embedding by applying the filters over the thick-
ness sequence to obtain three spatial shifts (i.e., the high, mid-
dle, and low parts of the evolution). It uses the spreading
factor α as a modulator to adjust the bandwidth of the filters
to the length of any given sequence (applying the first filter
G(0) to the newest thickness sample to deal with a most un-
weighted value close to the prediction result), see Figure 9.
And then, it assembles the resulting physical features with
the former set of seasonal context variables that have proven
to be useful in this modelling approach. Figure 10 shows this
architecture.

At this point, the expressiveness of the new multilayer per-
ceptron needs to be adjusted to the new embedded features
following the cross-validation procedure described in Sec-
tion 2.5.1. Now, each hidden unit adds 8 new parameters to
the model. Figure 11 shows the result of this expressiveness
analysis, which indicates that with 6 hidden neurons, the un-
certainty of the prediction drops to 1.39 mm. Note that for
this richer input representation (6 variables instead of 4), the
model has become somewhat simpler (6 hidden units instead
of 9), which makes perfect sense regarding the complexity
tradeoff between the features and the predictive learning ca-
pacity.

3. DISCUSSION

This work exposes the gradual performance enhancement of
pantograph carbon strip prognosis, initially relying on linear
regression (resulting in 2.89 mm of uncertainty), then refining
this prediction by accounting for non-linearities through the
seasonal context information (1.59 mm), and finally dealing
with the thickness evolution data directly with a set of spread-
ing filters (1.39 mm). What is more, if these error results are
assumed to belong to a normally distributed random variable,
their incremental differences are statistically significant with
a confidence interval of 95% using an Independent Samples
t-test. In this case, the powerful Student hypothesis test with
the Gaussian normality assumption is preferred over weaker
non-parametric approaches like the Mann-Whitney U test, in
spite of its apparent appropriateness to compare skewed dis-
tributions.

Despite the nice interpretability of the initial linear behaviour
that emulates the prominent uniform physical degradation of
this asset, every step taken toward dropping this linear as-
sumption has led to increasingly better results in terms of pre-
diction uncertainty. However, the resulting neural model has
also increased its complexity, thus becoming more difficult to

interpret. Neural networks are typically regarded as “black
boxes” because of their intricate nested inner functions.

In order to shed some light into the internal behaviour of the
best-performing TDNN ensemble model, Figure 12 shows
an input-standardised sensitivity analysis based on the pro-
file method (Shojaeefard, M. H., Akbari, M. Tahani, M., and
Farhani, F., 2013). It can be seen that there are three corre-
lated patterns of behaviour:

• The three physical features (low, middle, and high-parts
of the thickness sequence) show a rather linear increas-
ing pattern along 8 mm of the whole output dynamic
range. Their likelihood can be explained by their com-
mon source of information (i.e., the carbon evolution),
which is already expected to be linearly uniform.

• The winter and spring seasons show a convex function
(first negative, and then positive), with the inflection
point around 0.5σ, and also covering 8 mm of the out-
put dynamic range. These two seasons display the most
extreme wear rates, see Figure 6, and the neural network
seems to use them in a similar way for the refined pre-
dictions. In the end, it’s in the transition from winter to
spring that the main nonlinearity occurs.

• The summer/autumn seasonal variable exhibits a kind of
offset rectifier function with the inflection point located
at −0.5σ. This variable stretches up to 12 mm of the
output dynamic range. It is to note that the associated
wear rate applies to six months and it is represented by
one single variable, thus maybe this explains its extended
range.

While it may be difficult to assess the contribution of each
variable in terms of importance, the amount of dynamic range
in the output may be indicative of their rank, leaving the sum-
mer/autumn flag as the most critical variable. Further testing
with an ablation study would be needed to derive stronger
statements.

The current approach conducts a rough discretisation of the
seasonal factor with three mutually-exclusive binary vari-
ables, but seasons change gradually, and the mid-season
nuances are possibly missed with this solution. Neverthe-
less, conducting a seasonal information blending, e.g., at the
month level, increases the number of extrinsic variables from
three to twelve, and this in turn may enlarge the amount of
weights in the neural network to an excess of expressiveness,
increasing the potential risk of overfitting the data.

In addition to the principal seasonal information, other ex-
ternal sources of potential prognosable input have also been
informally studied. On the one hand, there is the particular
location of the pantograph. Each Class 390 train equips two
pantographs, and the decision of using one or the other de-
pends on the driver. This arbitrary factor may affect the degra-
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Figure 10. Architecture of the Time-Delay Neural Network ensemble. Strip thickness data is convoluted with the spreading
filters (shown as shaded units), and blended into the set of context variables with a multilayer perceptron.
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Figure 11. Expressiveness analysis of the TDNN ensemble.
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dation of the carbon strips, although particular behaviours
seem unlikely to be displayed because driver rota is the com-
mon way of operating the rolling stock.

On the other hand, there is the position of the carbon strip
in the pantograph. Depending on the sense of the trip (up-
wards to Scotland, or downwards to England), different strips
lead the contact with the catenary. But again, it’s the driver’s
decision to use one pantograph or the other, so for the same
rotation reason, a singular behaviour is unlikely to show. In
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Figure 12. Sensitivity analysis of the best-performing TDNN
ensemble (H=6). The dynamic range of the inputs is nor-
malised to their standard deviation. The variables that display
the same pattern share the same line style.

the end, neither the pantograph location not the strip position
have proven to be of much use in the prognostication of future
carbon strip thickness.

4. CONCLUSION

At present, the carbon strip replacement criterion for the
Class 390 pantographs is based on a single thickness thresh-
old value. This inefficient approach does not take into account
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the rate of wear that the different strips display, which varies
significantly throughout the year with the seasons. Thus, the
same thickness value can lead to different operating mileages
before the asset reaches its actual end of life (i.e., when there
is no carbon material left on the strip).

This article presents the most sophisticated technique for
TrainScanner pantograph carbon strip prognostics, which is
based on a Time-Delay Neural Network that blends a spread
sequence of carbon thickness values with the seasonal context
information. This approach yields a prediction error uncer-
tainty around 1.39 mm at the asset level and for a projected
horizon of 30,000 km, which is related to the planning time
that is necessary for scheduling the maintenance resources at
the depot. Therefore, if the expected mileage to the next visit
is under this distance frame, the strip threshold scrap limit
could be safely extended up to this performance value.

The future work that is currently envisaged may further deal
with other extrinsic context variables in order to add more ro-
bustness to the prognosis method. The neural network has
proven to be a very versatile approach for assembling dif-
ferent data sources. In this regard, we may exploit the tem-
poral persistence of large amounts of other nominal (i.e.,
non-parametric) data provided by related onboard subsys-
tems (Hu, X., Eklund, N., and Goebel, K., 2007), e.g., from
traction. Alternatively, we also expect to explore other se-
quence learning approaches through the Long Short-Term
Memory units (Hochreiter, S., and Schmidhuber, J., 1997),
and seek the complementary characteristics that may help the
current approach attain a better effectiveness.
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