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ABSTRACT

This study proposes an autonomous operation procedure for
a CubeSat by applying reinforcement learning based on re-
silient engineering. The CubeSat requires rapid judgement in
every visible window based on sufficient understanding of the
health conditions of the satellite from limited telemetry data
due to the limited communication performance and poor pro-
tection functions from the harsh environment. This study first
performs a risk analysis by using System Theoretic Process
Analysis (STPA) to evaluate the risk scenario of the Cube-
Sat. In order to successfully operate the missions with avoid-
ing the risk scenarios, the reinforcement learning is applied
to learn adequate behaviors according to the satellite situa-
tions such as temperature and voltage of the installed battery,
the sunlight and eclipse phase and the mission progress and
plan. Through numerical examples, validity of the proposed
method is illustrated.

1. INTRODUCTION

The Small Spacecraft System Research Center at Osaka Pre-
fecture University (now Osaka Metropolitan University) and
the Aerospace System Research Center at Muroran Institute
of Technology jointly developed a CubeSat called “Hirog-
ari” from 2016 to 2020 (Iida et al., 2018; Hashiwaki et al.,
2019). It was successfully operated from March 2021 to
April 2022 and achieved full success (Osaka Prefecture Uni-
versity, 2021). However, the CubeSat experienced some fail-
ures during its early operation stage, because our team did
not sufficiently consider operational risks. Our team strug-
gled to identify the causes and determine the feasible recov-
ery method. (Nakase et al., 2021).

CubeSats have limitations in protecting against harsh envi-
ronmental conditions in orbit due to size and weight con-
straints, and also have strict limitations such as power mar-
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gins. Operating a CubeSat with limited operational capabili-
ties for a designed operational period, even without any fail-
ures, places a significant burden on the operations team.

To develop an efficient operational plan for the next devel-
oping CubeSat that reduces such operational burdens, our
research group applied System Theoretic Process Analysis
(STPA) (Leveson, 2012), one of the hazard analyses, to
“Hirogari”(Yamada et al., 2022). Yamada et al. first de-
fined the loss and hazard of the CubeSat and the mission, then
focused on the information flow between the ground station
and the CubeSat to extract ”unsafe” commands or scenarios.
Through the STPA process, the research extracted unsafe con-
trol actions (UCAs) that activate hazards. Then, the study
identified hazard activating factors and scenarios that are dif-
ficult to identify using conventional hazard analysis such as
Fault Tree Analysis (FTA). Finally, the study demonstrated
that resilient operation of the CubeSat by considering these
loss scenarios.

However, the identification of loss scenarios alone does not
lead to a reduction in the operational burden if the efficient
hazard inactivation methods cannot be implemented. There-
fore, in this study, we further subdivided the elements of
STPA to seek more concrete methods for mission operations
and aimed to automatically generate mission operation meth-
ods using the results obtained by STPA and reinforcement
learning.

2. STPA

2.1. Characteristics and Analytical Procedure of STPA

In modern systems where software plays a crucial role, acci-
dents can occur even when no components fail because the
software may function correctly but have incorrect require-
ments, that lead to accidents. STPA is effective for such mod-
ern systems, because the method is developed to focus on
the interactions between system components. Furthermore,
STPA can model various loss factors, including not only soft-
ware but also human actions, making it applicable to complex
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systems. Additionally, STPA is a top-down method, enabling
the identification and analysis of unexpected scenarios that
could arise during operation at the conceptual design stage.

The analytical procedure of STPA is as follows:

1. Define “losses” that are unacceptable and enumerate the
“hazards” that lead to those losses.

2. Create a “control structure diagram” that shows the in-
teractions between system components.

3. Extract “unsafe control actions (UCAs),” which are con-
trol instructions that can lead to hazards, from the control
instructions between system components.

4. Identify “loss scenarios” that could lead to UCAs and
hazards.

The scenarios obtained from this analysis can be used to de-
sign appropriate operational methods to protect the system.

2.2. Application of STPA to “Hirogari”

The operational system is divided into a ground station and
a satellite. To achieve the mission, a control structure dia-
gram was created by focusing on the flow of necessary infor-
mation from the ground station operator and the equipment
used to achieve the mission or prevent satellite loss. This
is shown in Figure 1, where the red lines and words indi-
cate control instructions and the blue lines and words repre-
sent feedback. Incorporating the equipment used for satellite
maintenance and mission execution into the control structure
diagram, which was not included in previous studies (Yamada
et al., 2022), allows for the identification of potential loss sce-
narios that may occur during satellite operation when the haz-
ard is activated, as shown in Table 1.

Using the control structure diagram, following the STPA pro-
cedure, loss scenarios are identified related to unsafe control
actions (UCAs) that could lead to satellite loss, loss of satel-
lite status monitoring, and loss of mission. Then, counter-
measures to avoid these loss scenarios should be determined.
Some of the countermeasures can be captured as operational
guidelines. Table 2 shows some loss scenarios and their cor-
responding countermeasures. However, it should be noted
that for issues that cannot be addressed during operation,
STPA should be applied from the conceptual design phase
and a design that takes STPA into consideration should be
performed.

3. SATELLITE MODEL

The previous section described that the loss scenarios and
countermeasures obtained by STPA can be utilized not only
in design but also in operation. However, the obtained coun-
termeasures interact with each other and with the satellite op-
eration, situational judgments such as whether to continue the
mission, abort it, or wait, depending on the health status of
the CubeSat, must be made in a rapidly changing situation.

Therefore, this study aim to develop an efficient operational
method that avoids loss scenarios using a deep Q-network
(DQN)(Mnih et al., 2015). In order to demonstrate the ap-
plicability of the reinforcement learning, this study will focus
on a simple “Hirogari” mission to check communication per-
formance.

3.1. Agent model

The agent chooses one of the three actions “Wait”, “Satellite
Status Data Downlink”, and “Benchmark Downlink”. The
power consumption, required voltage, and time associated
with these actions are depicted in Table 3. The state of the
satellite agent encompasses the following: voltage, current,
whether the ”Satellite Status Data Downlink” has been exe-
cuted in the current pass, remaining pass time, and mission
progress rate.

3.2. Battery model

First, the State of Charge (SOC) is determined by the current
integration method using the following equation.

SOC(t) = SOC0 +
1

FCC

∫ t

0

I(τ)dτ (1)

where SOC0 is the initial SOC, FCC is the full charge capac-
ity, and I(t) is the current. The terminal voltage V is then
computed by the following equation:

V (t) = fOCV(SOC(t))−R(SOC(t), T (t))I(t) (2)

where fOCV represents the SOC-OCV characteristics, with
OCV standing for Open Circuit Voltage, and R is the resis-
tance value obtained by the current interruption method. The
value of R depends on both SOC and temperature T (t) (Aoki,
Matsuyama, Miayata, Tsuruda, & Yamagata, 2021).

Furthermore, the current I is represented as follows.

I =

{
(Pw − P · η)/V (V < Vmax)

0 (V ≥ Vmax)
(3)

where Pw is the power consumption, P is the generated
power, and η is the conversion efficiency of the solar cell.
Vmax is the voltage threshold by the shunt circuit.

Lastly, we will explain the settings used during training.
For the implementation of DQN, we used Stable Baselines3
(Raffin et al., 2021). The parameters used for training are
shown in Table 4. For all unspecified parameters, we used the
default values provided by Stable Baselines3.
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Table 1. Identified losses and hazards for the CubeSat, “Hirogari”.

Accidents Hazards

Loss of satellite (and operation)

Loss of satellite integrity
Failure to maintain the minimum power required for satellite operation
Inability to measure bus status data for house keeping
Inability to send/receive status data
Inability to make operational and mission execution decisions based on status data

Loss of satellite missions Inability to measure measure mission data
Inability to send/receive mission data

Figure 1. Control Structure Diagram for operation of “Hirogari”

4. NUMERICAL EXAMPLES

4.1. Rewards and learning conditions

Rewards were designed based on countermeasures with IDs
of 1, 2, 8, and 10 in Table 2. The rewards during mission
continuation are shown in Table 5, and the rewards at the time
of mission completion are shown in Table 6. The “Action
Valid Status” is introduced to indicate whether the previous
action was executed without the voltage dropping below the
required threshold before or after the operation. Furthermore,
“Whether Satellite Status Data Downlink is done” is used to
denote whether the Satellite Status Data Downlink has been
executed in the current path. This allows operators to verify
the satellite’s status before initiating the mission. In addition,
to motivate the agent to complete the mission as quickly as
possible, a time penalty is introduced by subtracting 0.1 from

all rewards.

Then, the initial battery voltage was randomly selected be-
tween 3.75 and 4.1, and the temperature was set at 25◦C. The
termination criteria for learning were set as follows: the bat-
tery voltage falling below 3.65V, 40 hours elapsing since the
start of the mission, or the “Benchmark Downlink” being con-
ducted for a cumulative duration exceeding 1800 seconds.

4.2. Learning Result

The changes in voltage and current when acting on the
learned model are shown in Figure 2. Figure 3 also shows
the behavior of the satellite when it was able to communicate
with the ground station. The blue areas in these figures rep-
resent the periods when communication between the satellite
and the ground station is not possible, while the gray areas
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Table 2. Possible countermeasures based on loss scenarios derived from STPA for “Hirogari”.

ID Loss Scenario Countermeasure
1 The satellite stops functioning due to low voltage, result-

ing in a missed mission opportunity.
Execute the function only when the battery voltage is
higher than the allowable voltage for some function, Vw.

2 The satellite deploys paddle and thick plate despite low
voltage, resulting in further low voltage and loss of the
satellite.

Execute the deployment function only when the battery
voltage is higher than the allowable voltage at the end of
the deployment mission, Vmin.

3 The satellite deploys paddle and thick plate while battery
temperature is low, resulting in voltage drop and loss of
the satellite.

Execute the deployment function only when the battery
temperature is higher than the allowable temperature at the
end of the deployment mission, Tmin.

4 Downlink is instructed despite the antenna not being de-
ployed, resulting in a failed downlink and a missed mis-
sion opportunity.

Issue a downlink command after the antenna deployment
command. However, since it is not possible to directly
confirm the success of the antenna deployment after the
command, approve the antenna deployment only when
downlink (FM communication) is successful. If not, reis-
sue the antenna deployment command.

5 Image capture is instructed without deploying the paddle
and thick plate. The correct image cannot be obtained,
resulting in a missed mission opportunity.

Issue a paddle and thick plate deployment command be-
fore the image capturing command. However, since it is
not possible to directly confirm the success of paddle and
thick plate deployment after the command, confirm paddle
and thick plate deployment only by capturing the image.
If unsuccessful, reissue the paddle and thick plate deploy-
ment command.

6 Antenna or paddle deployment is instructed during the
shadow period, which prevents the nichrome wire temper-
ature from rising, This results in failure to cut the nylon
line and deploy the paddle.

Execute deployment during the sunlit period.

7 Image capture is instructed during the sunlit period, re-
sulting in the thick plate to be overexposed and a missed
mission opportunity.

Execute image capturing during the shadow period.

8 The operator does not instruct the satellite to perform func-
tional performance data downlink, making it impossible to
monitor satellite status.

Adopt an operation policy of providing instructions on a
regular basis.

9 The operator does not instruct the satellite to perform im-
age capture and downlink, making it impossible to per-
form the mission.

Adopt an operation policy of actively providing instruc-
tions.

10 The operator does not instruct the satellite to perform
benchmark data downlink.

Adopt an operation policy of actively providing instruc-
tions.

(a) Changes in the battery voltage

(b) Changes in the battery current

Figure 2. Changes in the battery voltage and current when acting on the learned model
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(a) From around 4600 seconds to 5600 seconds (b) From around 10500 seconds to 10700 seconds

(c) From around 58800 seconds to 59200 seconds (d) From around 64600 seconds to 65000 seconds

(e) From around 70550 seconds to 70700 seconds

Figure 3. Actions of the satellite when it can communicate with the ground station

Table 3. Action Characteristics.

Action Power Consumption [W]
Wait 0.439

Satellite Status Data Downlink 3.658
Benchmark Downlink 3.658

Action Required Voltage [V]
Wait -

Satellite Status Data Downlink 3.82
Benchmark Downlink 3.82

Action Time [s]
Wait 10

Satellite Status Data Downlink 60
Benchmark Downlink 60

represent the periods when the satellite is in shadow.

The figures indicate that the model has successfully learned
the operational flow, first executing the “Satellite Status Data

Table 4. Parameter settings for DQN.

Learning Rate 0.0001
Final Exploration Epsilon 0.00001
Initial Exploration Epsilon 1.0

Batch Size 128
Total Time Steps 10000000

Downlink” and then executing the “Benchmark Downlink”.
Moreover, the model demonstrates the ability to execute
“Wait” to conserve power when the voltage starts to decrease.

The results show that the operational policy is obtained as in-
tended by the rewards. Since the rewards are designed based
on the measures required by the STPA, the loss scenario can
be avoided by operating according to this operating policy.

The cumulative reward during learning is shown in Figure
4. The cumulative reward seems to converge, but it cannot
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Table 5. Reward during mission continuation.

Situation Rewards
Action Status Whether Satellite Status Data Downlink is done Wait Satellite Status Data Downlink Benchmark Downlink

Valid Not yet -0.1 0.9 -1.1
Done -0.1 -1.1 0.9

Invalid - -1.1

Table 6. Reward at mission completion.

Situation Rewards
The battery voltage drops below the threshold. -1.1

The predetermined time has passed. -1.1
Mission success 0.9

Figure 4. Cumulative reward

indicate that sufficient measures have been obtained. More
detail investigation is required for the future.

5. CONCLUSION

In this study, a more detailed STPA is performed based on
the previous study (Yamada et al., 2022) to obtain more de-
tailed loss scenarios and determine the specific countermea-
sures. This allowed us to identify operational constraints that
can avoid loss scenarios.

Additionally, reinforcement learning is applied to the Cube-
Sat to achieve an efficient operational policy that follows the
rewards depending on the state of the CubeSat. It is possi-
ble to automatically obtain a resilient operational policy by
designing appropriate rewards.

A future challenge is to consider the battery temperature. The
strategies derived using reinforcement learning in this study
could be manually designed as a simple set of rules. How-
ever, introducing battery temperature into the equation com-
plicates the voltage drop, thereby enhancing the significance
of employing reinforcement learning.

Another future challenge is the application to actual satellite
systems. Instead of performing the learning in real-time, we
aim to consider operation-focused design and perform learn-
ing in advance. During actual operation, we plan to use the

results obtained from the pre-training.
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