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ABSTRACT

Coolant Pump failures in heavy-duty vehicles can cause se-
vere collateral damage if they are not detected and resolved
in time; the engine will overheat quickly, rendering the ve-
hicle inoperable. Nowadays, a vast amount of heteroge-
neous sensor data from different sources is being collected
in the automotive industry. Such multi-modal data include
onboard signals reflecting the overall usage of the vehicle,
multi-dimensional histograms that capture the relation be-
tween physical quantities, and categorical variables that en-
code the physical configuration of the vehicle. This work
evaluates several multi-modal learning approaches leveraging
this diverse data to build a prognosis and health management
system for coolant pumps in commercial heavy-duty vehicles.
Four auto-encoder architectures are examined to extract fea-
tures from 2D histograms. These trained models are antici-
pated to capture key characteristics of the healthy system op-
eration and yield large reconstruction errors when applied on
faulty, or near end-of-life samples. Such learned represen-
tations are then combined with expert-engineered features.
Both early and intermediate fusion are evaluated on a real-
world coolant pump replacement dataset. Results indicate
that the combination of diverse features was the most effec-
tive approach, thereby motivating further research on multi-
modal methods.

1. INTRODUCTION

Unplanned downtime due to component failure is very costly
for the operation of commercial heavy-duty vehicles. The
development of prognosis and health management systems
focuses on predicting the remaining useful life or upcoming
failure of the equipment and could help improve the current
reactive and preventive maintenance paradigm to a predic-
tive one, thus enhancing operational efficiency and reduc-
ing downtime. With the advancement of electronic comput-
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ing units (ECUs), communication, and sensor technologies,
a huge amount of heterogeneous data is being collected from
the vehicles and utilized as the input that fuels data-driven
prognostic methods.

Features being collected from onboard ECUs include scalar
variables that reflect the overall usage of the vehicle (e.g.
mileage and fuel consumption), snap-shots of single- and
multi-dimensional histograms that capture the density func-
tion of the signals, and categorical variables of the physical
configuration of the vehicle. The presence of data from di-
verse modalities sparks an interest in investigating methods
for multi-modal learning, aiming to combine these features
and enhance overall performance.

In the field of machine learning, it is a common practice
to combine available features for training machine learning
models, regardless of their modalities. This practice typically
involves incorporating feature selection or feature learning
methods into the overall process. However, it is crucial to
acknowledge that this approach carries the risk of losing in-
formation or not fully exploiting all the available data. Our
study focuses on evaluating and comparing different ways
that combine multi-modal features for developing progno-
sis models. These approaches are based on self-supervised
learning models, such as auto-encoders. Several multi-modal
learning methods using intermediate fusion against several
early fusion approaches, as well as methods without feature
learning, i.e., using raw sensor readings or expert-engineered
features as input, are compared. Two experiments were con-
ducted to investigate the different approaches, and the eval-
uation focused on two specific tasks: failures and remaining
useful life (RUL) prediction of the coolant pump.

The first experiment was conducted on simulated data. Fea-
tures learned and extracted by self-supervised learning with
auto-encoders are found capable of detecting faults. There-
fore, the reconstruction error, i.e. the residual, of the testing
samples can serve as indicators for anomalies and therefore
shall be included for RUL prediction as well.

The second experiment focused on real-world data and ex-
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amined the performance of the multi-modal learning-based
intermediate-fusion approach. This approach involves learn-
ing representations separately for each modality and at dif-
ferent stages. Our findings indicate that this approach out-
performs early fusion and two other conventional data-driven
approaches in predicting upcoming failure and predicting the
RUL for the coolant pump. The best results for both tasks
were achieved by combining the features extracted by the
convolutional auto-encoders with the expert-suggested fea-
tures.

The remainder of the paper is organized as follows: a liter-
ature review is described in 2. Section 3 explains the prob-
lem under investigation. Section 4 introduces the fundamen-
tal principles behind the evaluated multi-modal learning ap-
proaches. The outcomes of the experiments are discussed in
Section 5. Finally, Section 6 concludes the paper and dis-
cusses future research directions.

2. LITERATURE REVIEW

The fusion of multi-modal data can be performed in dif-
ferent stages, namely early, intermediate and late fusion
(Ramachandram & Taylor, 2017). Multi-modal representa-
tion learning frameworks play an important role in early and
intermediate multi-modal fusion. These frameworks can gen-
erate various types of representations. The most popular ones
are the joint, coordinated, and encoder-decoder model-based
representation (Guo, Wang, & Wang, 2019). Learning and
generating joint representation with Restricted Boltzmann
Machines (RBMs), and deep Boltzmann Machines (DBMs)
for sensor data is quite popular. Audio and visual informa-
tion is fused using Convolutional Neural Network for manip-
ulator failure detection in (Inceoglu et al., 2021). A study
(Pang, Zhu, & Ngo, 2015) uses joint representation generated
by Deep Boltzmann machine (DBM) based on user-generated
visual, auditory, and textual data for affective analysis and re-
trieval.

Moreover, in prognosis and predictive maintenance applica-
tions, most of the methods create joint representations from
multi-modal data. The work in (Huang et al., 2023) creates
a joint representation that fuses two different modalities with
two DBMs and uses a feed-forward network to predict fail-
ures, on turbofan engines. (H. Li et al., 2021) combine CNN
and denoising auto-encoders for fusing different modalities
using the joint representation for diagnosis purposes in a gear
device. An approach in (Chen et al., 2023) fuses denoised
sensor data and simulated data using RBMs and DBMs for
RUL prediction in an ensembled fashion. A hybrid deep neu-
ral network is used in (Al-Dulaimi et al., 2019), concatenating
features learned from CNNs and LSTMs to predict RUL for
turbofan engines. In (C. Li et al., 2015) Gaussian-Bernoulli
deep Boltzmann machine (GDBM) is used to fuse multi-
modal homologous features, e.g., time, frequency, wavelet

features, generated from vibration measurements, for gear-
box state diagnosis.

However, very few works explore the use of 2D histograms
of sensor readings, which estimate the density function of two
numerical variables, and expert knowledge in a multi-modal
learning setting for predicting failures and predicting remain-
ing useful life.

3. PROBLEM STATEMENT

The coolant pump repair dataset contains 127 cases of coolant
pump replacement in heavy-duty vehicles. Due to the high
cost associated with unplanned road stops, the OEM has im-
plemented a preventive maintenance strategy. Thus, repre-
senting the journey until the replacement of the coolant pump
is stored. Sensor readings, K multivariate and multi-modal
time series features x, of two modalities are available: i) his-
togram parameter xh,xh ∈ RKh , of coolant temperature ver-
sus oil temperature, which reflects the temperature condition
of a truck, where Kh corresponds to the number of bins (or
cells) of a 2D histogram; ii) a vector of Ks scalar variables
xs,xs ∈ RKs reflecting the overall usage of the vehicle, i.e.,
total operating hours, mileage, fuel consumption, vehicle age,
and time since last coolant system repair.

Let us denote data of the multivariate time series x of each
trajectory/vehicle v by X = { xi

v,t | t = 1, 2, ..., T (v), i =

1, 2, ...,K}, where xi
v,t is the value of the ith feature x given

a vehicle/trajectory v at time t, and T (v) denote the end-
of-life of trajectory v. Note that an observation of the his-
togram feature subset at time t is denoted with xh

t , and one
of the scalar variables is denoted with xs

t . Each vehicle ex-
hibits the coolant pump replacement at the end of its trajec-
tory. In addition, consider a set of healthy and fault-free sam-
ples XH : {xi

v,t| t + τ∆ ≤ T (v)} with RUL larger than
τ∆ = 360 days. Several other features are considered in the
following based on suggestions from the domain expert, in-
cluding mileage per operating hour; fuel consumed per kilo-
meter traveled, and per operating hour. Since the coolant sys-
tems cannot be run to failure during normal operations, a pre-
ventive maintenance strategy is implemented.

3.1. Failure Prediction

Coolant systems are subject to diagnostic tests in the work-
shops, and those deemed inadequate are replaced. Thus, it
is necessary to make the assumption that the time of coolant
pump replacement signifies the termination of its operational
life, as there is no subsequent data generated by the unit.
However, it is important to note that there is no definitive con-
firmation of its failure.

Consider a classification model fc(·) is trained to predict
whether any failure will occur in the given time horizon us-
ing learned features θ, i.e., fc: θ → Yc, where Yc denotes the
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target. θ are obtained from a self-supervised model, e.g. an
auto-encoder, g(·), trained only using the data that are fault-
free, i.e. g: x → θ. A prediction horizon τph of 90 days is
selected. The binary classification target, given the time t and
vehicle v, can be configured as follows:

ycv,t =

{
1 if T (v)− τph ⩽ t ⩽ T (v)

0 otherwise,
(1)

3.2. Remaining Useful Life Prediction

The RUL prediction provides time-to-failure information for
each coolant pump unit. Practically, RUL can be capped at
180 days, indicating no imminent need for repair. In this pa-
per, the following target sequence is used:

yrv,t
=

{
T (v)− t if T (v)− τmax ⩽ t ⩽ T (v)

τmax otherwise,
(2)

where τmax is set to 180. Regression models fr(·) are trained
to cast prediction on RUL, i.e. fr: θ → Yr, where Yr denotes
the RUL.

4. METHOD

An investigation and comparison of intermediate and early
fusion approaches for prognosis are conducted. Auto-
encoders with different architectures are trained with samples
XH that are considered fault-free, or far from a failure in
time, i.e. having an RUL larger than 360 days.

The introduced approach, in our context, uses multi-modal
learning via intermediate fusion for the coolant pump prog-
nosis tasks. The joint representation Θ{h,s} is the result of
the combination of the scalar variables x with features {δ, θ}
learned using an auto-encoder gh(·). The fused features are
then used to train a classification model fc: Θ → Yc) and a
RUL predictor model fr: Θ → Yr.

4.1. Self-Supervised Learning using Auto-encoders

Learning useful representations that can capture key charac-
teristics of the underlying signal is crucial for carrying out
Machine Learning tasks. Auto-encoders are used to learn
latent features θ (with the reconstruction error δ) in a self-
supervised learning setting.

It is expected that greater reconstruction errors δ are yielded
while applying the trained auto-encoder g(·) on faulty sam-
ples. A near-end-of-life coolant pump exhibits different be-
havior from the population on which the auto-encoder was
trained. The auto-encoder is trained to find latent features,
i.e., a code θ in between the encoder Eφ(·) and the decoder
Dϕ(·). It aims to minimize the reconstruction error, e.g., the
mean squared error between the input and the reconstructed
samples: 1

N

∑N
u=1 ||Dϕ(Eφ(x

k
v,t)) − xk

v,t||22, where k is the

set of selected features of xv,t, and N is the total number of
dimensions.

In this work, a comparative evaluation is conducted to as-
sess the performance of four types of encoder-decoder archi-
tectures, i.e., fully connected networks (FC); fully connected
networks with sparse constraints (FCS) on encoder represen-
tations; fully connected deep auto-encoders with more hidden
layers (FCD), and convolutional auto-encoders (CNN).

4.2. Multi-Modal Fusion Framework

The multi-modal learning approach, essentially based on in-
termediate fusion, learns features at different stages and cre-
ates a joint representation Θ{h,s} for the prognosis tasks.
Figure. 1 provides a visual depiction of the intermediate fu-
sion method, wherein data comprising multiple modalities,
such as histograms and scalar variables, are utilized as in-
put. This approach involves learning and extracting features
in a modality-specific manner. Latent representation θ and
reconstruction error δ are extracted for histograms (xh) us-
ing trained auto-encoders applied to healthy data. For scalar
variables, a small set of engineered features xa are derived
from the raw scalar features xs based on expert knowledge.
The samples, given an instant t, of these extracted features
{δ, θ,xa,xs} were concatenated into a joint representation
Θ{h,s} as the input for training supervised machine learning
model, i.e., fc or fr for the prognosis task.

Additionally, an alternative approach based on early fusion
(depicted in Figure 2) has been considered. In this case, both
modalities are concatenated, and a compressed representation
is learned using an auto-encoder g(·) trained in a similar man-
ner as described above. The extracted compressed represen-
tation {δ, θ} is comprised of the reconstruction error and the
latent features for performing the prognosis tasks.

4.3. Prognosis Modeling and Evaluation Metric

The prognosis modeling includes two tasks, i.e., training a
classifier fc for forecasting whether a failure will occur in a
given time frame τph, and a regressor fr for predicting the
remaining useful life. For both tasks, an auto-encoder g(·)
was trained first with the healthy samples in the training pop-
ulation. Then, learned compressed representation {δ, θ} was
extracted for both training and testing samples. Prognostic
models were constructed utilizing the acquired representa-
tions from the training population, enabling the prediction to
be applied to the testing population for evaluation purposes.

The evaluation metric for the failure prediction classification
task is the area under the curve (AUC). The metric for evalu-
ating the RUL regression task is the mean absolute percentage
error (MAPE) since it weights errors near end-of-life higher.
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Figure 2. Multi-Modal Learning with Early Fusion

5. EXPERIMENT RESULTS

5.1. Experimental Setting

Auto-encoder architectures: For the experiments conducted
in this paper, four different types of auto-encoders are imple-
mented: i) the auto-encoder with a fully connected network
(FC) employs a single fully-connected neural layer for the
encoder as well as for the decoder, obtaining K2 numbers
of ReLU units in the encoder and the same amount of sig-
moid units in the decoder; ii) the auto-encoder with a spar-
sity constraint (FCS) has the same architecture w.r.t. FC, but
employed an L1 regularization with a factor of 10−4; iii) the
deep auto-encoder with fully connected layers (FCD) has four
dense layers in the encoder, in which (512, 256, 128, 64)
ReLU units were employed in each hidden layer, and four
dense layers in the decoder, in which (64, 128, 256) ReLU
units in the first three layers and 512 sigmoid units in the last
layer: iv) the convolutional auto-encoder (CNN) is comprised
of a stack of 2D convolutional layers with ReLu units (except
for the last layer in the decoder, sigmiod units are employed)
and 2D max pooling layers.

The encoded latent features in all four types of auto-encoders

were configured to have a dimensionality of 32. Training of
the networks was conducted using an ADAM optimizer, with
mean squared error serving as the loss function for FC, FCS,
FCD, and CNN architectures.

Classification and Regression Models: The classification
methods evaluated in this study include: i) random forest
classifier (RF) with 100 estimators using Gini impurity; ii)
ridge classifier with an alpha of 1; iii) K-NearestNeighbors
(kNN) classifier with the number of neighbors equal 15; iv)
linear discriminant analysis (LDA) with an SVD solver; v)
multi-layer perceptron (MLP) classifier with two hidden lay-
ers, each containing 100 ReLU units, trained using an ADAM
optimizer.

The regression methods evaluated in this study include: i)
random forest regressor with 100 estimators; ii) ridge re-
gression with L2 regularization and an alpha of 1; iii) K-
NearestNeighbors Regressor with a k equal to 15; iv) Lin-
ear Regression; v) multi-layer perceptron regressor with two
hidden layers, each containing 100 ReLU units, optimized
with ADAM. For the classification and regression models,
the scikit-learn library (Pedregosa et al., 2011) was em-
ployed. The experiments were conducted using 4-fold cross-
validation vehicle-wise, i.e., data from the same vehicle
would never appear in the training and the testing population
together.

5.2. Detecting Simulated Faults

Regrettably, the ground truth pertaining to the condition of the
coolant pump in the real-world dataset remains inaccessible.
Solely the information regarding replacements is available,
with an anticipated presence of inaccuracies within a subset
of the replacements. There exists very little reliable informa-
tion regarding the degree of wear in individual coolant pumps
and the associated fault modes.
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Hence, an experiment is conducted wherein faults are deliber-
ately injected into the data to emulate the behavior of a com-
promised coolant pump. Intuitively, such a pump exhibits re-
duced cooling efficiency, consequently leading to an extended
duration of elevated temperatures within the system.

The primary objective of the experiment involving injected
faults is to verify and illustrate whether the trained auto-
encoder and the reconstruction error δ can be used to suc-
cessfully detect symptoms of faults injected in the 2D his-
togram of coolant versus oil temperature. More precisely, if
the coolant pump is not working properly, the coolant and the
oil temperature would be higher than usual. Hence, we have
injected faults by redistributing the mass of the histogram
towards the lower right corner, which corresponds to high
coolant and oil temperatures.

A set of new histograms were randomly drawn from the his-
togram features in XH . In Figure 3, a 2D histogram of
oil versus coolant temperature without any fault injected is
shown in the upper left corner. The rest are histograms with
different degrees of faults injected. The degree of the fault in-
jected is governed by a pair of meta parameters (∆N,∆D),
in which ∆N governs the ratio of masses that are redis-
tributed towards the lower right corner of the histogram, while
∆D governs the degree of the diffusion of the redistributed
mass. The histogram array illustrated in figure 3 shows an
increasing ∆N towards the right side of the array and an in-
creasing ∆D towards the bottom.

Figure 3. Simulated faults of different degrees in the 2D his-
togram (coolant versus oil temperature)

For the experiment, an auto-encoder gh(·) was trained on 300

healthy histograms and was applied to a balanced testing set.
Half of the latter set, histograms, were injected with faults of
different degrees, yielding a reconstruction error δ for every
testing histogram. These outputs were used in the binary clas-
sification task, i.e., distinguishing histograms with faults from
healthy ones. The area under the receiver operating character-
istic curve (AUC) was computed for a few experiments with
increasing values of (∆N,∆D). As is shown in Figure 4, the
reconstruction error δ for all four auto-encoders with different
settings is capable of detecting the fault injected. This vali-
dates the theoretical foundations and demonstrates that his-
tograms exhibiting the patterns expected from weak coolant
pumps provide useful information.
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Figure 4. Area under the ROC curve (AUC) of using re-
construction error δ for detecting simulated faults in 2D his-
tograms

5.3. Prognostic tasks on the coolant pump dataset

Table 1 shows performance evaluation, comparing different
multi-modal fusion methods in predicting coolant pump fail-
ures. It is shown that classification methods with the top
50 features (from all features available {xs, xa, xh}) selected
by using ANOVA F-value perform on par with the expert-
suggested features. The AUC of early fusion (EF) methods,
i.e. auto-encoders with FC, FCS, FCD, and CNN, is worse
compared to the rest of the evaluated methods. Multi-modal
learning with intermediate fusion (IF) methods outperforms
other approaches; MLP with features extracted from FC and
CNN auto-encoder achieves the overall best performance.

Table 2 shows the comparison, in terms of MAPE, for RUL
prediction. The best performance was, again, achieved with
intermediate fusion using features learned from convolutional
auto-encoders.

6. CONCLUSION AND FUTURE WORK

In this paper, several muti-modal fusion approaches to predict
failures and RUL of coolant pumps in commercial heavy-duty
vehicles were introduced and evaluated The findings of this
study highlight that the intermediate fusion of the learned fea-
tures, comprising the latent features alongside the reconstruc-
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Table 1. Performance Comparison (AUC) for predicting coolant pump failures in a time frame of 90 days

AUC RF Ridge kNN LDA MLP
EF-FC 0.66 ± 0.03 0.6 ± 0.01 0.58 ± 0.02 0.61 ± 0.02 0.61 ± 0.02

EF-FCS 0.61 ± 0.03 0.58 ± 0.03 0.58 ± 0.02 0.58 ± 0.01 0.62 ± 0.05
EF-FCD 0.55 ± 0.02 0.55 ± 0.03 0.59 ± 0.06 0.59 ± 0.05 0.6 ± 0.03
EF-CNN 0.52 ± 0.03 0.52 ± 0.01 0.52 ± 0.01 0.54 ± 0.02 0.54 ± 0.03

IF-FC 0.66 ± 0.06 0.66 ± 0.04 0.63 ± 0.04 0.66 ± 0.05 0.72 ± 0.04
IF-FCS 0.68 ± 0.08 0.67 ± 0.04 0.66 ± 0.02 0.68 ± 0.01 0.71 ± 0.03
IF-FCD 0.62 ± 0.07 0.67 ± 0.05 0.67 ± 0.05 0.7 ± 0.04 0.69 ± 0.02
IF-CNN 0.63 ± 0.1 0.67 ± 0.05 0.58 ± 0.05 0.68 ± 0.03 0.72 ± 0.02
x (top 50) 0.64 ± 0.09 0.62 ± 0.06 0.63 ± 0.04 0.67 ± 0.07 0.68 ± 0.04
Expert xa 0.64 ± 0.08 0.62 ± 0.06 0.63 ± 0.04 0.67 ± 0.07 0.68 ± 0.06

Table 2. Performance Comparison (MAPE) for predicting RUL for coolant pumps

MAPE RF Ridge kNN LDA MLP
EF-FC 0.66 ± 0.02 1.07 ± 0.28 0.74 ± 0.04 1.08 ± 0.29 1.14 ± 0.26

EF-FCS 0.66 ± 0.02 1.01 ± 0.24 0.71 ± 0.04 1.02 ± 0.25 1.42 ± 0.56
EF-FCD 0.69 ± 0.02 0.85 ± 0.11 0.71 ± 0.02 0.87 ± 0.12 0.75 ± 0.06
EF-CNN 0.77 ± 0.04 0.94 ± 0.18 0.84 ± 0.04 1.1 ± 0.28 0.83 ± 0.02

IF-FC 0.57 ± 0.07 1.07 ± 0.26 0.65 ± 0.06 1.15 ± 0.31 1.05 ± 0.37
IF-FCS 0.56 ± 0.06 1.0 ± 0.27 0.62 ± 0.04 1.07 ± 0.31 1.31 ± 0.32
IF-FCD 0.56 ± 0.04 0.72 ± 0.08 0.61 ± 0.06 0.76 ± 0.09 0.7 ± 0.12
IF-CNN 0.58 ± 0.04 0.67 ± 0.06 0.7 ± 0.03 0.83 ± 0.12 0.55 ± 0.02
x (top 50) 0.63 ± 0.07 0.64 ± 0.07 0.64 ± 0.06 0.65 ± 0.06 0.73 ± 0.11
Expert xa 0.63 ± 0.08 0.64 ± 0.07 0.64 ± 0.06 0.65 ± 0.06 0.71 ± 0.05

tion error, derived from the convolutional auto-encoder in
combination with expert features, yields the best performance
for both failure and Remaining Useful Life (RUL) predic-
tion. Furthermore, the results demonstrate the efficiency of
self-supervised feature learning using auto-encoders in gen-
erating valuable features to recognize faults in multi-modal
data Important future work, however, includes improving the
performance by filtering out premature- or mis-replacement
samples in the training population.
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