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ABSTRACT 

This paper proposes a novel methodology for enhancing 

multi-class classification accuracy in fault diagnosis 

problems among domains with highly-connected fleets of 

assets using time series data. The approach involves 

appending specially tailored models to an initial model and 

incorporating domain adaptation techniques to account for 

domain variations. The methodology is demonstrated 

through a case study on fault diagnosis of a fleet of hydraulic 

rock drills, which presents challenges due to variations in 

sensor data between different fault classes and individual 

machines. Results show significant improvements in 

classification accuracy, both in validation and testing, upon 

employing ensemble models and applying domain adaptation. 

While the study is limited to one case study, it lays the 

groundwork for exploring the applicability of the proposed 

methodology in other contexts. 

1. INTRODUCTION 

In the operation of complex mechanical systems, addressing 

multi-class classification problems poses a significant 

challenge. The need to differentiate between various fault 

classes and account for data variability across different 

domains, such as individual machines and entire fleets, calls 

for a robust and adaptable methodology. Consequently, 

researchers and engineers are motivated to develop and apply 

innovative strategies to tackle these issues in a practical and 

efficient manner. 

Numerous studies have endeavored to address the multi-class 

classification problem in fault diagnosis for complex 

mechanical systems. Deep learning (DL) has emerged as a 

major trend in this field. For instance, Duan, Xie, Wang, and 

Bai (2018) reviewed the effectiveness of DL models, such 

as convolutional neural network (CNN), Deep Belief 

Network (DBN), or autoencoder (AE), in handling multi-

class fault diagnosis of machinery problems compared to 

conventional machine learning (ML) techniques. 

Furthermore, researchers are working on improving DL 

performance through ensemble methods. Chen, Gryllias, and 

Li (2019), for example, integrate CNN with Extreme 

Learning Machine (ELM) and demonstrate outstanding 

performance both on a gearbox and a motor bearing 

classification problem. Ma and Chu (2019) utilized an 

ensemble learning method with that integrated multiple 

classifiers and demonstrated superior performance on rotor-

bearing fault diagnosis 

Despite these advancements, several limitations persist in the 

aforementioned methodologies. DL methods require more 

labeled data per class, risk overfitting, and are 

computationally expensive. Ensemble learning, on the other 

hand, may result in less interpretable models and increased 

computational complexity. A method that balances these 

drawbacks and benefits is needed. 

In this study, we propose a novel methodology that addresses 

the drawbacks mentioned above by combining the strengths 

of existing approaches while mitigating their limitations. We 

focus on classes with low accuracy in the conventional ML 

model and adapt DL techniques to them. This strategy 

improves the data-intensive, overfitting risk, and 

computationally expensive aspects of DL. Furthermore, the 
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DL model handles a small part of the problem, minimizing 

the deterioration of the model's interpretability. Additionally, 

by incorporating domain adaptation (DA) in DL models, our 

methodology effectively accounts for individual differences 

and ensures the generalization of the model. Our approach 

integrates ensemble learning, DA, and DL for binary 

classification, which simplifies the problem and potentially 

increases accuracy.  

2. METHODOLOGY 

This paper proposes a methodology, depicted in Figure 1, that 

aims to improve the precision of conventional ML models for 

multi-class classification problems with diverse data sources. 

In this method, the baseline model, the initial model, is built 

with conventional ML methods, and then sub-models that 

utilize DL are added. Specifically, the sub-models focus 

solely on binary-class classification for target classes in 

which the baseline model performs poorly, while the baseline 

model handles the entire multi-class classification. 

Furthermore, DA techniques are employed to bridge 

discrepancies among different domains in datasets, utilizing 

healthy class samples available in all domains. The next 

section provides a detailed explanation of this methodology. 

 

Figure 1 Proposed Methodology 

2.1. Problem statement 

This paper addresses a challenging semi-supervised multi-

class and multi-domain fault diagnosis problem based on 

time series data. The problem is given as a training dataset 

with 𝑛𝑡𝑟𝑎𝑖𝑛  labeled samples  {(𝒙𝑖
𝑡𝑟𝑎𝑖𝑛, 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 , 𝑑𝑖
𝑡𝑟𝑎𝑖𝑛)}

𝑖=1

𝑛𝑡𝑟𝑎𝑖𝑛
and 

a testing dataset with 𝑛𝑡𝑒𝑠𝑡  labeled samples in which only a 

part of healthy class data are labeled {(𝒙𝑖
𝑡𝑒𝑠𝑡 , 𝑦𝑖

𝑡𝑒𝑠𝑡 , 𝑑𝑖
𝑡𝑒𝑠𝑡)}𝑖=1

𝑛𝑡𝑒𝑠𝑡 

,where 𝒙 , 𝑦 and 𝑑  stand for data samples, associated labels, 

and domains to which data belong, respectively. The training 

and testing data are potentially sourced from different 

domains, such as machines or working conditions, making 

classification challenging. 

2.2. Baseline Modeling with Conventional DL 

The baseline model, often employed in research papers for 

comparison, refers to a model built using well-established 

traditional machine learning methods. It is constructed 

through a process that includes feature extraction, feature 

selection, and the application of machine learning libraries. 
Steps include transforming raw data into features, eliminating 

low-importance features using the recursive feature 

elimination method (Guyon, Weston, Barmhill, and Vapnik, 

2002), building models with popular algorithms like 

XGBoost (Chen & Guestrin, 2016) and Support Vector 

Machine (SVM), and selecting the best model based on 

performance evaluation. Feature engineering includes time-

domain statistical features, frequency-domain features, and 

Dynamic Time Warping (DTW) for time-series data analysis 

(Berndt & Clifford, 1994). After feature extraction, a feature 

selection process is conducted to find the best feature subset. 

Modeling algorithms are compared, and the best one is 

selected based on a scoring metric. 

2.3. Ensemble Modeling with Domain Adaptation 

The proposed methodology enhances the baseline model by 

constructing specialized sub-models for underperforming 

classifications. This approach simplifies the problem and 

potentially boosts accuracy by creating binary classification 

sub-models for target classes identified through cross-

validation. These sub-models use raw data as input and apply 

domain adaptation techniques to address individual 

differences. The process continues until all sub-models for 

target classes are built, with predictions updated using an 

ensemble rule.  

The first step in our ensemble approach is to find classes that 

need to be improved, classes for which the baseline model 

performs poorly. Target classes for sub-models are 

determined from the results of the cross-validation of the 

baseline. The following algorithm selects these targets. 
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Here, the pair of two classes (𝑋1𝑖 , 𝑋2𝑖) are the target 

classes, and sub-models will be built for them. 𝛼𝑖 indicates 

the upper limit of accuracy that can be improved by the sub-

model for (𝑋1𝑖  , 𝑋2𝑖). A pair of two target classes with high 

𝛼 has a high possibility of improving accuracy, while a sub-

model with a low 𝛼 has a low chance of improving accuracy. 

Therefore, in this proposed methodology, a lower limit 𝛼𝑚𝑖𝑛 

is set, and sub-models below this limit (models with a low 

possibility for improvement) are eliminated from the 

candidates. This threshold will save computational resources 

as well as time to tune the sub-models, making our method 

efficient. 

Once the target classes are calculated, then related sub-

models are created. Figure 2 shows the structure of a sub-

model: the sub-model inputs both raw training data and 

testing data into the feature extractor. Extracted features are 

inputted into the classifier, which then outputs the predictions 

for each data. A classification loss is calculated using the 

predictions from training data of target classes. The 

classification loss is a measure of how far away from the true 

labels the predicted labels are, with smaller values indicating 

more accurate predictions. 

 

Figure 2 Structure of sub-models 

Domain adaptation techniques are also used to account for 

differences between domains. This involves minimizing 

classification loss, such as cross-entropy loss, commonly 

used as a loss function in multi-class classification, and 

discrepancy loss, such as maximum mean discrepancy 

(MMD) (Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 

2012), to extract domain-independent features. The total loss 

is calculated by combining these two losses, enabling the 

classifier to effectively handle data from different domains. 

Once a sub-model is built, the prediction from the model is 

obtained, and then the new prediction is given by the 

ensemble with the old prediction. This updated prediction is 

evaluated, and if the accuracy improves, then the next sub-

model is created.  

3. CASE STUDY: FAULT DIAGNOSIS OF ROCK DRILLS 

3.1. Data Description and Problem Statement 

The proposed methodology is validated by solving a multi-

class classification problem, specifically the fault diagnosis 

of multiple rock drills using data from PHM North America 

Data Challenge 2022 (PHM Society, 2022). The dataset 

provided for this data challenge consists of six individual 

drills, which can be considered as different domains, with 

eleven distinct operating conditions, including one no-fault 

and ten different faulty conditions. 

This case study aims to diagnose faults in unknown drills 

using data from known ones, but the challenge is that there 

are variations in sensor data between both different fault 

classes and domains. Pressure oscillation patterns differ more 

significantly among drills in the same fault class than among 

different fault classes in the same individual. As a reference, 

some of no-fault data are available among the unknown drill, 

and the model is expected to learn the differences between 

drills using this data 

3.2. Modeling 

As the first procedure of modeling, pressure signals are 

divided into two working condition regimes based on 

pressure surge, and then features are extracted from both of 

these, statistical features, frequency domain features with 

FFT, and wavelet analysis. Also, the DTW technique has 

been used (Jakobsson, Krysander, and Pettersson, 2022) 

 
Figure 3 Raw signal split for feature extraction 

SVM, Random Forest, and XGBoost algorithms are selected 

as baseline models, and the best one is chosen. CNN is 

utilized as a feature extractor and classifier for sub-models. 

Table 1 displays the network structure, which consists of two 

convolutional layers.  

Table 1 Network Architecture 

Module Layer Operator and Parameters 

Feature 

Extractor 

Conv 1 filter:30, kernel:5, strid:1, ReLu 

Conv 2 filter:30, kernel:5, strid:1, ReLu 

MaxPool

ing 

2x2 

Flatten - 

FC 1 Note: 128, ReLu 

Classifier FC 2 Note: Number of Classes 
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3.3. Evaluation Metric 

The data from one of the six drills are used as test data, while 

the remaining five are used as training data. The model is 

evaluated using 5-fold cross-validation on the training data, 

and the average accuracy is calculated to compare 

performance. The accuracy of the test data is also compared.  

4. RESULTS AND DISCUSSION 

4.1. Features and Model Selection 

The best features are selected based on backward feature 

elimination with feature importance given by XGBoost. 

Table 2 presents the final list of sixteen features. Then, model 

selection has proceeded. Table 3 displays the results from 

three algorithms. The XGBoost classifier is selected as the 

baseline model, as it exhibits the best validation accuracy. 

Table 2 Best selected features 

 

Table 3 Conventional ML accuracies  

Feature set SVM Random 

Forest 

XGBoost 

All 0.824 0.868 0.900 

Best 0.901 0.920 0.923 

4.2. Model Performance 

Figure 4 shows the detailed results of all validations by the 

baseline model. Five subfigures show the confusion matrices 

and the elements, the amount of data. Overall, the accuracies 

are a minimum of 0.867 and a maximum of 0.958.  

Here some mislabeled patterns can be observed. One primary 

mislabel pattern is that the data with true label 8 is predicted 

as label 7. There are 47 to 355 mislabels in validations. 

Similarly, the data with true label 7 predicted as label 8 is also 

an obvious mislabel pattern. From 19 to 394 mislabels exist 

in the validations. Thus, it is possible to improve the overall 

performance by reducing these errors. 

To determine the target class for sub-models, the impact of 

reducing these errors is assessed. Fig. 5 shows how the targets 

are determined by the algorithm 1. Firstly, confusion 

matrixes from all validations are summed up, and then each 

element of the matrix is divided by the total number of data 

(Fig. 5(a)). Maximum elements are selected from each 

column which we can see as red bold outside borders. These 

percentages indicate how much the prediction accuracy 

improved if the mislabels completely solved. For instance, if 

one overcomes the mislabels that data with true label 7 

predicted as label 8, the accuracy would be improved by 2.1 

%. Secondly, based on these percentages, the target classes 

of the sub-models are determined. Here, we set 𝛼𝑚𝑖𝑛= 1% 

,and then two pairs of target classes (7,8) and (1,5) are 

selected (Fig. 5(b)) 

 

Figure 4 Validation Results of Baseline Model 

 

Figure 5 Process of Selecting Target Classes 

Table 4 provides an example of how the sub-models reduce 

the number of mislabels, illustrating the results from 

validation 4. It demonstrates that predictions with the 
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addition of sub-model 1 yield fewer mislabels compared to 

using only the baseline model. Likewise, incorporating sub-

model 2 leads to the correct classification of mislabels 

between classes 1 and 5, futher enhancing overall accuracy.  

Table 5 presents the comprehensive results of both 

validations and testing. The inclusion of sub-models 

increases all accuracy metrics. Consequently, the model 

developed using the proposed methodology performed 

superior performance. This result validated the effectiveness 

of our methodology.  

Table 4 Mislabels reduced by adding sub-models 

True 

Label 

Predicted 

Label 

Baseline 

model 

Add Sub-

model 1 

Add Sub 

model 1,2 

‘7’ ‘8’ 394 0 0 

‘8’ ‘7’ 85 8 8 

‘1’ ‘5’ 8 8 0 

‘5’ ‘1’ 32 32 0 

 

Table 5 Accuracy of validation and testing 

(Average accuracy ± Standard deviation) 

 Model Validation  

Accuracy 

Test 

Accuracy 

1 Baseline model 0.923±0.034 0.932 

2 Base+Sub-model 1 0.947±0.046 0.992 

3 Base+Sub-model 1,2 0.959±0.038 0.993 

4.3. Discussion 

The proposed methodology incorporates DA to enhance 

prediction accuracy while considering individual differences. 

A study is conducted to evaluate the effectiveness of this 

approach. Table 6 presents a comparison between utilizing 

DA in the sub-models and not using it. The accuracies with 

DA are equal to or better than those without it at any level. 

This finding implies that DA effectively mitigates bias 

between training and testing data, resulting in a more 

generalized model. Based on these outcomes, we conclude 

that DA is effective for addressing the problem addressed in 

this paper. 

Table 6 Sub-models with/without DA 

No Model DA Validation  Test 

1 Baseline model － 0.923±0.034 0.932 

2 Base + Sub-

model 1,2 

Yes 0.959±0.038 0.993 

3 No 0.940±0.059 0.993 

 

A limitation for this study is that the proposed methodology 

was tested solely on a hydraulic rock drill system, leaving its 

effectiveness on other machine systems uncertain. Further 

research is necessary to evaluate the performance of the 

proposed methodology in other scenarios.  Furthermore, 

this case study employs a simple CNN as the algorithm for 

the sub-models, though more advanced deep learning 

architectures might offer improved performance. Developing 

an efficient process for building and selecting appropriate 

deep learning algorithms could potentially yield even higher 

accuracy. 

5. CONCLUSION 

In conclusion, this paper proposed a practical methodology 

for achieving elevated precision in a multi-class classification 

problem by appending DL based sub-models to a 

conventional ML based baseline model and incorporating 

DA techniques. The approach was validated through a case 

study on the fault diagnosis of rock drills, where the dataset 

included variations in sensor data between different fault 

classes and different domains. Overall, the proposed 

methodology offers a practical solution for improving 

classification accuracy in semi-supervised multi-class fault 

diagnosis problems based on time series data. 

REFERENCES 

Berndt, D. J., & Clifford, J. (1994, July). Using dynamic time 

warping to find patterns in time series. In KDD workshop 

(Vol. 10, No. 16, pp. 359-370). 

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable 

tree boosting system. In Proceedings of the 22nd acm 

sigkdd international conference on knowledge discovery 

and data mining (pp. 785-794). 

Chen, Z., Gryllias, K., & Li, W. (2019). Mechanical fault 

diagnosis using convolutional neural networks and 

extreme learning machine. Mechanical systems and 

signal processing, 133, 106272. 

Duan, L., Xie, M., Wang, J., & Bai, T. (2018). Deep learning 

enabled intelligent fault diagnosis: Overview and 

applications. Journal of Intelligent & Fuzzy Systems, 

35(5), 5771-5784. 

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., 

& Smola, A. (2012). A kernel two-sample test. The 

Journal of Machine Learning Research, 13(1), 723-773. 

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). 

Gene selection for cancer classification using support 

vector machines. Machine learning, 46, 389-422. 

He, J., Li, X., Chen, Y., Chen, D., Guo, J., & Zhou, Y. (2021). 

Deep transfer learning method based on 1d-cnn for 

bearing fault diagnosis. Shock and Vibration, 2021. 

Jakobsson, E., Frisk, E., Krysander, M., & Pettersson, R. 

(2022). Time Series Fault Classification for Wave 

Propagation Systems with Sparse Fault Data. arXiv 

preprint arXiv:2203.16121. 

Ma, S., & Chu, F. (2019). Ensemble deep learning-based fault 

diagnosis of rotor bearing systems. Computers in 

industry, 105, 143-152. 

PHM Society. 2022 PHM Conference Data Challenge - PHM 

Society Data Repository. (2022, July 30). 

https://data.phmsociety.org/2022-phm-conference-data-

challenge 



Asia Pacific Conference of the Prognostics and Health Management Society 2023 

6 

 

Takanobu Minami received his B.S. and 

M.S. degree in mechanical engineering 

from Kyoto University in 2008 and in 

2011, respectively. Currently, he is 

pursuing his Ph.D. degree in mechanical 

engineering with the University of 

Maryland, College Park, MD, USA and employed as 

engineer in Komatsu Ltd. His research interests include 

machine learning, deep learning, prognostics and health 

management, and industrial A.I. 

Alexander Suer received his B.S. in 

mechanical engineering from the 

University of Cincinnati, Cincinnati, OH, 

USA in 2022. He is pursuing his M.S. and 

Ph.D. degree in mechanical engineering 

with the University of Cincinnati. His 

research interests include machine 

learning, prognostics and health management, industrial A.I., 

and robotics. 

Pradeep Kundu has been working as an 

Assistant Professor at the Department of 

Mechanical Engineering at KU Leuven, 

Belgium. Before joining KU Leuven, he 

worked as a Post Postdoctoral Fellow and 

Research Associate at the IMS Center, 

University of Cincinnati, USA and 

DMEM, University of Strathclyde, UK, respectively. 

Pradeep completed his PhD in 2020 in the specialization of 

Prognosis and Health Management from the Department of 

Mechanical Engineering at the Indian Institute of Technology 

(IIT) Delhi, India. In 2019, he received a Visiting Research 

Fellow grant from SERB, Govt. of India, to carry out his PhD 

research work at the University of Alberta, Canada. Pradeep 

has published more than 30 articles in reputed academic 

journals and conferences. His research interests are Industrial 

Artificial Intelligence, Digital Twins, Smart Manufacturing, 

Fault Diagnosis, Fault Prognosis and Reliability Engineering. 

Shahin Siahpour received the B.S. 

degree in mechanical engineering from 

Shiraz University, Shiraz, Iran, in 2015, 

and the M.S. degree in mechanical 

engineering from the University of 

Tehran, Tehran, Iran, in 2017. He is 

currently pursuing the Ph.D. degree in 

mechanical engineering with the University of Cincinnati, 

Cincinnati, OH, USA. His research interests include deep 

learning, prognostics, health management, and industrial 

artificial intelligence.  

Jay Lee is Clark Distinguished Professor 

and Director of Industrial AI Center in 

the Mechanical Engineering Dept. of the 

Univ. of Maryland College Park. His 

research is focused on intelligent 

analytics of complex systems including 

highly-connected industrial systems 

including energy, manufacturing, and healthcare/medical, 

etc. He has been working with medical school in Traumatic 

Brain Injury (TBI) using multi-dimension data for predictive 

assessment of patient in ICU with funding from NIH and 

NSF. Previously, he served as an Ohio Eminent Scholar, 

L.W. Scott Alter Chair and Univ. Distinguished Professor at 

Univ. of Cincinnati. He was Founding Director of National 

Science Foundation (NSF) Industry/University Cooperative 

Research Center (I/UCRC) on Intelligent Maintenance 

Systems during 2001-2019. IMS Center pioneered industrial 

Ai-augmented prognostics technologies for highly-connected 

industrial systems and has developed research memberships 

with over 100 global company since 2000 and was selected 

as the most economically impactful I/UCRC in the NSF 

Economic Impact Study Report in 2012. He is also the 

Founding Director of Industrial AI Center. He mentored his 

students and developed a number of start-up companies 

including Predictronics through NSF iCorp in 2013 and has 

won 1st Place for PHM Society Data Challenges competition 

5 times. He was on leave from UC to serve as Vice Chairman 

and Board Member for Foxconn Technology Group (ranked 

26th in Global Fortune 500) during 2019-2021 to lead the 

development of Foxconn Wisconsin Science Park (~$1B 

investment) in Mt. Pleasant, WI. In addition, he advised 

Foxconn business units to successfully receive five WEF 

Lighthouse Factory Awards since 2019. He is a member of 

Global Future Council on Advanced Manufacturing and 

Production of the World Economics Council (WEF), a 

member of Board of Governors of the Manufacturing 

Executive Leadership Council of National Association of 

Manufacturers (NAM), Board of Trustees of MTConnect, as 

well as a senior advisor to McKinsey. Previously, he served 

as Director for Product Development and Manufacturing at 

United Technologies Research Center (now Raytheon 

Technologies Research Center) as well as Program Director 

for a number of programs at NSF. He was selected as 30 

Visionaries in Smart Manufacturing in by SME in Jan. 2016 

and 20 most influential professors in Smart Manufacturing in 

June 2020, SME Eli Whitney Productivity Award and 

SME/NAMRC S.M. Wu Research Implementation Award in 

2022  

 


