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ABSTRACT 

In this paper, we propose an anomaly detection method 

developed by the team called “Team Tsubasa”  in the 

PHMAP2023 Data Challenge. This is an anomaly detection 

competition for spacecraft propulsion systems (PHM Society, 

2023). We joined the Data Challenge with the aim of 

deepening our knowledge of anomaly detection technology 

through the competition. In spacecraft propulsion systems, 

solenoid valve faults and bubble anomalies can occur, and it 

is considered important to detect them. Also, when other 

unknown anomalies occur, it is necessary to detect them 

without confusing them with known anomalies. In this paper, 

we propose time series classification by k-NN algorithm 

(Cover & Hart, 1967) as one of the methods to detect these 

anomalies. In this data challenge, we tried to classify 

anomalies by k-NN and to identify the location of the 

anomalies. For those classified as solenoid valve faults, we 

estimated the opening ratio of the solenoid valve from the 

similarity of the time series waveforms. As a result, the 

proposed method achieved a score of 99.05% based on the 

scoring rules given by the PHMAP 2023 Secretariat and our 

team won third place. 

1. INTRODUCTION 

The Data Challenge was held as part of PHMAP 2023 (PHM 

Society, 2023), an anomaly detection competition for 

spacecraft propulsion systems, and the authors participated as 

challengers. According to the view of the PHMAP 2023 

Secretariat, PHM technology is expected to improve the 

anomaly detection technology for spacecraft propulsion 

systems, and it is said that the Data Challenge is said to have 

the following background. Telemetry data that can be 

obtained in orbit is limited due to sensor installation and 

downlink capacity constraints. A simulator for a simplified 

propulsion system developed with the cooperation of JAXA 

can acquire data covering various failure scenarios in real 

equipment. The data challenge is to detect anomalies from 

data in various scenarios generated by this simulator. The 

anomalies to be detected are bubble anomalies and solenoid 

valve faults, which are typical anomalies of spacecraft 

propulsion systems. Bubble anomalies are the generation of 

air bubbles in the spacecraft's pipes, and the existence of the 

air bubbles changes the speed of sound and causes a slight 

change in the pressure of the fluid. Also, when solenoid valve 

faults occur, the opening ratio of the solenoid valve decreases 

and the amount of fluid passing through the solenoid valve 

decreases. It is also necessary to detect unknown anomalies 

without confusion. In addition to detecting these anomalies, 

the tasks include identifying each abnormal location and 

predicting the opening ratio of the solenoid valve fault. This 

is the background to the data challenge. The authors are 

currently working on developing technology for time series 

anomaly detection. Our team has proposed various methods 

(Nakamura, Imamura, Mercer, and Keogh, 2020), 

(Nakamura, Mercer, Imamura, and Keogh, 2023). We 

participated in this data challenge with the aim of deepening 

our knowledge of anomaly detection technology through the 

competition. This paper proposes algorithms and approaches 

used in the Data Challenge. The paper is structured as follows. 

First, we describe the details of the data challenge in Chapter 

2. Next, we define the formulas used in the proposed 

algorithm in Chapter 3, explain the results of the preliminary 

analysis in Chapter 4, and describe the anomaly detection 

method and the method for estimating the opening ratio of 

solenoid valve faults in Chapter 5. In addition, we describe 

the results in Chapter 6 and discuss them in Chapter 7. Finally, 

the conclusions are presented in Chapter 8. 

2. PROBLEM DESCRIPTION 

We classify normal, bubble anomalies, solenoid valve faults 

and unknown anomalies using pressure sensor data generated 

by the simulator. And we estimate the opening ratio for 

solenoid valve faults. It should be noted that the opening of 

the solenoid valve is a continuous value, with individual 

differences between spacecraft. 
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2.1. Experiment Scenarios 

A simulator for a simplified propulsion system generates data 

covering various failure scenarios in real equipment. Figure 

1 is a schematic of the experimental propulsion system 

(Tominaga, Daimon, Toyama, Adachi, Tsutsumi, Omata and 

Nagata, 2023). There are 4 solenoid valves (SV1 to SV4), and 

by opening and closing the solenoid valves, the working fluid 

water pressurized to 2MPa is repeatedly discharged. Pressure 

sensors (P1 to P7) are installed at 7 locations in the propulsion 

system. Pressure data is acquired at a sampling rate of 1 kHz 

from 0 to 1200 ms. The solenoid valves repeat the operation 

of opening for 100 ms and then closing for 300ms. Opening 

and closing are performed 3 times and measured for a total of 

1200 ms (Figure 2, Tominaga at al, 2023). There are 

individual differences in the solenoid valves. 8 locations of 

BV1 and BP1 to BP7 can be considered as bubble generation 

locations. For simplicity, the amount of bubbles is constant 

in all cases. The opening of the solenoid valve is normally 

0% or 100%, but when a fault occurs, the opening is between 

0% and 100%. The test data also contains unknown 

anomalies that need to be detected. In this competition, there 

are spacecrafts from No.1 to No.4. The training data contains 

data from spacecraft No.1 to No.3, and the test data contains 

data from spacecraft No.1 and No.4. 

 

Figure 1. Schematic of experimental propulsion system. 

(Tominaga et al., 2023) 

 

 

Figure 2. Typical pressure profile. (Tominaga et al., 2023) 

2.2. Prediction Goals 

There are five questions in this Data Challenge. Points are 

awarded for each correct answer. In addition, the spacecraft4 

gets twice as many points for each correct answer. 

1. Determine whether all test data are normal or abnormal. 

Each is worth 10 points. 

2. For the data detected as abnormal, determine whether it 

is a bubble anomaly, a solenoid valve fault, or an 

unknown anomaly. Each is worth 10 points. 

3. For the data identified as bubble anomaly, determine the 

location of the bubble from eight locations, BV1, and 

BP1 to BP7. Each is worth 10 points. 

4. For the data identified as solenoid valve fault, determine 

which of the four solenoid valves (SV1 to SV4) failed. 

Each is worth 10 points. 

5. For the solenoid valve identified as a fault, predict the 

opening ratio (0% <= opening ratio < 100%). A score is 

given by subtracting the difference between the correct 

answer and the estimated value from 20 points. The score 

can never be less than 0. 

2.3. Dataset 

This section describes the datasets given in this competition. 

As shown in Table 1, there are 35 normal training data, 16 

solenoid valve abnormal data, and 8 bubble abnormal data for 

spacecraft 1, 2, and 3, respectively. For solenoid valve faults, 

there are 4 patterns of opening (0%, 25%, 50%, 75%) for each 

solenoid valve (SV1, SV2, SV3, SV4) and each has 1 data. 

Therefore, there are 16 data with a combination of 4 solenoid 

valves and 4 opening patterns. For bubble anomalies, there 

are 8 patterns, one for each location (BP1, BP2, BP3, BP4, 

BP5, BP6, BP7, BV1). Also, the anomalies do not occur at 

the same time. On the other hand, there are 23 test data each 

for spacecraft 1 and 4. 

 

Table 1. Training Data (spacecraft:1,2,3) 

Condition Number Label 

Normal 35 - 

Solenoid 

valve faults 

16 

 

Solenoid valve: 

SV1, SV2, SV3, SV4 

Opening ratio:  

0%, 25%, 50%, 75% 

Bubble 

anomaly 

8 location: 

BP1, BP2, BP3, BP4, BP5, 

BP6, BP7, BV1 
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3. DEFINITION 

We define the similarity between data used in the proposed 

algorithm. First, the similarity D(i) between the i-th pressure 

sensors (P1 to P7) of the two data is defined as the following 

formula (1). where p(i,j) and q(i,j) are j[ms] values of the i-th 

pressure sensor in each data, and Start and 𝐸𝑛𝑑  are the 

intervals to be analyzed. 

 ∑ |p(i, j)–  q(i, j)|
𝐸𝑛𝑑

𝑗=𝑆𝑡𝑎𝑟𝑡
 (1) 

Also, the similarity D using all seven pressure sensors is 

defined as the following formula (2). 

  ∑ 𝐷(𝑖)
7

𝑖=1
 (2) 

In addition, we define the maximum standard deviation of 

each sensor value at a certain time. When the number of data 

is n, the maximum standard deviation SD is defined as the 

following formula (3) below. 𝑃𝑘,𝑖 (𝑘 = 1, … , 𝑛, 𝑖 = 1, … ,7) is 

the sensor value at a certain time, and 𝐸𝑖 is the expected value 

of 𝑃1,𝑖 , … 𝑃𝑛,𝑖. 

 max{(
1

𝑛 − 1
∑ (

𝑛

𝑘=1
𝑃𝑘,𝑖 − 𝐸𝑖)2)

1
2

;  𝑖 = 1, … 7} (3) 

4. PRELIMINARY ANALYSIS 

This chapter presents the results of the preliminary analysis. 

As a result of comparison under the same conditions, it was 

found that the waveforms match from 0 to 103 ms. We also 

calculated the similarity D (formula (2)) between the normal 

and each anomaly to compare different conditions. Details 

are given in each section. 

4.1. Comparison under same conditions 

First, we searched for conditions that would reduce the 

variability between spacecraft in the same type of anomaly. 

We calculated the standard deviation SD (formula (3)) of 

each mode from 0 to 1200ms and confirmed the variation of 

each mode for each spacecraft.  

・ For the normal data, we calculated the standard deviation 

SD of 105 data including spacecrafts 1 to 3. 

・ For solenoid valve faults, we obtained the standard 

deviation SD of spacecraft 1 to 3 for each of 16 

conditions based on abnormal location (SV1, SV2, SV3, 

SV4) and opening (0%, 25%, 50%, 75%). 

・ For the bubble anomaly, we obtained the standard 

deviation SD of spacecraft 1 to 3 for each of 8 conditions 

based on bubble location (BV1, and BP1 to BP7). 

As a result, maximum standard deviation SD is 0 under the 

same conditions from 0 to 103ms. Figure 3 plots the 

maximum value of the maximum standard deviation SD 

under the same conditions (abnormal location and opening). 

Based on this fact, the waveforms match from 0 to 103 ms 

under the same conditions, and it is considered that individual 

differences between spacecraft can be ignored.  

 

Figure 3. maximum value of the maximum standard 

deviation SD  

4.2. Comparison of normal and each anomaly 

In this section we compare different conditions. We 

calculated the similarity D (formula (2)) between normal and 

each abnormal mode in the interval from 0 to 99 ms (Figure 

4). As a result, the similarity D was 8 or more and less than 

73. Also, when the similarity D exceeds 60, it is the case 

where the opening of the solenoid valve is 0, and in all other 

cases the similarity D is 40 or less. It is considered that there 

is a sudden change near the opening ratio of 0. We also 

predict an upper limit on the possible values of the similarity 

D. We define 𝐷𝑆𝑉1,0, 𝐷𝑆𝑉2,0, 𝐷𝑆𝑉3,0, and 𝐷𝑆𝑉4,0 as the values 

of similarity D when the opening ratio of SV1, SV2, SV3, 

SV4 is 0, respectively. We set μ+3σ as the upper limit of the 

similarity D. μ is the average of 𝐷𝑆𝑉1,0, 𝐷𝑆𝑉2,0, 𝐷𝑆𝑉3,0, 𝐷𝑆𝑉4,0, 

and σ is the unbiased standard deviation of  𝐷𝑆𝑉1,0, 𝐷𝑆𝑉2,0, 

𝐷𝑆𝑉3,0, 𝐷𝑆𝑉4,0. If the sample exceeds the upper limit, we treat 

it as an unknown anomaly. 

 

Figure 4. Similarity D between normal and each abnormal 

mode 

We also calculated the similarity D(1) between each solenoid 

valve fault and normal from 0 to 99 ms for P1 (Figure 5). As 

a result, it was found that the similarity D(1) for any solenoid 

valve monotonically decreases as the  opening ratio increases. 

We decided to use the similarity D(1) for opening estimation. 
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(a) Similarity D(1) 

 

(b) Similarity D(1) (y-axis range: 0 to 0.45) 

Figure 5. Similarity D(1) between each solenoid valve fault 

and normal 

5. ANOMALY CLASSIFICATION 

In this chapter, we propose a method of classifying anomalies 

and a method of estimating the opening of the solenoid valve. 

As a premise, according to the results of the preliminary 

analysis in Chapter 4, it is thought that variations due to 

individual differences in each spacecraft can be ignored in the 

interval from 0 to 103ms, so we will focus on this interval (0 

to 99ms). The procedure for classification and prediction is 

as shown in the flow chart in Figure 6. Details are explained 

in each section. 

 

Figure 6. Overall flowchart 

5.1. Anomaly Detection 

First, we classify normal and abnormal. It is thought that the 

waveforms of normal data from 0 to 99 ms match each other. 

For each test data sample, the similarity D (formula (2)) to 

normal data is calculated in the interval from 0 to 99 ms, and 

those with D = 0 are classified as normal, and others as 

abnormal. Also, if the similarity D to normal exceeds the 

upper limit (μ+3σ) obtained in Chapter 4, we classify the 

sample as an unknown anomaly. Figure 7 is this flow chart. 

 

Figure 7. Flowchart (Anomaly Detection) 

5.2. Anomaly Classification 

We classify and locate anomalies using an interval from 0 to 

99 ms. Figure 8 is this flow chart. We apply the k-NN 

algorithm (Cover & Hart, 1967) using the similarity D 

defined in Chapter 3, and each test data sample is classified 

into the mode with the lowest similarity D among the modes 

in the training data. The training data mode used for k-NN 

are 25 modes of normal, solenoid valve faults and bubble 

anomalies described below. We treat normal data as 100% 

open mode. 

・ Normal (100% open mode) 

・ 4 solenoid valves (SV1, SV2, SV3, SV4) and 4 patterns 

of opening (0%, 25%, 50%, 75%) 

・ Locations of bubble (BV1, and BP1 to BP7) 

We interpret the samples classified as normal by the k-NN 

results as those with solenoid valve openings greater than 

75% and less than 100%, and we name this a minor SV fault. 

For those classified as minor SV fault, we use the following 

procedure to locate the abnormal solenoid valve. 
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1. For each sensor (P3, P4, P6, P7) adjacent to the solenoid 

valve (SV1 SV2, SV3, SV4), we calculate the similarity 

D(i) (𝑖 = 3,4,6,7) defined in Chapter 3. 

2. We determine the solenoid valve adjacent to the sensor 

with the maximum value of similarity D(i) among P3, P4, 

P6, and P7 as the abnormal location. 

 

Figure 8. Flowchart (Anomaly Classification) 

5.3. Opening Estimation 

We explain the prediction method of the opening ratio for the 

solenoid valve diagnosed as abnormal. Figure 9 is this flow 

chart. The opening ratio (0, 25, 50, 75) is set for each 

abnormal solenoid valve in the training data. Also, since 

normal data can be interpreted as data with an opening ratio 

of 100%, we use these to estimate the opening ratio. Using 

the sensor P1 and the sensors (P3, P4, P6, P7) adjacent to the 

abnormal solenoid valve, we estimate the opening as follows. 

1. We calculate the similarity D(1) for the sensor P1. From 

the analysis results in Chapter4, the similarity D(1) to the 

normal decreases monotonically with increasing opening. 

Using the value of D(1), we determine the range (𝑂1, 𝑂2) 

in which the opening of the test data sample is included. 

(𝑂1, 𝑂2) is (0,25), (25,50), (50,75), or (75,100). 

2. We calculate the similarity D(i) ( 𝑖 = 3,4,6, 𝑜𝑟 7 ) 

between the test data sample and the training data sample 

with opening 𝑂1and  𝑂2  as 𝑆1and 𝑆2 , respectively. The 

sensor used for calculation is the sensor adjacent to the 

abnormal solenoid valve. 

3. We calculate the value that internally divides the 

openings  𝑂1 and 𝑂2  into  𝑆1 : 𝑆2 . The opening is 

estimated by the following formula (4).  

 
𝑂1 𝑆2 + 𝑂2𝑆1

𝑆1 + 𝑆2

   (4) 

 

Figure 9. Flowchart (Opening Estimation) 

6. CLASSIFICATION AND ESTIMATION RESULTS 

First, we describe the classification results. As a result of 

implementing the algorithm proposed in Chapter 5 on the test 

data, 20 data out of 46 data were classified as normal, 10 data 

as bubble anomaly, 10 data as solenoid valve fault, and 6 data 

as unknown anomaly. Next, we describe the opening 

estimation results. We adopted the estimation results of the 

algorithm in Chapter 5 for 9 out of 10 data classified as 

solenoid valve faults. For the rest of the data, we regarded it 

as exceptional data from comparison of sensor waveforms 

adjacent to the solenoid valve. This data, classified as an SV1 

anomaly, seems similar in waveform shape to the 25% open 

waveform for the adjacent P3 waveform (Figure 10, Figure 

11). However, when comparing the waveforms of P4, P6, and 

P7, it seems that the change from normal data is larger than 

the case of 25% opening, so we expect this data to be around 

0% opening, which is lower than 25%.  

 
Figure 10. Sensor waveforms adjacent to the solenoid valve:  

exceptional test data 
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Figure 11. Sensor waveforms adjacent to the solenoid valve: 

SV1 fault data (opening ratio of 25%) 

In addition, we adjusted the opening ratio by ±2% based on 

daily updated leaderboard scores. As a result, the proposed 

method achieved a score of 99.05% based on the scoring rules 

given by the PHMAP 2023 secretariat and our team won third 

place. 

7. DISCUSSION 

We discuss the obtained score and prediction accuracy. We 

predicted the score obtained from the calculation method 

described in Chapter 2. If we correctly classify normal and 

abnormal and localize all anomalies, we expected to get a 

score of 82.14%. Also, if each solenoid valve opening differs 

from the correct value by 2%, we expected to obtain a score 

of 98.21%. And if each solenoid valve opening differs from 

the correct value by 1%, we expected to obtain a score of 

99.11%. The final score was 99.05%, so it seems that we 

predicted each opening with a difference of about 1%. Next, 

we also consider unknown anomalies. When we visualized 

the waveforms of those classified as unknown anomalies, we 

found that all waveforms started at a pressure of 3 MPa 

(Figure 12). Since the propulsion system was pressurized at 

2 MPa in the experimental scenario, we consider this fact to 

be some anomaly related to the pressure setting.  

 

Figure 12. The waveform of sensor data (P1) classified as 

unknown anomaly 

 

8. CONCLUSION 

In this paper, we proposed an anomaly detection method for 

spacecraft propulsion systems. We tried to classify anomalies 

by k-NN and to identify the location of the anomalies. Also, 

for those classified as solenoid valve faults, we estimated the 

opening ratio of the solenoid valve from the similarity of the 

time series waveforms. In PHMAP2023 Data challenge, the 

proposed method achieved a score of 99.05%. 
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