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ABSTRACT

Bearing fault diagnosis under noisy and cross-working condi-
tions remains a challenging task due to complex signal vari-
ations and interference. To address this challenge, this pa-
per proposes a Correlation-Enhanced Multi-Scale Residual
Network (CE-MSRN), which effectively captures multi-scale
fault features while enhancing correlation across different bear-
ing faults. Our model integrates a residual learning frame-
work with a multi-scale feature fusion mechanism, improv-
ing robustness against noise and generalization across diverse
working conditions. Experimental evaluations on benchmark
datasets demonstrate that CE-MSRN achieves superior diag-
nostic accuracy compared to mainstream methods, exhibit-
ing strong adaptability to unseen fault patterns. These results
confirm the potential of our approach for real-time and reli-
able bearing fault diagnosis in aero-engines and transmission
systems.

1. INTRODUCTION

The bearing in the transmission systems of aero-engines and
aerospace equipment, as core components of aircraft systems,
directly affect flight safety (H. Wang, Liu, Peng, & Zuo, 2023).
Under extreme operating conditions such as high speed, high
temperature, and heavy loading (Zhao & Chen, 2022), bear-
ings in the transmission systems are subjected to cyclic loads
and severe vibrations, leading to early failures (H. Wang & Li,
2023). Such malfunctions not only cause abnormal engine vi-
bration and a drastic drop in transmission efficiency but may
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also trigger secondary disasters such as blade fractures, re-
sulting in catastrophic consequences (Hou, Wang, Lv, Xiong,
& Peng, 2022). Therefore, real-time monitoring of bearing
vibration signals combined with intelligent fault diagnosis
models to precisely extract and classify weak fault features
has become a critical technical requirement for ensuring safe
operation of aerospace equipment (D. Peng, Wang, Desmet,
& Gryllias, 2023).

Time-frequency domain analysis methods, such as wavelet
transform (WT), Hilbert-Huang transform (HHT), and short-
time Fourier transform (STFT), along with their enhanced
algorithms(Z. Wang, Lu, Wang, Liu, & Fan, 2013; Rai & Mo-
hanty, 2007; Kabla & Mokrani, 2016), have demonstrated the
feasibility of installing accelerometers on equipment to iden-
tify bearing fault patterns through vibration signals. However,
these algorithms rely on manual interpretation of frequency-
domain variations for analysis. Machine learning-based ap-
proaches including support vector machine (SVM), extreme
learning machine (ELM), and k-nearest neighbor (kNN) clas-
sifiers, along with their improved variants(Fernández-Francos,
Martı́nez-Rego, Fontenla-Romero, & Alonso-Betanzos, 2013;
J. Wang et al., 2021; Luo, Li, Zhang, Li, & An, 2016), enable
automated extraction of critical diagnostic features. Yet un-
der the severe noise levels and variable working conditions of
aeroengine environments, these methods struggle to achieve
practically viable performance outcomes.

Addressing the challenge of bearing fault diagnosis under
intense noise, convolutional neural networks (CNNs) have
been introduced to automatically learn latent fault patterns
in time-domain vibration signals. Zhang et al. (W. Zhang,
Peng, Li, Chen, & Zhang, 2017) proposed a deep CNN with a
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wide first-layer kernel (WDCNN) for bearing fault diagnosis.
They found that enlarging convolutional kernels in the initial
layer enhances the network’s receptive field, thus achieving
higher accuracy in noisy environments. Chen et al. (Chen,
Zhang, & Gao, 2021) incorporated multi-sized convolutional
kernels into CNNs to exploit multiscale convolutions for cap-
turing fault patterns across different scales, thereby improv-
ing diagnostic precision under noise interference. Peng et al.
(H. Peng, Wang, Gao, Wang, & Du, 2025) employed CNNs
with residual connections for bearing fault diagnosis and uti-
lized deeper network architectures to enhance feature learn-
ing capabilities in the presence of noise. The introduction of
residual connections effectively mitigated degradation issues
potentially caused by overly deep networks.

In addition, frequent variations in rotational speed and load
of aero-engines, coupled with sensors installed at different
locations, pose significant challenges for bearing fault diag-
nosis under cross-working-condition scenarios. Lu et al. (Lu,
Yu, Han, & Wang, 2020) employed transfer learning meth-
ods to pre-train models on large datasets. Subsequently, by
fixing the encoder parameters and fine-tuning the decoder
(i.e., the fault classifier) using small datasets, they effectively
achieved high accuracy with limited samples. Berghout et
al. (Berghout & Benbouzid, 2023) proposed a collaborative
selection-based incremental transfer learning approach, en-
hancing cross-working-condition fault diagnosis of aerospace
bearings by increasing source-domain sample quantities dur-
ing training. Qian et al. (Qian, Qin, Luo, Wang, & Wu, 2023)
introduced a novel domain discrepancy measure in their trans-
fer learning framework to improve feature distribution be-
tween source and target domains, thereby strengthening the
model’s capability for cross-working-condition fault diagno-
sis.

To tackle the aforementioned challenges in bearing fault di-
agnosis within the aviation domain, this paper proposes a
Correlation-Enhanced Multi-Scale Residual Network (CE-MSRN).
This network employs convolutional kernels of varying sizes
to extract multi-scale features, improving diagnostic accuracy
under noisy conditions. Residual connections are introduced
to deepen the network, enhancing modeling capabilities while
preventing degradation. Finally, a correlation-enhanced clas-
sifier is designed to boost transfer learning effectiveness. The
primary contributions of this work are summarized as fol-
lows:

• An encoder that integrates multi-scale convolution with
residual connections. This combination helps mitigate
the impact of noise on fault diagnosis accuracy and en-
ables the exploitation of deeper network architectures for
extracting fault-relevant features, thereby facilitating trans-
fer learning across various working conditions.

• A correlation-enhanced decoder for fault classifica-
tion. This decoder leverages latent associations among

different failure categories, thereby reducing computa-
tional costs while improving classification accuracy and
enhancing performance in transfer learning.

• Extensive experimental validation. Our approach has
been evaluated on two distinctly different bearing fault
diagnosis datasets. The experimental results demonstrate
that the proposed method maintains high accuracy un-
der intense noise conditions and exhibits robust cross-
working-condition transfer learning performance across
varying sensors, loads, rotational speeds, and other oper-
ational parameters.

The remainder of this paper is organized as follows. Section
2 introduces related works. Section 3 details the implemen-
tation method of our proposed CE-MSRN. In Section 4, ex-
periments are conducted using two distinct public datasets to
fully demonstrate the effectiveness of our approach. Finally,
Section 5 summarizes the contributions and outlines future
research directions.

2. RELATED WORKS

2.1. Multi-Scale Convolution and Noise Effects

For aviation bearing fault diagnosis, the time-domain multi-
scale characteristics of vibration signals present a core chal-
lenge. Due to the nonlinear relationship between fault feature
frequencies and rotational speed (Lai et al., 2024), the dura-
tion of vibrational impacts caused by identical faults under
different speeds may differ by several-fold (H. Wang et al.,
2023), rendering traditional single-resolution methods inca-
pable of simultaneously capturing transient impulses and pe-
riodic oscillations (W. Zhang, Chen, Xiao, & Yin, 2023). A
multiscale convolutional architecture addresses this challenge
by employing parallel convolutional kernels with varying re-
ceptive fields to establish a multiresolution analysis frame-
work (Dong, Jiang, Yao, Mu, & Yang, 2024). Shao et al.
(Shao & Kim, 2024) proposed an adaptive multiscale attention-
based convolutional network that achieves fault diagnosis us-
ing minimal labeled data. Ni et al. (Ni et al., 2024) utilized
multiscale convolutions to compute frequency-specific simi-
larities between test signals and fault-free reference signals,
enabling the evaluation of bearing health conditions.

In real-world scenarios, bearing signals are often interfered
by multisource noise (H. Wang, Liu, Peng, & Cheng, 2022).
Based on the central limit theorem, existing studies (Li, Wang,
Yao, Li, & Gao, 2024; X. Zhang, Sheng, Ouyang, & Zheng,
2023) simulate their statistical characteristics using zero-mean
additive Gaussian noise. Multiscale convolution kernels es-
sentially form bandpass filters: small-scale kernels suppress
low-frequency noise through short-time windowing, while large-
scale kernels remove high-frequency noise via long-term av-
eraging to improve diagnostic accuracy in noisy environments.
Miao et al. (Miao, Yu, & Zhao, 2022) developed an adap-
tive multiresolution mechanism utilizing convolutional ker-
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nels with diverse receptive fields and sparse representation
for noise filtering. Peng et al. (H. Peng, Du, Gao, Wang,
& Wang, 2024) combined multiscale convolutions with a dy-
namic noise injection module to enhance fault diagnosis ac-
curacy under high-intensity noise conditions.

2.2. Cross-Working Condition Transfer Learning and Resid-
ual Connection

In aviation equipment fault diagnosis, cross-working-condition
transfer learning is a core method to address data scarcity
and working condition differences. Facing the lack of actual
fault samples and significant discrepancies between labora-
tory and real-world working conditions (Tang et al., 2024),
transfer learning identifies domain-shared features to enable
rapid model adaptation with limited target-domain data (Chang
et al., 2024). Zheng et al. (Zheng et al., 2024) proposed a
diversity-regularized transfer learning strategy to extract com-
mon features across differing working conditions. Zhang et
al. (J. Zhang, Zhang, An, Luo, & Yin, 2024) developed a
representation-learning-based migration approach for fault clas-
sification under few-shot scenarios.

Existing transfer learning frameworks commonly adopt an
encoder parameter freezing strategy, training the decoder solely
using target-domain data (Huo, Jiang, Shen, Zhu, & Zhang,
2023). The encoder is designed to extract domain-invariant
fault features (Lei et al., 2023), while residual modules model
input-output residuals to separate common signal characteris-
tics from working-condition-related disturbances (Yan, Yan,
Xu, & Yuen, 2023). This architecture preserves feature con-
sistency and enhances robustness against varying working con-
dition signals. Wan et al. (Wan, Li, Chen, Gong, & Li, 2022)
employed an improved residual network to extract transfer-
able features from vibration signals. Yu et al. (Yu et al., 2023)
combined time-frequency analysis with residual connections
and leveraged a self-attention mechanism to achieve transfer
learning under changing working conditions.

3. PROPOSED METHOED

The proposed CE-MSRN architecture, as shown in Fig. 1,
first employs a wide multi-scale convolutional layer to ex-
tract primary features. This is followed by two multi-scale
residual layers for further extraction of fault-related features.
Finally, a correlation-enhanced decoder is utilized for fault
classification. In this section, a detailed introduction will be
provided.

3.1. Wide First Layer

As shown in Figure 2, let the input signal be x. When this
signal is fed into the Wide First Layer, an average pooling
layer is initially applied to perform moving-average denois-

ing, which can be represented as

yi =
1
k

p

!
m=↑p

xi+m, ↓i ↔ [1,n], (1)

where k denotes the convolution kernel size. The number of
zero padding elements p is set to (k↑1)/2 to ensure that the
output size matches that of the input.

Assuming the observed signal is s = x+n, where x represents
the true signal and n denotes zero-mean independent noise.
The output of the moving-average is:

yi =
1
k

p

!
m=↑p

si+m =
1
k

p

!
m=↑p

xi+m

︸ ︷︷ ︸
signal smoothing term

+
1
k

p

!
m=↑p

ni+m

︸ ︷︷ ︸
noise attenuation term

.

(2)
Now, the variance of the noise is

Var

(
1
k

p

!
m=↑p

ni+m

)
=

1
k

!2
n
. (3)

The noise variance is scaled down to 1/k after averaging, re-
sulting in a signal-to-noise ratio (SNR) improvement of 10log10(k)
dB and enhancing the discriminability of the signal. The filter
primarily attenuates high-frequency noise, while fault-related
frequencies are mainly contained in low-frequency regions,
thus minimizing adverse effects on fault diagnosis. Visualiza-
tion results of the vibration signals in Figure 3 further validate
our design.

After initial noise reduction, this paper employed convolu-
tions for primary feature identification. Existing studies (W. Zhang
et al., 2017) indicate that using larger convolution kernels in
the first layer aids in expanding the receptive field, thereby
enhancing diagnostic accuracy and robustness. However, se-
lecting an appropriate kernel size is equally critical. To ensure
our model’s applicability across diverse working conditions,
three wide convolutions with varying sizes are implemented.
The input signal is denoted as x ↔ R1↗L, where L represents
the signal length. Feature extraction is performed using three
convolutional kernels of different sizes (k1,k2,k3), with their
respective outputs denoted as y1,y2,y3. The convolution op-
eration is formulated as

yi, j =
k↑1

!
m=0

w j[m] · x[i · s+m↑ p]+b j, (4)

where i is the index of the output feature map, and j is the
channel index of the convolution kernel (corresponding to the
number of output channels, set to 16). k is the size of the con-
volution kernel (set to 32, 64, and 128, respectively). s is the
stride (set to 16), and p is the padding. w j[m] and b j are the
weight and bias of the j-th convolution kernel, respectively.
The output size of the convolutional layer can be expressed
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Figure 1. Our proposed Correlation-Enhanced Multi-Scale Residual Network. The wide first layer employs a larger receptive
field to extract primary features. Multi-scale residual layers capture features at various scales while using residual connections
to prevent degradation. A correlation-enhanced classifier is applied to enhance the transfer learning capability.

Figure 2. Noise reduction via moving average using average
pooling. Initially, the signal is padded with zeros at both ends,
and then the mean of each window is calculated.

Figure 3. Visualization of the denoising layer’s effects. (a)
A vibration signal segment from the dataset. (b) Randomly
generated Gaussian noise. (c) Observation values obtained
by adding noise to the signal, where noise interference poses
challenges for fault diagnosis. (d) Denoising results after
applying moving average smoothing, which effectively sup-
presses high-frequency noise while preserving low-frequency
fault-related vibration information.

as
Lout =

⌊
Lin +2p↑ k

s

⌋
+1. (5)

By setting an appropriate padding p (8, 24, and 56, respec-
tively), convolutions of different sizes can produce outputs of
the same length, thus enabling concatenation along the chan-
nel dimension.

Next, Batch Normalization (BN) is used to process features
at different scales. First, the batch data are standardized, so
that the mean is 0 and the variance is 1:

µB =
1
B

B

!
i=1

xi, (6)

!2
B
=

1
B

B

!
i=1

(xi ↑µB)
2, (7)

x̂i =
xi ↑µB√

!2
B
+ ∀

, (8)

where B is the batch size, and ∀ is a small constant to prevent
the denominator from becoming 0. To preserve the expressive
power of the model, the normalized data is then scaled and
shifted by learnable parameters # and ∃ :

yi = # x̂i +∃ . (9)

BN reduces the internal covariate shift by normalizing the in-
put of each layer, i.e., stabilizing the distribution of intermedi-
ate layers within the network. The normalized data maintains
a stable distribution, which makes the gradient descent more
efficient, thus accelerating the training convergence. Mean-
while, it mitigates the impact of extreme values and enhances
the stability of gradient propagation. At the end of the wide
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first layer, ReLU and max pooling are employed to enhance
the non-linearity of the model.

3.2. Multi-Scale Residual Layer

Similar to the wide first layer, the multi-scale residual layer
employs three convolutional kernels of different sizes (i.e., 3,
5, and 7) to extract multi-scale features. Their paddings are
set to 1, 2, and 3, respectively, to ensure that the output length
remains identical for concatenation.

By stacking multi-scale layers, the model’s receptive field
scale can be expanded exponentially. In our CE-MSRN, a
total of 3 layers use multi-scale convolution. Each multi-
scale convolution contains 3 different scales, resulting in a
total number of receptive field scales being 33 = 27. This
significantly enhances the generalization ability and robust-
ness of the model, enabling it to extract fault features under
various working conditions and noise environments.

Additionally, residual connections (He, Zhang, Ren, & Sun,
2016) are introduced, which add the input to the output, to ad-
dress the vanishing gradients and training difficulties in deep
neural networks. The Multi-Scale Residual Layer can be ex-
pressed as:

y = F(x)+R(x), (10)

where x represents the input features of the Multi-Scale Resid-
ual Layer, F denotes the extraction of residuals using multi-
scale convolution, R signifies the reshaping of the input to
match the dimensions of the risidual with learnable parame-
ters, and y is the final output after incorporating the residual.

Following the multi-scale convolution, the feature dimension
increases while the sequence length decreases. To align of the
Residual and Shortcut connections, Max Pooling is applied to
adjust the sequence length and then a convolution with a ker-
nel size of 1 to match the feature dimensions. This reshaping
process minimizes the number of parameters used, thereby
improving computational efficiency while retaining as much
information from the original input features as possible.

The identity mapping through shortcut connections ensures
that gradients do not completely vanish during backpropa-
gation (since the gradient of the shortcut is theoretically al-
ways 1). This allows gradients to flow directly back to the
shallow layers, avoiding the vanishing gradient problem and
stabilizing training. Moreover, residual connections simplify
the network’s learning task from modeling a complete map-
ping to only capturing residual components, which reduces
complexity and accelerates convergence. Even in scenarios
where residuals are minimal (i.e., close to zero), the network
can still directly pass the input to the next layer, avoiding per-
formance degradation caused by excessively deep networks.
Taking advantage of the above benefits, stacking multi-scale
residual layers can increase the receptive field range of the
model without encountering issues typically associated with

very deep networks.

3.3. Correlation-Enhanced Classifier

In fault diagnosis tasks, existing research (Huo et al., 2023)
based on the encoder-decoder structure first employs the en-
coder to map the vibration signal into state features, and then
uses the decoder to classify these features, to determine the
state category of the bearing. Taking the CWRU dataset (Case

Western Reserve University Bearing Fault Data, Available:

https://engineering.case.edu/bearingdatacenter/download-data-

file, 2019) as an example, the bearing states are categorized
into normal condition and 3 different location faults, and each
fault is further divided into 3 severity levels, resulting in a
total of 1+ 3↗ 3 = 10 state categories. However, existing
methods often use MLP and other methods to classify fea-
tures into 10 distinct classes without considering the logical
relationship among these categories.

This paper introduces a Correlation-Enhanced Classifier that
transforms the second linear mapping layer of a two-layer
MLP into three linear mappings: one for fault presence, an-
other fir fault location, and the last for severity. This approach
converts a single 10-class classification problem into three
sub-problems: determining fault existence, classifying fault
locations, and accessing severity levels. Assuming the hid-
den layer of the MLP is h, this process can be expressed as:

f = Wfh+bf, f ↔ R2, (11)

l = Wlh+bl, l ↔ R3, (12)

s = Wsh+bs, s ↔ R3, (13)

Here, f0 denotes the fault-free logit, f1 denotes the faulty logit,
li denotes the logit at the i-th location, and s j denotes the logit
of the j-th severity.

Assume that the existence, location, and severity of a fault are
probabilistically conditionally independent, that is:

P(y = (i, j) | f = 1) = P(l = i | f = 1) ·P(s = j | f = 1). (14)

Convert it into logarithmic form:

logP(y = (i, j) | f = 1) = logP(l = i)+ logP(s = j). (15)

The classifier thus constructs a joint probability distribution
over all failure categories by additively combining the logits
for failure, location, and severity:

logits(i, j)fault = f1 + li + s j, ↓i, j ↔ {0,1,2}, (16)

where, f1 represents the global contribution of fault existence,
li represents the contribution from location i, and s j represents
the contribution from severity j. The logits for all fault cate-
gories are flattened into a 9-dimensional vector, which is then
concatenated with the fault-free logit f0 to obtain the final 10-
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dimensional logits:

final logits = [f0, f1 + l0 + s0, f1 + l0 + s1, . . . , f1 + l2 + s2]
(17)

Finally, the probability of each bearing health state can be
obtained using the softmax function:

P(y = c | x) = exp(final logits
c
)

!9
k=0 exp(final logits

k
)
. (18)

As cross-entropy is chosen as the loss function, which in-
herently computes softmax during training (since it utilizes
log probabilities), this paper retains the logits in their raw
form. This correlation-enhanced classifier explicitly models
the fault hierarchy, forcing the model to learn independent
distributions of location and severity before combining them
into a joint probability. Consequently, this improvement not
only enhances fault diagnosis accuracy but also boosts the
model’s transfer learning capability.

4. EXPERIMENTAL STUDY

4.1. Experimental Setup

The experimental environment utilized a workstation equipped
with hardware including an Intel Core i5-12600K CPU and
Nvidia RTX4090 GPU, alongside software environments of
Debian 12 and Python 3.12. This study implemented the pro-
posed CE-MSRN along with other comparative models based
on the PyTorch (Paszke et al., 2019) framework. In training
all models, Adam (Kingma & Ba, 2017) served as the opti-
mizer. Hyperparameters during training were configured as
follows: batch size set to 128, number of epochs at 50, an ini-
tial learning rate of 1↗ 10↑4, and this rate was halved every
10 epochs.

We used publicly accessible datasets from Case Western Re-
serve University (CWRU) and Paderborn University (PU) for
experimentation, establishing a precision baseline for bearing
failure diagnostics. The CWRU dataset comprised vibration
signals sampled with a 12-kHz accelerometer (normal sig-
nals were originally sampled at 48 kHz and downsampled to
12 kHz). The faults encompass 3 different locations and 3
different severities, resulting in 10 distinct health state labels,
detailed in Table 1. The 3 severity levels of faults were sim-
ulated using Electric Discharge Machining (EDM) to create
artificial damage of 0.007, 0.014, and 0.021 inches.

The PU dataset simulates damage on the inner and outer rings
of bearings using EDM, Electric Engraver, and Drilling. Both
the Electric Engraver and Drilling methods involve two dif-
ferent levels. All health state labels are shown in Table 2.
Compared to the CWRU dataset, the PU dataset has a higher
sampling rate of 64 kHz. This means that for the same sample
length (set to 1024 in the experiment), samples from the PU
dataset have a shorter duration. This difference makes fault

Table 1. Health state labels of the CWRU dataset

Label Fault Location Severity
0 No (f=0) - -
1 Yes (f=1) Inner Ring (l=0) Minor (s=0)
2 Yes (f=1) Inner Ring (l=0) Medium (s=1)
3 Yes (f=1) Inner Ring (l=0) Severe (s=2)
4 Yes (f=1) Ball (l=1) Minor (s=0)
5 Yes (f=1) Ball (l=1) Medium (s=1)
6 Yes (f=1) Ball (l=1) Severe (s=2)
7 Yes (f=1) Outer Ring (l=2) Minor (s=0)
8 Yes (f=1) Outer Ring (l=2) Medium (s=1)
9 Yes (f=1) Outer Ring (l=2) Severe (s=2)

diagnosis with the PU dataset more challenging.

Table 2. Health state labels of the PU dataset

Label Fault Location Severity
0 No (f=0) - -
1 Yes (f=1) Outer Ring (l=0) EDM (s=0)
2 Yes (f=1) Outer Ring (l=0) EE1 (s=1)
3 Yes (f=1) Outer Ring (l=0) EE2 (s=2)
4 Yes (f=1) Outer Ring (l=0) D1 (s=3)
5 Yes (f=1) Outer Ring (l=0) D2 (s=4)
6 Yes (f=1) Inner Ring (l=1) EDM (s=0)
7 Yes (f=1) Inner Ring (l=1) EE1 (s=1)
8 Yes (f=1) Inner Ring (l=1) EE2 (s=2)

Note: EDM represents Electric Discharge Machining,
EE1 represents Electric Engraver with level 1, D1 rep-
resents Drilling with level 1, etc.

Both public datasets encompass a variety of working condi-
tions, with specific descriptions detailed in Table 3. In the
CWRU dataset, three distinct working conditions are employed
to simulate variations in vibration signals resulting from dif-
ferent sensor installation positions. Conversely, the PU dataset
utilizes four different working conditions to simulate vibra-
tion signal variations caused by changes in speed, torque, and
load. This study conducted non-overlapping random sam-
pling within the datasets to ensure sample diversity and pre-
vent data leakage. All samples were normalized to the range
of 0-1 before being input into the model to enhance training
stability.

Under each working condition, these samples were divided
into training, validation, and test sets in a 7:2:1 ratio. The
training set was used to train the network weights. During
testing, the validation set weights with the lowest loss were
loaded. Due to the random processes involved in dataset
partitioning and model weight initialization, each experiment
was repeated 10 times, and the mean and variance of the re-
sults were calculated.

For transfer learning across different working conditions, this
paper uses a common method: freezing the encoder parame-
ters and only training the decoder parameters. In the transfer
learning experiments, all models are trained using only 10%
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Table 3. Working condition descriptions

Condition Dataset Description
0 CWRU Sensor on drive end
1 CWRU Sensor on fan end
2 CWRU Sensor on base
3 PU Baseline condition
4 PU Lower speed
5 PU Lower torque
6 PU Lower load

of the training samples from the target working condition for
5 epochs. This is done to compare the rapid deployment ca-
pabilities of these models under cross-working condition sce-
narios.

Additionally, since the vibration signals from both public datasets
were collected on experimental platforms, Gaussian noise was
added to the signal samples to better simulate real-world sce-
narios. In bearing fault diagnosis under noisy conditions, the
noise intensity is typically represented by the signal-to-noise
ratio (SNR) in dB:

SNRdB = 10log10

(
Psignal
Pnoise

)
, (19)

where, Psignal represents the signal power, and Pnoise repre-
sents the noise power. A lower SNR indicates a higher noise
intensity. When SNR < 0, the noise power exceeds the signal
power.

To evaluate the performance of the proposed CE-MSRN, this
paper selected several common models for comparison. Ta-
ble 4 lists the number of parameters, computational complex-
ity, and processing speed of these networks. The processing
speed is measured by the number of signal samples processed
per second, which evaluates whether the model can achieve
online fault diagnosis.

Table 4. Comparison of computational performance

Model Parameter Flops Samples/s

CNN 0.14M 0.78M 13.22K
WDCNN 0.04M 0.36M 7.81K
CE-MSRN 3.25M 12.60M 3.27K
ResNet18 3.98M 175.82M 1.69K
ResNet34 7.35M 359.32M 0.97K

Among all the compared models, our proposed CE-MSRN
possesses a moderate number of parameters and achieves rea-
sonable computational speed. Additionally, it surpasses the
required sampling rate, enabling real-time fault diagnosis, which
is particularly advantageous for applications in the aviation
industry.

(a) Raw (b) Add noise (c) Wide layer

(d) Residual layer 1 (e) Residual layer 2 (f) Classifier

Figure 4. The T-SNE visualization of CE-MSRN

4.2. Performance in Noisy Environments

All comparative models are trained using vibration signal sam-
ples with added noise. Our proposed CE-MSRN demonstrates
the fastest convergence speed and the highest diagnostic ac-
curacy. Figure 5 illustrates the variations in training accuracy
and validation accuracy between CE-MSRN and the compar-
ative model (WDCNN) on two public datasets.

The CE-MSRN presented in this study employs a multi-scale
fusion technique, enhancing the model’s ability to extract fea-
tures with greater precision and efficiency in learning. Ad-
ditionally, the inclusion of residual connections contributes
to enhanced training stability, effectively mitigating conver-
gence issues that may arise due to gradient problems, as ob-
served in the case of WDCNN depicted in Figure 5(b).

To provide a visual representation of the model’s operation,
the T-distributed Stochastic Neighbor Embedding (T-SNE)
algorithm is employed for visualization. Each color in the
scatterplot corresponds to a specific bearing health state, as
shown in Figure 4. Notably, healthy bearings exhibit distinct
characteristics in the raw signal, while the identification of
states becomes more challenging when noise with the same
power as the signal (SNR=0) is added.

Following the wide first layers, the signals corresponding to
healthy bearings are identified. Subsequently, two residual
layers are employed to isolate other bearing faults. Ultimately,
the fault diagnosis for bearing operation is accomplished through
the classifier.

We trained the model using noisy signals under SNR condi-
tions ranging from 10 dB to -10 dB. Table 1 shows the train-
ing accuracy for each condition. Here, SNR = None repre-
sents the baseline case without added noise.

As shown in Figure 6, the accuracy of all models decreases
with the decline of the SNR. It is worth noting that the pro-
posed CE-MSRN achieves both the highest accuracy and the
smallest standard deviation across all noise conditions.
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(a) CWRU dataset

(b) PU dataset

Figure 5. Training accuracy variation at SNR of 8dB

In practical applications, the test environment’s noise often
deviates from that encountered during training, leading to
considerable performance fluctuations. Consequently, it be-
comes imperative to investigate the performance of the trained
model under various noise conditions during testing.

The training-testing matrices of various models are presented
in Figure 7. Through analysis, the following conclusions can
be drawn. When the SNR of the training dataset is high, the
primary objective of the model is to extract meaningful fea-
tures from the vibration signal. Conversely, when the SNR
is low, the primary task shifts to noise suppression. Con-
sequently, the values near the main diagonal of the matrix

Table 5. The training accuracy of models (%)

SNR CE-MSRN WDCNN CNN ResNet18 ResNet34

None 96.55±4 92.02±8 94.32±6 79.72±18 79.52±9
10 95.05±7 89.61±10 91.75±8 77.30±13 72.25±14
8 94.28±7 85.90±13 90.44±8 76.32±11 78.47±11
6 93.08±8 86.32±12 89.35±10 76.52±12 60.94±9
4 91.38±10 84.01±13 85.34±10 68.01±8 65.24±9
2 88.33±10 81.89±14 83.30±11 64.76±14 64.00±14
0 86.07±13 79.24±17 79.97±13 61.34±10 61.05±10
-2 79.82±13 73.17±15 75.98±14 58.50±15 53.64±7
-4 72.41±14 66.29±18 68.85±15 47.20±9 49.43±14
-6 63.11±13 57.99±13 59.22±15 42.96±9 42.13±6
-8 48.92±11 50.12±15 47.94±11 39.77±10 35.73±13
-10 42.00±9 36.27±7 36.50±6 33.35±7 30.88±5

Figure 6. The training accuracy of models

tend to be higher, indicating that optimal test performance is
achieved when the SNR in both training and testing is com-
parable or equal.

Furthermore, it is observed that the upper triangle of the ma-
trix contains lower values compared to the lower triangle.
This observation suggests that a model trained in a lower SNR
environment exhibits adaptability when applied to a higher
SNR scenario, but not vice versa.

To summarize, selecting a training dataset with a similar or
lower SNR compared to the expected SNR range in the test-
ing environment enhances the model’s robustness in the pres-
ence of varying levels of noise.

Table 6. Test accuracy comparison of models

Model Accuracy
CE-MSRN 0.6677±0.22
WDCNN 0.5857±0.22
CNN 0.5865±0.23
ResNet18 0.4328±0.19
ResNet34 0.4239±0.18

The mean and variance of all values in the above matrix are
statistically obtained to establish a comprehensive compari-
son of the test performance between different models. The
results are visually presented in Figure 8, and a detailed sum-
mary is provided in Table 6. It is worth noting that the CE-
MSRN proposed in this study exhibits a significant advantage
over alternative models, consistently maintaining commend-
able diagnostic performance even under extreme noise condi-
tions.

4.3. Transfer Learning Performance

In practical applications within the aviation field, the working
condition of bearings often changes, leading to variations in
bearing vibration signals. Therefore, it is crucial to study the
transfer learning performance of the model under different
working conditions. Cross-transfer learning experiments are
conducted under seven different working conditions across

8
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(a) CE-MSRN

(b) WDCNN (c) CNN

(d) ResNet18 (e) ResNet34

Figure 7. Training-testing matrices with different SNR

two datasets. The diagnostic accuracy matrix after transfer
learning is shown in 9.

In Figure 9, 0-2 represent three working conditions in the
CWRU dataset, while 3-6 correspond to four working con-
ditions in the PU dataset. After analyzing the results, several
notable findings can be drawn from the comparison. Through
experimentation, the highest values appear on the main di-
agonal of the matrix, indicating that the similarity of sig-
nal characteristics is most evident when the source and tar-
get domains are the identical. However, transferring from
the CWRU dataset to the PU dataset yields suboptimal per-
formance, whereas the reverse transfer from the PU dataset
to the CWRU dataset shows more favorable outcoms. This
difference may be attributed to the a broader range of fault
types in the PU dataset, which encompasse those found in the
CWRU dataset. Consequently, this allows for a more compre-
hensive mapping from the time domain to the feature domain
when transferring from PU to CWRU, but not vice versa.

All elements in the matrix above have been quantized and
visualized in Figure 10, with more detailed numerical infor-
mation provided in Table 7. Compared to the shallow CNN,
ResNet with two different settings demonstrates superior per-
formance, attributed to their deeper network architecture. The
proposed CE-MSRN combines the advantages of multi-scale
fusion and residual connections, yielding the most favorable

Figure 8. Test accuracy comparison of models

Table 7. Transfer accuracy comparison of models

Model Accuracy
CE-MSRN 0.8000±0.13
WDCNN 0.6603±0.16
CNN 0.5224±0.24
ResNet18 0.7839±0.15
ResNet34 0.7672±0.16

transfer learning results even with a reduced number of lay-
ers. Furthermore, the correlation-enhanced classifier explic-
itly models fault hierarchies, forcing the model to learn inde-
pendent distributions of location and severity. This improve-
ment facilitates the encoder in learning features independent
of the working condition, thereby enhancing the usability of
transfer learning.

5. CONCLUSION AND FETURE WORK

In aero-engine and transmission systems, intense noise signif-
icantly affects the characteristics of the signals, which brings
difficulties to the fault diagnosis of key components such as
bearings. Furthermore, practical issues such as the sharing
of model weights under different working conditions further
complicate the current applications. The existing diagnostic
algorithms struggle with these complex integrated tasks.

To address the aforementioned issues, this paper introduces a
novel approach called Correlation Enhancement-based Multi-
Scale Residual Network (CE-MSRN). The network initially
employs temporal moving average for denoising and utilizes
multi-scale wide convolution kernels to broaden the model’s
receptive field, preliminarily extract signal features. Then, it
continuously uses two multi-scale residual layers to further
extract signal features and stabilize the training process. Fi-
nally, a correlation enhancement-based classification layer is
used for health state classification.

When the working environment changes, fine-tuning through
transfer learning enables achieving favorable recognition re-

9
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(a) CE-MSRN

(b) WDCNN (c) CNN

(d) ResNet18 (e) ResNet34

Figure 9. Transfer learning matrices of different models

sults with a limited number of samples. The experimental
results demonstrate the following advantages of the proposed
CE-MSRN:

• Fewer parameters compared to existing ResNets, re-
sults in reduced reliance on computational resources, and
faster processing speed.

• Stable and rapid convergence during the model train-
ing process.

• Strong feature extraction capabilities, leading to ef-
fective training results in the presence of various types
of noise. This approach also demonstrates advantages in
transfer learning, particularly with a limited number of
samples.

• Robustness, as the trained model maintains its effective-
ness under varying noise conditions.

In future work, our proposed network can be further improved,
such as by introducing an attention mechanism to assign dif-
ferent weights to convolutional results of different scales. By
using methods such as diffusion models, we can preprocess
noise signals to achieve more accurate fault diagnosis under
noisy conditions. A feature-constrained loss function can fur-
ther optimize the output of the encoder, thereby enhancing
transfer learning performance. Integrating these methods can

Figure 10. Transfer accuracy comparison of models

more effectively solve the problem of bearing fault diagnosis
in the aviation field.
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