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ABSTRACT

This paper presents a constraint-guided deep learning (DL)
framework to develop physically consistent health indicators
(HIs) in bearing prognostics and health management. Con-
ventional data-driven approaches often lack physical plausi-
bility, while physics-based models are limited by incomplete
knowledge of complex systems. To address this, we integrate
domain knowledge into DL models via constraints, ensur-
ing monotonicity, bounding output ranges between 1 and 0
(representing healthy to failed states, respectively), and main-
taining consistency between signal energy trends and HI es-
timates. Using constraints eliminates the need for complex
loss term balancing to incorporate domain knowledge. The
constraint-guided gradient descent algorithm (CGGD) is used
to train a DL model that satisfies specific constraints. Us-
ing time-frequency representations of accelerometer signals
from the pronostia and XJTU-SY bearing datasets, the model
learned using constraints generates more accurate and reli-
able representations of bearing health compared to conven-
tional methods. It produces smoother degradation profiles
that align with the expected physical behavior. Model per-
formance is assessed using three metrics: trendability, ro-
bustness, and consistency. When compared to a conventional
baseline model, the model learned using constraints shows a
significant improvement in all three metrics. Another base-
line incorporated the monotonicity behavior directly into the
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loss function using a soft-ranking approach. While this ap-
proach outperforms the model learned using constraints in
trendability, due to its explicit monotonicity enforcement, the
model learned with constraints performed better in robust-
ness and consistency, providing stable and interpretable HI
estimates over time. The ablation study confirms the im-
portance of each constraint: the monotonicity constraint im-
proves trendability, the boundary constraint ensures consis-
tency, and the energy–HI consistency constraint enhances ro-
bustness. These findings demonstrate the effectiveness of
CGGD in producing reliable and physically meaningful HIs
for bearing prognostics and health management, offering a
promising direction for future prognostic applications.

1. INTRODUCTION

Prognostics and health management (PHM) is a domain that
focuses on the management of the health of engineering sys-
tems and their critical components. Bearings are critical com-
ponents in many industrial machines and are often exposed
to significant stress and wear (Cubillo, Perinpanayagam, &
Esperon-Miguez, 2016). As such, effective PHM is essential
to prevent unexpected failures, boost operational efficiency,
and extend the service life of the machine. To achieve this,
it is crucial to develop robust techniques for monitoring the
health of the bearings. In industrial settings, a variety of diag-
nostic and prognostic methods are applied, often using open-
source datasets (Su & Lee, 2023). These methods generally
focus on two key objectives (Zhou et al., 2022): (i) detect-
ing early-stage bearing faults to prevent catastrophic failures,
and (ii) tracking and characterizing how the bearing’s health
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condition evolves over time. This work focuses on the latter.

For this purpose, the construction of HIs is a crucial step in
assessing and predicting the condition of assets (Biggio &
Kastanis, 2020). The goal is to extract effective features from
sensor signals to establish a stable HI that reflects the degra-
dation of the asset over time. Preferably, this HI should have
a fixed range, such as 1 to 0, where 1 represents a healthy
condition and 0 indicates a faulty one. This allows for the
definition of a threshold that can trigger an alarm if the HI
falls below it, providing an early warning before the system
progresses into critical failure.

The modeling approaches used in the construction of HIs
for bearings are broadly categorized into two types: physics-
based methods and data-driven methods (Li, Zhang, Li, & Si,
2024). Physics-based methods (Xu, Kohtz, Boakye, Gardoni,
& Wang, 2023) involve analyzing and modeling the physi-
cal failure mechanisms of bearings using fundamental prin-
ciples. When these mechanisms or relevant domain knowl-
edge are well understood and the parameters of these phys-
ical models can be accurately estimated from measurement
data, physics-based methods can provide precise, generaliz-
able and interpretable HI values. However, in most cases,
particularly for complex engineering systems, the physical
failure mechanisms and domain knowledge may be incom-
plete or scarcely available. In this situation, the established
physical models must make simplifications or assumptions,
which leads to a poor representative models (Lei et al., 2016).
Thus, as an alternative, data-driven methods can be applied
(Jieyang et al., 2023), which are particularly promising for
tackling complex processes that are not entirely understood
or when physics-based methods are too computationally de-
manding. Data-driven methods have relatively high data col-
lection requirements and do not require extensive considera-
tion of the physical meaning of the data (Lu, Wang, Zhang,
& Gu, 2024). Although data-driven models can achieve high
accuracy in fitting observed data, they often lack physical re-
alism or plausibility when interpolating or extrapolating be-
yond the available labeled data, leading to poor generaliza-
tion. It is clear that both physics-based and data-driven meth-
ods have their unique strengths and weaknesses. As a result, a
sensible strategy is to combine these two types of methods to
take advantage of their respective merits through a hybrid ap-
proach (Liao & Köttig, 2014). Unlike the typical combination
found in hybrid methods, embedding physical knowledge into
data-driven models holds promise to guide models towards
generating physically consistent results (Von Rueden et al.,
2023). Accordingly, there is a need to train data-driven ma-
chine learning (ML) models by incorporating physical or do-
main knowledge (Karniadakis et al., 2021; Meng, Seo, Cao,
Griesemer, & Liu, 2022) to improve the interpretability of the
model. This domain knowledge often comes in the form of
physical models, constraints, dependencies, and known valid
ranges of features (Muralidhar, Islam, Marwah, Karpatne, &

Ramakrishnan, 2018). There are various methods to incor-
porate specific physical or domain information into ML mod-
els, enabling the development of robust physics-informed ML
systems. These methods include physics-informed data aug-
mentation (Xiong, Fink, Zhou, & Ma, 2023), architecture de-
sign (Nascimento & Viana, 2019; Chen & Liu, 2021), resid-
ual modeling (Willard, Jia, Xu, Steinbach, & Kumar, 2022),
and modifying the loss function to include a physics-inspired
regularization term (J. Wang, Li, Zhao, & Gao, 2020; Raissi,
Perdikaris, & Karniadakis, 2019). In the latter methods, the
optimization procedure is adapted such that during learning
models that are not consistent with the domain knowledge
are penalized to guide learning towards a model that makes
a trade-off between explaining the measurements and being
consistent with domain knowledge. Adding domain knowl-
edge to learning can be considered as a regularization method
which can reduce the need for labeled data, shrink the search
space during model optimization, and enhance the model’s
generalizability to unseen scenarios (Li et al., 2024). Using
this strategy, the domain knowledge described by some for-
mal representation, such as an inequality constraint, is trans-
ferred to the parameter values of a (black box) data-driven
model. In our opinion, this strategy is one of the most conve-
nient ways to embed knowledge in data-driven models; there-
fore, it is selected for designing HI models in this work.

In prior works, physics-inspired constraints were considered
by adding an additional regularization term to the loss func-
tion. Such a term requires a proper trade-off hyperparame-
ter, which requires careful balancing with the other terms in
the objective function. Especially when more constraints are
considered, which all require their own hyperparameter, such
balancing can become cumbersome. In this work, a unified
framework proposed by Van Baelen and Karsmakers (2023)
used to include domain knowledge in a data-driven approach
to estimate the HI for bearings. This framework does not
require a tuning of the hyperparameters of the different regu-
larization terms and can be easily extended with the inclusion
of additional domain-knowledge inspired constraints. More
specifically, in this work the following constraints are con-
sidered: monotonicity, bounded ranges from fully healthy
to failure states, and a characteristic degradation pattern in-
formed by energy trends. This approach allows HI estimates
to remain within defined ranges and adhere to the actual ob-
served degradation patterns of a bearing, without the need to
rely on a predefined shape of the degradation function. The
proposed method will be experimentally tested and compared
with two baseline HI learning models.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present the proposed novel methodology that dis-
cusses the training approach, the proposed constraints, and
the baseline methods used. Section 3 discusses the experi-
mental setup starting with the general HI construction pro-
cedure, description of the datasets, the pre-processing proce-

2



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

dure, the model architecture used, the data set partitioning
procedure and the evaluation metrics. In Section 4, we de-
scribe the implementation of our proposed approach and dis-
cuss the results. In addition, a comparison of the results with
a conventional baseline analysis is implemented. An abla-
tion study is presented in Section 5 to discuss performance
changes by slightly modifying the proposed model. Finally,
in Section 6, we conclude by summarizing the results of our
experiments.

2. METHODOLOGY

The proposed method for constructing a bearing HI model
leverages domain knowledge to guide the training process,
resulting in a robust and accurate model. Incorporating do-
main knowledge during training is expected to reduce the re-
liance on labeled data. Unlike other approaches in the liter-
ature, domain knowledge in this work is not integrated by
adding a regularization term to the loss function. Instead,
the method employs the CGGD framework proposed in (Van
Baelen & Karsmakers, 2023), which facilitates solving con-
strained non-linear optimization problems. Specifically, this
framework is utilized to train a DL model by minimizing a
loss function while ensuring that the model satisfies certain
constraints. These constraints represent domain knowledge.
In this way, domain knowledge can be embedded into the re-
sulting DL model. First, the application of the CGGD frame-
work to develop DL-based HI models is described. Next, a
detailed explanation of the domain-knowledge inspired con-
straints are provided along with their implementation within
the CGGD framework. Finally, the baseline methods used for
comparison with the proposed approach are explained.

2.1. Constraint Guided Learning of a DL based HI Model

DL architectures commonly used in PHM (Rezaeianjouybari
& Shang, 2020) include convolutional neural networks
(CNN), autoencoders (AE), deep belief networks (DBN),
recurrent neural networks (RNN) and generative adversarial
networks (GAN). In systems where obtaining representative
labeled data is challenging, the use of unsupervised learning
methods, such as AE architectures, are particularly bene-
ficial (Hoffmann Souza, da Costa, & de Oliveira Ramos,
2023). Although the proposed method is agnostic to the
model architecture and learning procedure, in this work a
convolutional autoencoder (CAE) model architecture learned
by using a reconstruction loss is adopted as a starting point.
As will be explained later in Section 3, acceleration signals
are transformed into a time-frequency representation denoted
as X → RD→T to be used as an input to the model.

In its original formulation, the CAE model is trained to
construct a compact latent representation z → RD→

of in-
put signals X with D↑

↑ D using an encoder function E .
This process occurs without significant loss of information.

Given z, a decoder D reconstructs the input to X̂ , aiming to
closely resemble the original signal X . During learning, the
model parameters are determined using the following objec-
tive (Vincent et al., 2010):

min
ωE ,ωD

Lreconn(X,ωE ,ωD), (1)

where X denotes the set of all input samples,
Lreconn(X,ωE ,ωD) =

∑
X↓X ↓X↔D(E(X))↓22 denotes the

reconstruction loss, and ωE and ωD are the parameters of the
encoder E and decoder D models, respectively. The model
is trained using data segments from a healthy bearing in op-
eration, resulting in a minimal reconstruction error for this
healthy state. In contrast, in scenarios where the bearing
is faulty, the reconstruction process becomes less accurate,
leading to a larger reconstruction error. This increased error
serves as an indicator of bearing health degradation. Once the
CAE parameters are learned, the HI estimate for an input X
is calculated using fCAE

HI (X) = ↔↓X ↔ D(E(X))↓2 which
computes the reconstruction error and will have a decreasing
trend over time.

Using the CGGD framework, the optimization problem pro-
vided in Eq. (1) can be turned into a constrained optimization
task as:

min
ωE ,ωD

Lreconn(X,ωE ,ωD)

s.t. Ci(X,ωE ,ωD), for i = 1, . . . ,M.
(2)

where Ci : Rn
↗ R is the i-th constraint, and M is used to

denote the number of constraints incorporated in the model.
To apply CGGD, a direction dirC needs to be defined for
each constraint individually. This direction, when used to
update the model, will result in a local improvement with re-
spect to the constraint considered. For example, the constraint
C : R2

↗ R : (x1, x2) ↘↗ x1 ↔ x2 with C(x1, x2) ≃ 0 can
be given a possible direction by dirC = (

↔
2
2 ,↔

↔
2
2 ). Con-

sider, for example, an intermediate solution (x1, x2) = (3, 1)
which does not satisfy the constraint. Observe that when the
gradient of a gradient descent-based optimizer is replaced by
the direction dirC, (x1, x2) = (3, 1) ↔ ω(

↔
2
2 ,↔

↔
2
2 ), that the

updated solution, for a large enough ω, will satisfy the con-
straint as x1 can be decreased and x2 can be increased until
they at least have an equal value.

To provide greater flexibility, this work employs a CGGD
based CAE (CCAE), where the HI value is not derived from
the reconstruction error, as in conventional CAEs, but is in-
stead defined as a learnable function of the encoding E(X).
This will be denoted as fCCAE

HI (E(X)) with the learnable pa-
rameters ωHI.
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2.2. Constraints

In this section, the constraints applied in this work are de-
scribed to ensure that the predicted bearing HI values accu-
rately reflect their degradation over time. These constraints
are designed to represent domain knowledge to ultimately im-
prove the accuracy and robustness of the model even in situ-
ations where annotated data is scarce.

2.2.1. Monotonic Degradation Constraint

When a bearing is put into operation, it undergoes inevitable
wear, which progressively worsens with time. This degra-
dation should be reflected in the predicted HI, which is ex-
pected to decrease monotonically over time. To enforce this
constraint, the HI estimates should be penalized if they de-
viate from the expected monotonic trend based on the time
location of the corresponding input data samples. For inputs
Xt measured at time step t and the corresponding health state
predictions fCCAE

HI (E(Xt)), the monotonic degradation con-
straint can be expressed as follows:
For t1 < t2, hence Xt1 a measurement taken before Xt2

then it must hold that fCCAE
HI (E(Xt1)) > fCCAE

HI (E(Xt2)). To
enforce such a constraint with CGGD, a direction function
needs to be defined, which is done by comparing the ranks of
fCCAE

HI (E(Xt)) (from high to low value) estimates with their
corresponding ranks in time (from early to later). This is cal-
culated as follows:

dirmono(Xt,X, t,ωE ,ωHI) =

rankdesc(Xt,X,ωE ,ωHI)↔ rankasc(time(Xt), t), (3)

where t is a set of timestamps aligned with the samples
in set X , Xt is an element from set X , time(Xt) a func-
tion that extract the time at which the sample Xt was
measured, rankdesc(·) is a function that outputs the rank of
fCCAE

HI (E(Xt)) when compared to all other HI estimates of the
elements in X when ranked in descending order, rankasc(·)
is a function that outputs the rank of t among all values in t
sorted in ascending order.

As time progresses, it is expected that the corresponding HI
estimates decrease. A positive value for dirmono implies that
the HI estimate is ranked too high, suggesting that a decrease
in the HI estimate is necessary. In contrast, a negative value
implies a lower rank, indicating that the HI estimate should be
increased. A value of zero means that the HI estimate matches
its expected rank. A significant deviation in the ranking of a
sample from the desired position will have a greater impact
on the direction than a smaller deviation. By incorporating
this monotonic degradation constraint into the HI estimation
process, the model ensures that the predicted HI values de-
crease monotonically over time, aligning with the expected
degradation pattern of the bearing.

2.2.2. Energy-HI Consistency Constraint

Building on the monotonic degradation constraint, we expect
that while the HI values should decrease over time, the dif-
ference between the HI values of two consecutive samples
should not vary significantly unless a substantial change in
signal energy occurs. To enforce this concept, a constraint is
introduced that ensures that if two samples have similar en-
ergy levels, their HI estimates should also be close in value.

We define this relationship mathematically as follows:

fCCAE
HI (E(Xt0))↔ ε! ≃ fCCAE

HI (E(Xti)) < fCCAE
HI (E(Xt0)),

(4)
where ! = max (ϑ, |E(Xti)↔ E(Xt0)|) represents the nor-
malized total energy1 difference between the two samples at
times t0 and ti where ti > t0, ε > 0 is a hyperparameter
that controls the sensitivity of this constraint and 0 < ϑ < 1.
ϑ is a parameter that introduces flexibility in HI predictions
for samples with similar energy values. When the energy dif-
ference is minimal, ϑ allows a margin of variation in the pre-
dicted HI.

Based on the predicted HI of the model, the subsequent up-
date direction of the energy-HI consistency constraint is de-
termined as follows:

direne(Xt, Xt0 ,ωE ,ωHI) =




1, fCCAE
HI (E(Xt)) > fCCAE

HI (E(Xt0)),

0, ↔ε! ≃ fCCAE
HI (E(Xt))↔ fCCAE

HI (E(Xt0)) < 0,

↔1, otherwise.
(5)

By penalizing discrepancies between the energy difference
and the HI difference, we encourage the model to maintain a
consistent relationship between these two variables. This ap-
proach helps prevent large fluctuations in the HI values and
ensures that the model accurately reflects the gradual degra-
dation process of the bearing.

2.2.3. HI Boundary Constraint

When predicting the HI of a bearing, it is convenient that the
values remain within a normalized range: a fully healthy state
is represented by a value of ub = 1, while a failure state
corresponds to a value of lb = 0. To enforce this condition,
boundary constraints are enforced during the training process
to ensure that all HI predictions fall within this defined range.

In addition to the broader bound ranges, stricter bound ranges
are also applied during certain phases of the bearing’s life
cycle. In the initial a% (e.g. a = 10) of its operation, the
HI value is expected to be at least ba < ub (e.g. ba = 0.9),
ensuring that the new bearings operate in near-optimal health.
In contrast, in the final b% (e.g. b = 5) of its operation,
1The energy E(·) is calculated by summing all squared elements in X .
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the HI is expected not to exceed bb > lb (e.g. bb = 0.05),
indicating that the bearing is close to failure due to significant
degradation.

Based on the predicted HI, the subsequent direction of the up-
per and lower boundary constraints is determined as follows:

dirupper(Xt,ωE ,ωHI) =

{
1, if fCCAE

HI (E(Xt)) > ub,

0, otherwise,

dirlower(Xt,ωE ,ωHI) =

{
↔1, if fCCAE

HI (E(Xt)) < lb,

0, otherwise,

where lb and ub are the lower and upper bounds, respectively,
within which the HI predictions should lie.

When dirupper is 1, it means that the HI estimate is greater
than ub, which requires a reduction in subsequent updates.
When dirlower is -1, the HI estimate is below lb and should
be increased. A zero in both dirupper and dirlower indicates
that the HI estimate is within the specified bounds and that no
adjustments are necessary. By implementing these boundary
constraints, it is ensured that the HI predictions accurately
reflect the bearing condition, from optimal functionality to
failure.

2.3. Implementing the Constraints in the CGGD Frame-
work

This section provides a comprehensive explanation on how
the CGGD framework can be used to train the HI estimator
model, denoted as fCCAE

HI (E(·)). As is indirectly indicated in
Eq, (2), a multi-head network model is used. One head de-
codes the encoded input to calculate the reconstruction loss
(to calculate Lreconn) and another head is used for the HI pre-
diction (fCCAE

HI ) based on the encoded input. Both will use
the same encoder, and the input of each head is thus given by
E(X).

At the core of the CGGD optimization procedure, the update
of the model parameters is defined in Eq. (6). Here ϖj is the
value of a learnable weight on iteration j and ϖj+1 the value
of the same learnable weight in the next iteration, Rmono,
Rene, Rupper, and Rlower are the rescale factors, which control
the relative weight of the different constraints compared to the
loss function, for the monotonic degradation constraint, the
energy-HI consistency constraint, the upper bound on the HI,
and the lower bound on the HI, respectively, ω is the learning
rate, FMH is a function that balances the gradients of the dif-
ferent heads appropriately, ⇐E is the gradient with respect to
the latent space determined by the encoder E , and 0 < ϱ < 1
to ensure there is a minimum step size in case the gradients
from the reconstruction loss to the encodings are very small.
A small adaptation to standard CGGD can be observed as the
variable FMH is included. This is required as ωHI are only
trained using the constraints, while ωD are only trained with

a loss function. Therefore, the first shared space by both ob-
jectives is the encoding space. In this space, the constraints
should be prioritized over the reconstruction loss function, as
the final model should satisfy the constraints on the training
data. The constraints and the loss function will determine an
update vector for the encoding space. In order to make sure
that the update vector linked to the constraints dominates the
model updating both update vectors are set to the same norm.
This is accomplished by first setting the update vector cre-
ated by the constraints to have a unit norm, after which it
is multiplied by the norm of the update vector that is calcu-
lated based on the loss function. To have a unit norm for the
constraints-based update vector, first the gradient of the di-
rection function (dir) is multiplied by the automatic differen-
tiation of the predicted HI (fCCAE

HI (E(X))) for each encoding
space dimension. Then, to let it have unit norm this update
vector is multiplied by the rescale factor of the constraint and
FMH which is defined as:

FMH (Xt, dir(Xt, ·)) :=

↓dir(Xt, ·)↓∥∥⇐E
[
dir(Xt, ·)fCCAE

HI (E (Xt))
]∥∥ .

After being rescaled with FMH, the constraint update vector
is multiplied by ↓⇐ELreconn (Xt,ωE ,ωD) ↓, as can be seen in
Eq. (6), to let both the constraint and loss update vector have
the same norm.

To train the neural network, an off-the-shelve Adam opti-
mizer is used by applying Eq. (6) iteratively for all learnable
parameters. Observe that the partial derivatives of the loss
function with respect to ωHI are 0 as they are independent
from each other and the partial derivatives of the encodings
with respect to ωD are 0 as well as the weights of the decoder
are independent from the encodings.

All rescale factors are assumed to be strictly greater than 1, as
they represent the relative weight of the constraints compared
to the loss function by the definition of CGGD. Different val-
ues can be assigned to individual rescale factors to prioritize
certain constraints over others. Generally, the constraint with
the largest rescale factor takes precedence over all other con-
straints and the loss function.

In this work, the rescale factor for the monotonic degradation
constraint is dynamically adjusted for each individual pre-
diction based on its deviation from the ground truth, within
a bounded interval defined by [Rmono lw, Rmono up]. This in-
terval ensures higher rescale factors for larger deviations be-
tween the predicted and true ranks and comparatively lower
factors for smaller deviations. For a monotonicity direc-
tion (dirmono(Xt,X, t,ωE ,ωHI)) calculated for sample Xt,
the monotonic rescale factor is calculated using Eq. (7). Here,
batch size↔1 represents an upper bound on the absolute value
of the values in dirmono. In particular, this upper bound can be
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ϖj+1 := ϖj ↔ ω

(
ςLreconn (Xt,ωE ,ωD)

ςϖj
+ max {↓⇐ELreconn (Xt,ωE ,ωD)↓ , ϱ}

ςfCCAE
HI (E (Xt))

ςϖj
(6)

[
Rmono dirmono (Xt,X, t,ωE ,ωHI)FMH (Xt, dirmono(Xt,X, t,ωE ,ωHI))

+Rene direne (Xt, Xt0 ,ωE ,ωHI)FMH (Xt, direne(Xt, Xt0 ,ωE ,ωHI))

+Rupper dirupper (Xt,ωE ,ωHI)FMH (Xt, dirupper(Xt,ωE ,ωHI))

+Rlower dirlower (Xt,ωE ,ωHI)FMH (Xt, dirlower(Xt,ωE ,ωHI))
])

attained when all samples are from the same run and the ear-
liest sample is predicted as the last sample or the other way
around.

Rmonot = Rmono lw+

(Rmono up ↔Rmono lw) · dirmono(Xt,X, t,ωE ,ωHI)

batch size ↔ 1
(7)

In terms of computational complexity, unlike a standard CAE
that only computes the reconstruction loss after the forward
pass, the proposed method incurs additional computational
and memory overhead from enforcing the added constraints
during training, as formulated in Eq. (6). These constraints
are evaluated alongside the usual forward and backward prop-
agation, and the extent of the overhead depends on their
complexity. For example, enforcing the monotonicity con-
straint requires two sorting operations of lists with size equal
to the batch size, each with a complexity of O(batch size ·

log(batch size)), followed by a linear comparison, adding
O(batch size).

When applying CGGD, the added cost includes computing
the gradient of the constraint with respect to the latent space,
backpropagating the constraint loss, calculating the norm of
these gradients and performing a linear number of multiplica-
tions and additions before standard network backpropagation.
Overall, the additional complexity is proportional to the type
and number of constraints used in the model.

2.4. Comparison Baselines

To evaluate the effectiveness of the proposed CGGD-based
approach, it was compared to two baseline methods. The first
baseline is a standard CAE method in which the encoder and
decoder parameters are learned according to Eq. (1). Hence,
there is no additional head fCCAE

HI and there are no added con-
straints.

The second baseline incorporates the monotonic degradation
property using a regularization term in the loss function of
the model, unlike the proposed CCAE method, which applies
it as a constraint during learning. However, if conventional
ranking operations are used for the monotonic degradation
loss function, they will create discrete, piecewise-constant

outputs, like integer ranks, that are not differentiable. This
poses challenges for gradient backpropagation in DL due to
null or undefined derivatives. To overcome these issues, the
method proposed by Blondel, Teboul, Berthet, and Djolonga
(2020) was used.

The method casts the ranking as a projection onto the permu-
tahedron (the convex hull of all permutation vectors). As a
result, it creates projection operators that are differentiable,
making them suitable for formal analysis. For a given input
vector (x), the soft rank rω(x) is computed as:

rω(x) = ProjP(↔x/φ)

where P is the permutahedron and φ > 0 is a regularization
strength that controls approximation smoothness.

For the predicted HIs (fHI(X)) of the set X , the soft-rank
loss is calculated as:

Lsoft-rank =
1

2
↓rω(rankasc(t))↔ rω(fHI(X))↓22, (8)

where t is a set of timestamps aligned with the samples in
the set X , rankasc(t) outputs the rank of t sorted in ascending
order which represents the true ranks and rω(·) provides the
soft-ranks for the input vectors.

Then, the total loss function of the model is calculated as:

Ltotal = Lreconn + ↼Lsoft-rank, (9)

where ↼ is a trade-off hyperparameter that balances the re-
construction and the soft-rank term.

This second baseline, which incorporates monotonicity as a
regularization term in the loss function using the soft-rank
approach, is called the soft-rank loss function based CAE
(SR-CAE) method.

3. EXPERIMENTAL SETUP: BEARING HI ESTIMATION

This section discusses the datasets, the preprocessing and par-
titioning approach, the model architecture, the setting of the
hyperparameters, and the relevant evaluation metrics used in
this work.
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3.1. HI Construction Procedure

The framework for building a predictive model involves sev-
eral steps, starting with collecting data from monitoring sig-
nals, such as vibration, to reflect the health of the equipment.
This data is then pre-processed to enhance its quality for anal-
ysis. An appropriate model is then chosen based on the char-
acteristics of the data and the prognostic needs, with a specific
architecture designed to detect bearing degradation patterns.
Finally, the model estimates the HIs of bearing health, pro-
viding insight into degradation over time.

3.2. Bearing Degradation Datasets

To evaluate the effectiveness of the proposed approach, we
conducted experiments using two benchmark bearing degra-
dation datasets: the pronostia and the XJTU-SY datasets. Ac-
celerometer measurements from the benchmarks that capture
the progression of bearing degradation were used as input to
estimate the HI. A brief overview of each dataset is provided
below.

3.2.1. Pronostia Bearing Dataset

One of the datasets used is the IEEE PHM 2012 Prognos-
tic challenge dataset, collected from the pronostia platform
(Patrick Nectoux, Ramasso, & Brigitte Chebel-Morello,
2012). The bearings on this platform are tested under vari-
ous loads and rotational speeds, comprising 17 run-to-failure
datasets of rolling element bearings.

Table 1 provides an overview of the operating conditions
along with the total number of bearing runs available for each
condition. To perform accelerated degradation tests in a few
hours, a high-level radial force was applied that exceeded
the maximum dynamic load of the bearings. During these
tests, the rotating speed of each bearing was maintained at a
stable level. Two accelerometers and a thermocouple were
employed to capture vibration signals and bearing tempera-
tures. Vibration signals were recorded using two accelerom-
eters positioned along the vertical and horizontal axes, with
a sampling frequency of 25.6 kHz and 2560 samples (that is,
1/10 s) collected every 10 seconds.

Since the bearings were subjected to natural degradation, we
expect that the degradation patterns will vary between sam-
ples. Furthermore, little is known about the specific nature
and origin of degradation (for example, whether it involves
balls, inner or outer races, or cages), necessitating the ap-
plication of data-driven techniques. Failures in any compo-
nent, ball, rings, or cage could occur simultaneously. The
useful life of a bearing is considered to end when the ampli-
tude of the vibration signal exceeds 20 g. In this work, only
accelerometer data from the provided data set were used as
input to estimate the HI.

Table 1. Summary of the pronostia dataset.

Conditions Load (N) Speed (rpm) Total number of
Bearings

1 4000 1800 7
2 4200 1650 7
3 4500 1300 3

3.2.2. XJTU-SY Bearing Dataset

The second dataset used in this work is the XJTU-SY bearing
dataset, provided by the Institute of Design Science and Basic
Components at Xi’an Jiaotong University (XJTU) (B. Wang,
Lei, Li, & Li, 2018). This dataset contains run-to-failure data
for 15 rolling element bearings, tested under various loads
and rotational speeds.

Table 2 provides an overview of the operating conditions
along with the total number of bearing runs available for each
condition. The testbed was designed to perform accelerated
degradation tests under different radial forces and rotational
speeds. The radial load was applied to the bearing housing
using a hydraulic loading system.

Vibration signals were collected using two accelerometers
mounted in the vertical and horizontal directions. Data were
sampled at a frequency of 25.6 kHz, with 32768 samples
(equivalent to 1.28 s of data) recorded every minute. The
dataset also specifies the cause of each bearing failure, in-
cluding various types of fault such as inner race wear, cage
fracture, outer race wear, and outer race fracture.

Table 2. Summary of the XJTU-SY dataset.

Conditions Load (N) Speed (rpm) Total number of
Bearings

1 10000 2400 5
2 11000 2250 5
3 12000 2100 5

3.3. Preprocessing

Various vibration analysis techniques can be applied to pre-
process the raw signals from an accelerometer (Vishwakarma,
Purohit, Harshlata, & Rajput, 2017). In this work a similar
approach to Meire, Brijder, Dekkers, and Karsmakers (2022)
was used, where rich features were calculated that do not in-
clude prior knowledge about the bearings. The raw accel-
eration signals are first converted into log-mel spectrograms
before being fed into the machine learning model. For the
pronostia dataset, 0.1-second recordings (2560 samples) are
captured every 10 seconds. For the XJTU-SY dataset, 1.28
seconds of recordings (32768 samples) are captured every
minute. In both cases, we use matching window and hop sizes
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equal to the recording length (i.e. 0.1 s for pronostia, 1.28 s
for XJTU-SY). From the vertical and horizontal accelerome-
ter axes, we extracted 128 mel frequency bands, applied log-
arithmic scaling, and stacked the two resulting spectrograms.
This yields a (128, 2) 2D input frame for each time window.

A sample mel spectrogram extracted from the pronostia
dataset, corresponding to the first bearing operating under
condition 3, is shown in Figure 1. At the start of each bearing
run, their is a transient behavior likely caused by the initial
start-up of the setup. To eliminate this effect, we visually in-
spect and remove a small section of samples at the beginning
of each bearing operation.

Finally, we normalize the data from each operating condition
to achieve zero mean and unit variance across the mel fre-
quency bands, treating each individual axis separately. This
normalization is based on the mean and standard deviation
calculated from the training set. This normalization helps en-
sure consistency between different runs under the same con-
ditions.

By transforming raw vibration signals into log-mel spectro-
grams and applying the appropriate preprocessing steps, we
obtain a consistent set of input features to train machine learn-
ing models for bearing HI estimation.

Figure 1. The two axes mel spectral features of a bearing.

3.4. Model Architecture

The standard CAE architecture used in this study, illustrated
in Figure 2, consists of an encoder with four convolutional
layers containing 64, 32, 32, and 16 filters, respectively, fol-
lowed by a fully connected layer with 16 neurons. The de-
coder consists of a fully connected layer and 4 deconvolu-
tional layers with 16, 32, 32, and 64 filters, ending with a
final deconvolutional layer with two filters, corresponding to
the two-axis accelerometer data as the output layer. A batch
normalization layer follows each convolutional layer, except
the final one. All convolutional layers employ ReLu activa-
tion functions and the dense layers use linear activation func-
tions. The convolutional filters used are 1D with a kernel size

of 3 and move with a stride of 2. In CCAE a second head is
added on top of the encoder output (upper head in Figure 2) to
estimate the HI. This second head is composed of three fully
connected layers that have 16, 8, and 4 neurons, and the final
layer providing a single HI estimate. The hyperparameters
used in this model include the Adam optimizer with a learn-
ing rate of 1 ⇒ 10↗3, an early stopping criterion with a pa-
tience of 10 epochs, a batch size of 64. To ensure a standard-
ized comparison of the methodologies, neither regularization
nor dropout techniques are implemented in the architecture
used.

Figure 2. The CCAE Model Architecture.

The final architecture and hyperparameters are selected after
conducting multiple experiments to fine-tune them. This is
done through a systematic evaluation of various configura-
tions based on reconstruction error and validation accuracy.

3.5. Dataset Partitioning

After extracting the log-mel spectral features, training
batches are constructed in a structured and balanced man-
ner. Each run from the training set contributes to the overall
batch, with the number of samples drawn from each run
proportional to its total number of available samples. This
ensures that all runs are fairly represented in the training
process. To avoid sampling bias, where batches may contain
data from only specific segments of a run, samples are drawn
from across the entire run, from start to end. To ensure greater
variability and temporal coverage, each run is divided into
three segments, and samples are drawn from each segment.
These segments are:

1. Healthy state: The first segment comprises the initial
10% of the run, assumed to reflect a fully healthy state.

2. Slight degradation phase: The second segment includes
samples from 10% to 95% of the run, representing a
phase of slight degradation.

3. Sharp degradation phase: The final segment, expected to
begin roughly after 95% of the samples in a run, charac-
terizes rapid degradation leading up to apparent failure.
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Batches are constructed by randomly sampling from each of
the three segments of the training runs. To ensure represen-
tation across different degradation stages, each batch consists
of approximately 20% samples from the healthy state, 70%
from the gradual degradation phase, and 10% from the sharp
degradation phase. This balanced composition improves the
model’s ability to learn across all stages of degradation. To
evaluate performance and ensure robustness, each experiment
is repeated 10 times with different random seeds for batch
sampling and model initialization. In each run, data from the
training bearings are combined and shuffled, with 75% used
for training and 25% reserved for validation.

For the pronostia dataset, the first two bearing runs under
each operating condition are used for training and the re-
maining runs are reserved for testing as shown in Table 3, in
accordance with the original PHM 2012 challenge protocol
(Patrick Nectoux et al., 2012).

Table 3. Train-test bearing split for each operating condition
in the pronostia dataset.

Condition Training bearings Test bearings

1 Bearing1 1,
Bearing1 2

Bearing1 3, Bearing1 4
Bearing1 5, Bearing1 6

Bearing1 7

2 Bearing2 1,
Bearing2 2

Bearing2 3, Bearing2 4
Bearing2 5, Bearing2 6

Bearing2 7

3 Bearing3 1,
Bearing3 2 Bearing3 3

The training set for each condition is relatively small due to
the limited number of runs available. Furthermore, fault pat-
terns and bearing lifetimes can vary significantly, even un-
der identical conditions, complicating the HI estimation. This
variability is illustrated in Figure 3, which shows the degra-
dation processes of seven bearings that operate under a sim-
ilar condition. Although the energy of these bearings is ex-
pected to follow a generally increasing trend, the progression
towards failure varies considerably among them. Notably,
certain bearings, such as Bearing1 2 and Bearing1 3 (denoted
as B2 and B3 respectively in Figure 3), exhibit large energy
fluctuations rather than a smooth transition.

For the XJTU-SY dataset, three bearings with different types
of failures (e.g., inner race, outer race, and cage faults) are
used for training, while two are reserved for testing under
each operating condition, as shown in Table 4. Similarly to
the pronostic dataset, failure times vary significantly, even
among bearings operating under similar conditions. In ad-
dition, some bearings show considerable fluctuations in their
degradation signals, which underscores the difficulty in learn-
ing a consistent and robust HIs across diverse and varied fail-
ure behaviors.

Figure 3. Mean mel energy progression over time for pronos-
tia bearings in operational condition 1.

Table 4. Train-test bearing split for each operating condition
in the XJTU-SY dataset.

Condition Training bearings Test bearings

1 Bearing1 2, Bearing1 4 Bearing1 1, Bearing1 3
Bearing1 5

2 Bearing2 1, Bearing2 5 Bearing2 2, Bearing2 3
Bearing2 4

3 Bearing3 2, Bearing3 4 Bearing3 1, Bearing3 3
Bearing3 5

3.6. HI Evaluation Metrics

The effectiveness of the constructed HI estimates are assessed
using three key metrics: trendability, robustness, and consis-
tency (Lei et al., 2018).

3.6.1. Trendability

As operating time increases, components are expected to
gradually degrade. Consequently, the degradation trend of an
HI should correlate with the operating time. The trendabil-
ity metric is used as a quantitative measure to evaluate how
well HI reflects changes in the condition of a machine over
time. To evaluate this correlation in nonlinear degradation
trends, we use the Spearman coefficient as the trendability
metric, defined as follows (Carino, Zurita, Delgado, Ortega,
& Romero-Troncoso, 2015):

Tre(fHI(X), t) = 1↔
6
∑N

i=1(rank(fHI(Xi))↔ rank(ti))2

N(N2 ↔ 1)
,

(10)
where N is the number of samples, rank(fHI(Xi)) and
rank(ti) are the ranks of the estimated HI values and
the corresponding time value, respectively. The value of
Tre(fHI(X), t) ranges from -1 to 1, approaching either end
when there is a strong positive or negative correlation be-
tween HI and time. Tre(fHI(X), t) = 1 means the health
indicator is perfectly increasing with time (positive trend).
Tre(fHI(X), t) = ↔1 means the health indicator is perfectly
decreasing with time (negative trend) and Tre(fHI(X), t) = 0
indicates that there is no trend. The aim of the constraint is to
achieve a value of -1.
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3.6.2. Robustness

A suitable HI should also be robust against inherent in-
terference while maintaining a smooth degradation trend.
This property is quantified by the robustness metric (Zhang,
Zhang, & Xu, 2016), defined as:

Rob(fHI(X), t) =

1

N

N∑

i=1

exp

(
↔

∣∣∣∣
fHI(Xi)↔ fs

HI(ti,X, t)

fHI(Xi)

∣∣∣∣


,

(11)

where fs
HI(ti,X, t) is a smoothed HI value at ti. The smooth-

ing is performed in this work using locally weighted regres-
sion (LOESS) (Cleveland & Devlin, 1988; Duong et al.,
2018) where each smoothed value is determined using neigh-
boring data points within a specified range.

3.6.3. Consistency

Consistency refers to the degree of correlation among multi-
ple HIs. When examining different HI estimates from a single
unit, it is expected that they will exhibit some level of corre-
lation because they all reflect the same degradation process.
This metric is especially useful in situations where multiple
predictions are made, as it enables the assessment of the con-
sistency between these predictions.
Mosallam, Medjaher, and Zerhouni (2016) proposed a consis-
tency metric based on the pairwise symmetrical uncertainty,
defined as:

Con(fHI(X1), fHI(X2)) =
2I(fHI(X1), fHI(X2))

H(fHI(X1)) + H(fHI(X2))
,

(12)
Where, I(fHI(X1), fHI(X2)) represents the mutual informa-
tion and H(fHI(X1)) and H(fHI(X2)) denote the entropies
of fHI(X1) and fHI(X2), respectively. The output value,
Con(fHI(X1), fHI(X2)), is normalized to a range between
0 and 1. A higher value indicates a greater similarity between
the two HIs, suggesting a stronger consistency. For multiple
HI estimates, pairwise consistency values are computed and
the final consistency metric is determined by taking the mean
and standard deviation of these pairwise results.

4. EVALUATION OF HI ESTIMATION METHODS: EX-
PERIMENTAL RESULTS AND DISCUSSION

This section presents the experimental results, starting with a
comparative analysis of the proposed CCAE method against
two baselines: the standard CAE and the SR-CAE methods.
This is followed by a detailed discussion of all methods based
on the performance metrics described in Section 3.6. When
comparing results, if the models show the same mean perfor-
mance metric, the one with a smaller standard deviation is
considered better.

4.1. General Comparative Analysis

The overall performance of each approach is visually as-
sessed by analyzing the results of the pronostia bearings in
condition 3 across the three HI estimation methods. This
analysis provides a general overview that provides insight
into the effectiveness of each technique in estimating bear-
ing health degradation. In all HI estimation plots presented in
this work, the smoothing (red line) is done using LOESS.

Figure 4 illustrates the degradation patterns using the stan-
dard CAE HI estimation method. Here, HI estimates might
not decrease consistently, even in the training data, high-
lighting challenges related to the generalizability of this ap-
proach. Furthermore, the reconstruction error varies consid-
erably across different bearings, despite operating under sim-
ilar conditions. This results in varying HI values, making it
difficult to establish a reliable correlation between these val-
ues and the actual state of bearing health.

Figure 5 presents the HI estimates using the SR-CAE method.
This is an alternative approach to enforce monotonicity by
regularizing the loss function. In this method, the influences
of both the reconstruction and the soft-rank losses on the gra-
dients of the CAE architecture are equally weighted, with the
hyperparameter ↼ set to 1 in Eq. (9). Although this method
demonstrates much improved monotonic degradation behav-
ior, there remains considerable variation in HI values between
different bearings. Notably, even in the training sets, sub-
stantial differences are observed at both the beginning of the
operation and near the failure points.

In the CCAE method, different rescale factors are applied to
the constraints: [1.25, 1.5] for the monotonicity constraint,
1.5 for the energy-HI consistency constraint and 2.0 for both
the upper and lower HI boundary constraints. Prioritizing
boundary constraints ensures that the predicted HI values re-
main within the interval [0, 1]. Lowering the priority on
boundary constraints increases the chances that the predic-
tions fall outside of this range. The HI estimates based on
CCAE provide several advantages over the baseline meth-
ods, as shown in Figure 6. It produces a smoother degra-
dation profile, indicating a more consistent decline in bearing
health over time. The HI values range from 1 (indicating a
fully healthy state) to 0 (indicating complete failure), which
aligns well with the expected physical degradation process. In
addition, the degradation curves correspond to typical bear-
ing degradation, exhibiting a steady decline during the ini-
tial phase followed by rapid deterioration as the bearing ap-
proaches failure. As a result, the CCAE approach provides
a more accurate and reliable representation of bearing health
compared to the baseline methods.
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Figure 4. Standard CAE based HI estimates for condition 3 pronostia bearings.

Figure 5. SR-CAE based HI estimates for condition 3 pronostia bearings.

Figure 6. CCAE based HI estimates for condition 3 pronostia bearings.
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4.2. Comparison of Standard CAE and CCAE Methods

The standard CAE model is trained using the initial 10%
of the training bearing data, which roughly represents the
healthy phase of the bearing operation. During this phase,
the model reconstruction error is close to zero. However, as
the bearing operation time increases, the reconstruction er-
ror increases, indicating a degradation in bearing health and a
progression towards failure.

Table 5 presents the performance comparison between the
standard CAE and the proposed CCAE method across all
Pronostia training and test bearings. The CCAE method
shows significant improvements, over 76% in trendability and
consistency, and nearly 65% in robustness, when averaged
across all bearings. These results indicate that CCAE more
effectively captures the underlying degradation trends, pro-
viding robust, consistent, and repeatable HI estimates over
time. In some cases, while the standard CAE method might
yield superior results, these observations may not fully cap-
ture the overall performance of the method. Specifically, for
Bearing 2 3, the trendability metric value for the standard
CAE method is ↔0.732, which is significantly lower than the
↔0.092 obtained for CCAE. Although this value suggests a
better decreasing correlation of HI with time, the HI value ac-
tually increases as the bearing approaches failure, contradict-
ing the expected full-run decreasing trend, as depicted in Fig-
ure 7. In contrast, the CCAE method, despite having a lower
trendability metric, accurately reflects the expected decrease
in HI values as the bearing approaches failure, as shown in
Figure 8. In addition, for Bearing 2 3 the HI value for the
healthiest condition is close to ↔50, approximately 2500 sec-
onds into its operation, and at the end. In contrast, Bear-
ing 2 5 approaches an HI value of ↔50 near failure. This in-
consistency, where one bearing’s healthiest HI value is close
to another bearing’s failure point, underscores the challenge
of obtaining a generally representative HI estimates using the
standard CAE method.

Figure 7. Standard CAE based HI estimates for Bearing 2 3
and Bearing 2 5.

Further insights into performance discrepancies are provided
by examining bearings from condition 1 in figures 9 and 10.
Figure 3 shows that Bearing 1 3 experiences significant en-
ergy fluctuations after 16,000 seconds. These fluctuations are
reflected in the HI estimates of both methods. However, in
the case of standard CAE, the HI values increase as the fail-

Figure 8. CCAE based HI estimates for Bearing 2 3 and
Bearing 2 5.

ure approach, contrary to expectations of a decreasing trend.
However, CCAE minimizes these fluctuations and maintains
HI values that align with the expected degradation trajec-
tory. For Bearing 1 7, the trendability metric for the standard
CAE HI estimation approach achieves ↔0.610, outperform-
ing the CCAE score of 0.339. Despite this higher trendability
score for CCAE, a notable advantage is that its HI values are
bounded within a range of 0 to 1, providing a more inter-
pretable measure of health status.

Figure 9. Standard CAE based HI estimates for Bearing 1 3
and Bearing 1 7.

Figure 10. CCAE based HI estimates for Bearing 1 3 and
Bearing 1 7.

Table 6 shows the same comparison of standard CAE and
CCAE methods for the XJTU-SY dataset. Here, CCAE out-
performs the standard CAE with even larger margins: more
than 86% improvement in trendability and consistency, and
up to 100% in robustness. These results highlight CCAE’s
superior performance on this dataset, further confirming its
ability to generate reliable and consistent HI estimates across
different operational conditions and bearing failure modes.

In general, the CCAE method improves on the standard CAE
HI estimation approach by providing more consistent HI es-
timates. It is generalizable and robust, handling noisy and
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Table 5. Performance comparison of standard CAE and CCAE-based HI estimation across all pronostia bearings. Shaded rows
indicate training bearings; unshaded rows represent testing bearings.

Bearings Standard CAE based HI Estimation CCAE based HI Estimation
Trendability Robustness Consistency Trendability Robustness Consistency

Bearing 1 1 ↔0.180± 0.026 0.954± 0.001 0.985± 0.012 →0.991± 0.005 0.946± 0.003 0.921± 0.070
Bearing 1 2 ↔0.464± 0.055 0.940± 0.003 0.877± 0.101 →0.963± 0.019 0.941± 0.005 0.723± 0.244
Bearing 1 3 0.324± 0.027 0.936± 0.003 0.691± 0.199 →0.392± 0.394 0.946± 0.016 0.856± 0.091
Bearing 1 4 ↔0.772± 0.020 0.942± 0.001 0.929± 0.056 →0.785± 0.109 0.948± 0.016 0.814± 0.147
Bearing 1 5 0.597± 0.077 0.972± 0.002 0.772± 0.171 0.316± 0.247 0.946± 0.006 0.922± 0.073
Bearing 1 6 0.446± 0.117 0.916± 0.004 0.883± 0.089 0.157± 0.227 0.922± 0.009 0.938± 0.059
Bearing 1 7 →0.629± 0.121 0.966± 0.002 0.899± 0.083 0.339± 0.248 0.948± 0.004 0.949± 0.046

Bearing 2 1 ↔0.568± 0.004 0.927± 0.001 0.915± 0.025 →0.983± 0.000 0.943± 0.004 0.922± 0.070
Bearing 2 2 0.397± 0.030 0.948± 0.002 0.944± 0.025 →0.981± 0.001 0.949± 0.006 0.959± 0.040
Bearing 2 3 →0.732± 0.005 0.975± 0.008 0.602± 0.224 ↔0.092± 0.337 0.879± 0.091 0.743± 0.184
Bearing 2 4 0.381± 0.108 0.926± 0.002 0.816± 0.208 →0.665± 0.143 0.930± 0.008 0.937± 0.066
Bearing 2 5 →0.856± 0.051 0.921± 0.002 0.850± 0.142 ↔0.054± 0.488 0.874± 0.034 0.896± 0.082
Bearing 2 6 0.683± 0.016 0.915± 0.005 0.864± 0.117 →0.220± 0.462 0.917± 0.009 0.907± 0.083
Bearing 2 7 ↔0.472± 0.027 0.846± 0.009 0.507± 0.346 →0.506± 0.320 0.879± 0.107 0.600± 0.365

Bearing 3 1 ↔0.134± 0.088 0.930± 0.004 0.533± 0.343 →0.947± 0.009 0.938± 0.005 0.946± 0.057
Bearing 3 2 ↔0.565± 0.078 0.925± 0.003 0.982± 0.012 →0.955± 0.008 0.943± 0.004 0.956± 0.045
Bearing 3 3 →0.737± 0.045 0.966± 0.001 0.850± 0.102 ↔0.599± 0.127 0.918± 0.013 0.852± 0.143

Table 6. Performance comparison of standard CAE and CCAE-based HI estimation across all XJTU-SY bearings. Shaded rows
indicate training bearings; unshaded rows represent testing bearings.

Bearings Standard CAE based HI Estimation CCAE based HI Estimation
Trendability Robustness Consistency Trendability Robustness Consistency

Bearing 1 2 ↔0.232± 0.190 0.573± 0.041 0.962± 0.026 →0.892± 0.102 0.931± 0.008 0.963± 0.035
Bearing 1 4 ↔0.828± 0.039 0.750± 0.064 0.851± 0.106 →0.915± 0.084 0.935± 0.006 0.923± 0.068
Bearing 1 1 0.181± 0.397 0.673± 0.082 0.852± 0.110 →0.417± 0.307 0.891± 0.033 0.824± 0.139
Bearing 1 3 0.615± 0.170 0.726± 0.056 0.823± 0.079 →0.004± 0.471 0.895± 0.031 0.866± 0.130
Bearing 1 5 0.742± 0.245 0.704± 0.085 0.770± 0.098 →0.380± 0.280 0.911± 0.020 0.645± 0.273

Bearing 2 1 ↔0.034± 0.117 0.463± 0.054 0.895± 0.086 →0.838± 0.021 0.970± 0.004 0.946± 0.064
Bearing 2 5 ↔0.105± 0.051 0.695± 0.048 0.737± 0.215 →0.902± 0.036 0.932± 0.006 0.935± 0.073
Bearing 2 2 →0.227± 0.241 0.742± 0.093 0.728± 0.203 ↔0.125± 0.412 0.928± 0.007 0.924± 0.049
Bearing 2 3 ↔0.089± 0.090 0.653± 0.114 0.774± 0.213 →0.135± 0.120 0.908± 0.012 0.938± 0.049
Bearing 2 4 0.145± 0.430 0.828± 0.048 0.554± 0.331 →0.120± 0.477 0.926± 0.021 0.769± 0.167

Bearing 3 2 ↔0.200± 0.332 0.521± 0.075 0.945± 0.046 →0.932± 0.036 0.940± 0.003 0.958± 0.039
Bearing 3 4 ↔0.148± 0.155 0.827± 0.088 0.866± 0.125 →0.937± 0.020 0.942± 0.009 0.967± 0.033
Bearing 3 1 0.365± 0.199 0.590± 0.108 0.857± 0.101 →0.139± 0.190 0.779± 0.131 0.905± 0.135
Bearing 3 3 0.002± 0.066 0.533± 0.089 0.833± 0.136 0.047± 0.211 0.799± 0.121 0.857± 0.178
Bearing 3 5 0.237± 0.220 0.541± 0.106 0.514± 0.359 0.184± 0.156 0.842± 0.104 0.590± 0.285
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unseen test data much better.

4.3. Comparison of Soft-Rank Loss Function based CAE
and CCAE Methods

Table 7 provides a detailed comparison of the performance of
the SR-CAE HI estimation method compared to the CCAE
method across all pronostia bearings. The results indicate that
the SR-CAE method surpasses the CCAE method in trend-
ability for nearly 95% of bearings. Conversely, the CCAE
method outperforms the SR-CAE method in robustness for
nearly 95% of the bearings and exhibits greater consistency
for nearly 90% of the bearings with a smaller overall variance.

The advantage of the SR-CAE method in trendability comes
from its objective function, which minimizes the reconstruc-
tion loss while enforcing a decreasing monotonicity in the HI
estimates without constraints, resulting in a more monotonic
degradation pattern. However, CCAE demonstrates superior
robustness and consistency, showing less variability in HI es-
timates. This suggests more stable degradation trends and
smoother transitions in HI values over time. Furthermore, for
multiple HI estimates, the results consistently provide stable
and replicable values.

Figure 11 provides a validation of these results. The im-
proved monotonicity of the HI values is notably apparent in
Bearing 2 3 when using the SR-CAE method, as opposed to
CCAE which was shown in Figure 8. However, significant
variability in HI values is observed in both Bearing 2 3 and
Bearing 2 5 along their lifetime with the SR-CAE method,
unlike the CCAE method which usually provided bounded
HI values between 0 and 1. Such disparities complicate the
generalizability of the SR-CAE method when compared to
the CCAE method.

Figure 11. SR-CAE based HI estimates for Bearing 2 3 and
Bearing 2 5.

Similarly, Table 8 shows the performance comparison be-
tween SR-CAE and CCAE for the XJTU-SY dataset.
SR-CAE again leads in trendability, outperforming CCAE
in over 86% of the bearings. However, CCAE exhibits supe-
rior robustness in all bearings and achieves better consistency
in over 93% of them, maintaining a lower overall variance.
These findings reinforce the strength of CCAE in generating
reliable and smooth HIs under varying conditions.

5. ABLATION STUDY

In this section, we analyze the effects of modifying various
aspects of the complete implementation of the CCAE method.
Specifically, we examine the impact of individual constraints
within the CCAE method, the influence of different constraint
rescale factors, and the effect of replacing the monotonicity
constraint with a soft-rank loss function in the CCAE method.
Given the consistent performance of CCAE across both bear-
ing datasets in earlier experiments, the ablation studies in this
section are conducted using only the pronostia dataset to en-
sure a clear and concise presentation.

5.1. Impact of Constraints on CCAE

In this section, we examine the impact of each constraint in
the CCAE implementation by systematically excluding one
constraint at a time and evaluating the resulting performance.
The experiments devised for this study are the following:

1. CCAE EB: The monotonicity constraint is excluded.
However, the energy-HI consistency and boundary con-
straints are retained, with rescale factors of 1.5 and 2.0,
respectively.

2. CCAE MB: The energy-HI consistency constraint is
excluded. However, monotonicity and boundary con-
straints are retained, with rescale factors of [1.25, 1.5]
and 2.0, respectively.

3. CCAE ME: The boundary constraints are excluded,
leaving only the monotonicity and energy-HI consistency
constraints in the CCAE method, with rescale factors of
[1.25, 1.5] and 1.5, respectively.

The results of this experiment, presented in Table 9, high-
light the importance of the different constraints in the CCAE
method. The monotonicity constraint significantly enhances
the trendability of the HI estimates, as its primary objective
is to enforce the progressive health degradation of the bear-
ings. The boundary constraint plays a crucial role in main-
taining the consistency of the HI estimates by ensuring that
they remain within the defined range of [0, 1], leading to reli-
able HI estimates across multiple experiments. Furthermore,
the energy-HI consistency constraint contributes to both ro-
bustness and consistency. Its formulation penalizes high fluc-
tuations in HI predictions that do not align with the energy
progression of the signal, thereby providing a smooth and re-
liable degradation trend over time.

These findings are further supported by the summarized re-
sults in Figure 12, which illustrates the average performance
across the three key metrics, trendability, robustness, and con-
sistency, when each constraint is individually removed from
the full CCAE model, resulting in a semi-constrained vari-
ant. The figure presents the performance difference (!) be-
tween the fully constrained CCAE and its semi-constrained
variants, where negative values indicate a drop in perfor-
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Table 7. Performance comparison of SR-CAE and CCAE-based HI estimation across all pronostia bearings. Shaded rows
indicate training bearings; unshaded rows represent testing bearings.

Bearings SR-CAE based HI Estimation CCAE based HI Estimation
Trendability Robustness Consistency Trendability Robustness Consistency

Bearing 1 1 →0.998± 0.000 0.895± 0.009 0.915± 0.047 ↔0.991± 0.005 0.946± 0.003 0.921± 0.070
Bearing 1 2 →0.989± 0.001 0.859± 0.021 0.860± 0.076 ↔0.963± 0.019 0.941± 0.005 0.723± 0.244
Bearing 1 3 →0.418± 0.147 0.906± 0.011 0.762± 0.113 ↔0.392± 0.394 0.946± 0.016 0.856± 0.091
Bearing 1 4 →0.921± 0.025 0.867± 0.047 0.844± 0.149 ↔0.785± 0.109 0.948± 0.016 0.814± 0.147
Bearing 1 5 →0.537± 0.174 0.552± 0.099 0.913± 0.067 0.316± 0.247 0.946± 0.006 0.922± 0.073
Bearing 1 6 →0.500± 0.130 0.812± 0.054 0.901± 0.114 0.157± 0.227 0.922± 0.009 0.938± 0.059
Bearing 1 7 →0.868± 0.021 0.636± 0.026 0.930± 0.055 0.339± 0.248 0.948± 0.004 0.949± 0.046

Bearing 2 1 →0.995± 0.001 0.896± 0.008 0.825± 0.113 ↔0.983± 0.000 0.943± 0.004 0.922± 0.070
Bearing 2 2 →0.997± 0.000 0.893± 0.005 0.917± 0.057 ↔0.981± 0.001 0.949± 0.006 0.959± 0.040
Bearing 2 3 →0.672± 0.054 0.938± 0.034 0.666± 0.201 ↔0.092± 0.337 0.879± 0.091 0.743± 0.184
Bearing 2 4 →0.839± 0.040 0.627± 0.048 0.789± 0.167 ↔0.665± 0.143 0.930± 0.008 0.937± 0.066
Bearing 2 5 0.009± 0.156 0.710± 0.086 0.878± 0.128 →0.054± 0.488 0.874± 0.037 0.896± 0.082
Bearing 2 6 →0.500± 0.201 0.774± 0.046 0.829± 0.161 ↔0.220± 0.462 0.917± 0.009 0.907± 0.083
Bearing 2 7 →0.803± 0.071 0.845± 0.112 0.423± 0.332 ↔0.506± 0.320 0.879± 0.107 0.600± 0.365

Bearing 3 1 →0.988± 0.002 0.805± 0.004 0.927± 0.032 ↔0.947± 0.009 0.938± 0.005 0.946± 0.057
Bearing 3 2 →0.995± 0.001 0.838± 0.012 0.932± 0.056 ↔0.955± 0.008 0.943± 0.004 0.956± 0.045
Bearing 3 3 →0.966± 0.005 0.884± 0.017 0.805± 0.135 ↔0.599± 0.127 0.918± 0.013 0.852± 0.143

Table 8. Performance comparison of SR-CAE and CCAE-based HI estimation across all XJTU-SY bearings. Shaded rows
indicate training bearings; unshaded rows represent testing bearings.

Bearings SR-CAE based HI Estimation CCAE based HI Estimation
Trendability Robustness Consistency Trendability Robustness Consistency

Bearing 1 2 →0.999± 0.000 0.923± 0.009 0.877± 0.064 ↔0.892± 0.102 0.931± 0.008 0.963± 0.035
Bearing 1 4 →0.998± 0.000 0.896± 0.013 0.801± 0.096 ↔0.915± 0.084 0.935± 0.006 0.923± 0.068
Bearing 1 1 →0.742± 0.086 0.855± 0.053 0.816± 0.133 ↔0.417± 0.307 0.891± 0.033 0.824± 0.139
Bearing 1 3 →0.797± 0.068 0.845± 0.043 0.821± 0.210 ↔0.004± 0.471 0.895± 0.031 0.866± 0.130
Bearing 1 5 →0.606± 0.131 0.832± 0.041 0.718± 0.219 ↔0.380± 0.280 0.911± 0.020 0.645± 0.273

Bearing 2 1 →0.962± 0.004 0.745± 0.031 0.894± 0.076 ↔0.838± 0.021 0.970± 0.004 0.946± 0.064
Bearing 2 5 →0.980± 0.007 0.816± 0.027 0.868± 0.076 ↔0.902± 0.036 0.932± 0.006 0.935± 0.073
Bearing 2 2 →0.211± 0.242 0.809± 0.059 0.839± 0.184 ↔0.125± 0.412 0.928± 0.007 0.924± 0.049
Bearing 2 3 →0.203± 0.145 0.773± 0.082 0.844± 0.118 ↔0.135± 0.120 0.908± 0.012 0.938± 0.049
Bearing 2 4 0.084± 0.299 0.711± 0.112 0.710± 0.252 →0.120± 0.477 0.926± 0.021 0.769± 0.167

Bearing 3 2 →0.941± 0.007 0.704± 0.016 0.943± 0.029 ↔0.932± 0.036 0.940± 0.003 0.958± 0.039
Bearing 3 4 ↔0.925± 0.006 0.893± 0.072 0.945± 0.038 →0.937± 0.020 0.942± 0.009 0.967± 0.033
Bearing 3 1 →0.332± 0.146 0.760± 0.079 0.813± 0.102 ↔0.139± 0.190 0.779± 0.131 0.905± 0.135
Bearing 3 3 →0.159± 0.116 0.796± 0.112 0.454± 0.305 0.047± 0.211 0.799± 0.121 0.857± 0.178
Bearing 3 5 →0.227± 0.444 0.665± 0.031 0.475± 0.318 0.184± 0.156 0.842± 0.104 0.590± 0.285
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Table 9. Impact of constraints on CCAE performance on all pronostia bearings. Shaded rows indicate training bearings;
unshaded rows represent testing bearings.

Bearings
CCAE EB CCAE MB CCAE ME

Trendability Robustness Consistency Trendability Robustness Consistency Trendability Robustness Consistency

Bearing 1 1 ↔0.523± 0.075 0.923± 0.005 0.995± 0.004 ↔0.985± 0.003 0.904± 0.012 0.958± 0.036 →0.994± 0.002 0.991± 0.001 0.862± 0.087

Bearing 1 2 ↔0.557± 0.054 0.930± 0.009 0.877± 0.147 ↔0.876± 0.027 0.915± 0.006 0.935± 0.060 →0.966± 0.011 0.988± 0.002 0.495± 0.293

Bearing 1 3 ↔0.188± 0.320 0.875± 0.131 0.814± 0.112 →0.775± 0.205 0.923± 0.020 0.911± 0.052 ↔0.064± 0.300 0.956± 0.011 0.909± 0.069

Bearing 1 4 ↔0.704± 0.133 0.909± 0.027 0.855± 0.107 →0.710± 0.224 0.950± 0.010 0.895± 0.072 ↔0.629± 0.177 0.972± 0.005 0.862± 0.090

Bearing 1 5 0.230± 0.240 0.918± 0.020 0.864± 0.187 →0.237± 0.228 0.934± 0.011 0.864± 0.142 ↔0.046± 0.296 0.974± 0.005 0.838± 0.140

Bearing 1 6 0.034± 0.153 0.892± 0.017 0.927± 0.082 →0.433± 0.142 0.896± 0.031 0.860± 0.167 0.028± 0.123 0.968± 0.007 0.833± 0.181

Bearing 1 7 0.407± 0.172 0.923± 0.010 0.939± 0.062 →0.658± 0.204 0.935± 0.011 0.907± 0.075 ↔0.143± 0.388 0.973± 0.004 0.929± 0.055

Bearing 2 1 ↔0.622± 0.060 0.897± 0.006 0.993± 0.005 →0.991± 0.002 0.937± 0.005 0.868± 0.128 ↔0.983± 0.003 0.975± 0.004 0.671± 0.224

Bearing 2 2 ↔0.598± 0.045 0.900± 0.006 0.992± 0.005 →0.995± 0.001 0.944± 0.009 0.901± 0.093 ↔0.987± 0.005 0.977± 0.006 0.863± 0.123

Bearing 2 3 ↔0.264± 0.308 0.817± 0.169 0.747± 0.168 →0.402± 0.192 0.858± 0.097 0.652± 0.197 ↔0.323± 0.201 0.853± 0.100 0.682± 0.191

Bearing 2 4 ↔0.638± 0.377 0.905± 0.027 0.893± 0.076 ↔0.715± 0.186 0.925± 0.011 0.746± 0.254 →0.765± 0.120 0.942± 0.012 0.732± 0.230

Bearing 2 5 0.166± 0.306 0.808± 0.080 0.918± 0.084 →0.180± 0.283 0.869± 0.044 0.864± 0.127 ↔0.130± 0.318 0.916± 0.045 0.856± 0.139

Bearing 2 6 ↔0.168± 0.322 0.883± 0.025 0.899± 0.104 ↔0.387± 0.287 0.905± 0.014 0.847± 0.139 →0.571± 0.211 0.937± 0.008 0.923± 0.081

Bearing 2 7 ↔0.486± 0.234 0.882± 0.080 0.563± 0.287 →0.611± 0.262 0.841± 0.127 0.393± 0.410 ↔0.518± 0.277 0.892± 0.088 0.474± 0.353

Bearing 3 1 ↔0.484± 0.038 0.915± 0.011 0.969± 0.033 →0.981± 0.003 0.932± 0.006 0.945± 0.046 ↔0.959± 0.008 0.983± 0.003 0.904± 0.104

Bearing 3 2 ↔0.496± 0.027 0.917± 0.003 0.992± 0.006 →0.991± 0.002 0.951± 0.006 0.923± 0.063 ↔0.974± 0.003 0.986± 0.004 0.915± 0.062

Bearing 3 3 ↔0.234± 0.317 0.910± 0.016 0.898± 0.101 →0.769± 0.151 0.855± 0.030 0.949± 0.040 ↔0.673± 0.231 0.954± 0.012 0.928± 0.069

mance resulting from the removal of a specific constraint.
The results reveal that not every constraint contributes pos-
itively to all metrics. Specifically, the monotonicity con-
straint improves trendability and robustness, but enforcing
it across varying operational runs slightly degrades consis-
tency. In contrast, the boundary constraints positively influ-
ences trendability and consistency by keeping the HI values
within a valid range, though they may slightly reduce robust-
ness in trying to satisfy the bounds. The energy–HI consis-
tency constraint significantly enhances robustness and con-
sistency, but can negatively affect trendability since the en-
ergy progression does not always follow a strictly monotonic
decline. Overall, while these constraints are not fully com-
plementary, each plays a critical role in shaping meaningful,
stable, and interpretable HI estimates. Their combined effect
enables the CCAE framework to model bearing degradation
patterns more effectively with improved reliability and gen-
eralization.

5.2. Effects of Rescale Factors on CCAE

This section examines the impact of the selection of the
rescale factors on the performance of CCAE. The objective of
this experiment is to assess the stability of the CCAE method,
demonstrating that small changes to the rescale factors do
not lead to significant performance fluctuations. Building on
the results from Section 4.2, where the rescale factors [1.25,
1.5], 1.5, 2.0, and 2.0 (referred as RF C1) were applied to
the monotonicity, energy-HI consistency, upper and lower
boundary constraints, we conduct an additional experiment to
evaluate the effect of small variations in these factors. To this
end, we examine an alternative set of rescale factors: [1.05,
1.25], 1.25, 1.25, and 1.25 (referred as RF C2).

The results of this experiment, presented in Table 10, high-

Figure 12. Summary of the impact of individual constraints
on CCAE performance metrics.

light the performance differences of the CCAE method when
using different constraint rescale factors. The findings indi-
cate that in terms of trendability, RF C2 slightly outperforms
RF C1 in 58.82% of the bearings. Both models show min-
imal variability, with the largest observed differences being
↔0.322 ± 0.228 for RF C1 and ↔0.092 ± 0.337 for RF C2
in Bearing 2 3. When comparing robustness, RF C1 outper-
forms RF C2 in 58.82% of the bearings. This suggests a
slight overall advantage for RF C1. Furthermore, the vari-
ability between the models for robustness remains minimal,
with the largest differences being 0.922 ± 0.018 for RF C1
and 0.879 ± 0.107 for RF C2 in Bearing 2 7. In terms of
consistency, RF C2 demonstrates superior performance over
RF C1 in 64.71% of the bearings. This improvement is at-
tributed to the larger boundary constraint rescale factor used
in RF C2. The largest differences in consistency are observed
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in Bearing 1 6, where RF C1 achieves 0.839 ± 0.119 and
RF C2 has a value of 0.938± 0.059.

Overall, the results indicate that the performance of both ap-
proaches is comparable and that the method is not sensitive to
small changes in the rescale factors. In principle, the research
factors prioritize the constraints. For example, the constraints
with the highest rescale factor will be satisfied first. Hence,
they only need to define an order. Their exact value is not that
important. However, very large values might cause numerical
instabilities. Therefore, we recommend using rescale factors
in the range of [1, 2].

5.3. Soft Rank based CCAE

In this approach, the modification of CCAE involves replac-
ing the monotonic degradation constraint with a soft-ranking
in the loss function. The influence of the reconstruction and
the soft-rank losses on the gradients of the model architecture
are equally weighted, with a value of ↼ set to 1 in Eq. (9). In
addition, both the energy–HI consistency constraint and the
boundary constraints (upper and lower bounds) are retained,
with rescale factors set to 1.5 and 2.0, respectively. This ex-
periment investigates whether enforcing monotonic behavior
through the loss function yields different outcomes compared
to enforcing it as an explicit constraint.

Table 11 presents the performance comparison between the
soft-rank CCAE variant and the fully constrained CCAE
model across all bearings. The results indicate that the fully
constrained CCAE achieves slightly better performance in
trendability and consistency for approximately 53.3% of the
bearings. A more pronounced advantage is observed in ro-
bustness, where CCAE outperforms the soft-rank variant in
nearly 95% of the bearings, although the performance mar-
gins remain modest. Overall, the experimental findings sug-
gest that incorporating domain-specific behavior through ex-
plicit constraints leads to marginal but consistent improve-
ments over embedding the same behavior as a loss function.
However, when it is not feasible to encode domain knowl-
edge as a constraint, including it as a loss term still provides
a significant performance benefit over models that overlook
domain information entirely. Therefore, integrating domain
knowledge, whether as constraints or loss functions, during
training is crucial to fully leverage the predictive capabilities
of the model.

6. CONCLUSION

In conclusion, this study successfully demonstrates the poten-
tial of a constraint-guided DL framework, specifically CCAE,
to develop physically consistent health indicators for bearing
PHM. By incorporating domain knowledge through mono-
tonicity, boundary and energy-HI consistency constraints, the
CCAE addresses the limitations of conventional data-driven
methods. The experimental results show that CCAE is signif-

icantly better than the standard CAE, achieving 65% higher
robustness and 75% higher consistency. It also outperforms
the SR-CAE baseline with a 95% improvement in robust-
ness and a 90% improvement in consistency considering the
pronostia dataset. Although the SR-CAE method excels in
trendability metrics for 95% of bearings due to the explicit
use of monotonicity in model training, CCAE performs bet-
ter than CAE for 75% of the bearings. Even marginally bet-
ter results are also observed for other benchmark XJTU-SY
dataset. Moreover, the CCAE generates HI outputs that are
bounded within a specified range and reliably represent the
bearing’s health state. Its degradation profiles are smoother
and closely align with expected physical degradation pat-
terns, underscoring the value of incorporating domain knowl-
edge constraints. The ablation study further confirms that the
monotonicity constraint enhances trendability, the boundary
constraint ensures consistency, and the energy-HI consistency
constraint improves robustness. Furthermore, our findings in-
dicate that minor changes in the rescale factor of these con-
straints do not substantially affect the performance of CCAE.
These findings underscore the potential of employing repre-
sentative constraints in the proposed DL framework to gen-
erate reliable bearing HIs. Future research could explore the
potential for further increase in framework performance by
incorporating additional domain-specific constraints, investi-
gate its application to other areas with tailored domain con-
straints, and examine its potential for RUL prediction. In ad-
dition, integrating feature attribution methods could enhance
interpretability by identifying which input components influ-
ence the learned HIs. This approach could also be extended
to handle more complex degradation scenarios, building on
the methodology presented here. Overall, this research offers
a promising direction for future prognostic applications, im-
proving the reliability and effectiveness of asset health man-
agement strategies.

REFERENCES

Biggio, L., & Kastanis, I. (2020). Prognostics and health
management of industrial assets: Current progress and
road ahead. Frontiers in Artificial Intelligence, 3,
578613.

Blondel, M., Teboul, O., Berthet, Q., & Djolonga, J. (2020).
Fast differentiable sorting and ranking. 37th Interna-
tional Conference on Machine Learning, ICML 2020,
PartF16814, 927–936.

Carino, J. A., Zurita, D., Delgado, M., Ortega, J. A., &
Romero-Troncoso, R. J. (2015). Remaining useful
life estimation of ball bearings by means of mono-
tonic score calibration. Proceedings of the IEEE Inter-
national Conference on Industrial Technology, 2015-
June, 1752–1758.

Chen, J., & Liu, Y. (2021). Probabilistic physics-guided ma-
chine learning for fatigue data analysis. Expert Systems

17



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Table 10. Effects of rescale factors on CCAE performance on all pronostia bearings. Shaded rows indicate training bearings;
unshaded rows represent testing bearings.

Bearings RF C1 RF C2
Trendability Robustness Consistency Trendability Robustness Consistency

Bearing 1 1 →0.993± 0.002 0.944± 0.004 0.908± 0.071 ↔0.991± 0.005 0.946± 0.003 0.921± 0.070
Bearing 1 2 →0.971± 0.008 0.940± 0.004 0.804± 0.111 ↔0.963± 0.019 0.941± 0.005 0.723± 0.244
Bearing 1 3 ↔0.313± 0.408 0.954± 0.006 0.864± 0.118 →0.392± 0.394 0.946± 0.016 0.856± 0.091
Bearing 1 4 ↔0.741± 0.188 0.952± 0.007 0.878± 0.093 →0.785± 0.109 0.948± 0.016 0.814± 0.147
Bearing 1 5 0.331± 0.146 0.948± 0.006 0.946± 0.056 0.316± 0.247 0.946± 0.006 0.922± 0.073
Bearing 1 6 0.108± 0.146 0.925± 0.017 0.839± 0.119 0.157± 0.227 0.922± 0.009 0.938± 0.059
Bearing 1 7 0.359± 0.148 0.950± 0.005 0.920± 0.073 0.339± 0.248 0.948± 0.004 0.949± 0.046

Bearing 2 1 →0.984± 0.002 0.939± 0.005 0.936± 0.078 ↔0.983± 0.000 0.943± 0.004 0.922± 0.070
Bearing 2 2 ↔0.981± 0.005 0.942± 0.003 0.950± 0.038 →0.981± 0.001 0.949± 0.006 0.959± 0.040
Bearing 2 3 →0.322± 0.228 0.917± 0.017 0.737± 0.177 ↔0.092± 0.337 0.879± 0.091 0.743± 0.184
Bearing 2 4 ↔0.640± 0.211 0.924± 0.009 0.850± 0.168 →0.665± 0.143 0.930± 0.008 0.937± 0.066
Bearing 2 5 →0.165± 0.351 0.871± 0.030 0.886± 0.100 ↔0.054± 0.488 0.874± 0.037 0.896± 0.082
Bearing 2 6 ↔0.035± 0.291 0.919± 0.006 0.879± 0.147 →0.220± 0.462 0.917± 0.009 0.907± 0.083
Bearing 2 7 ↔0.474± 0.267 0.922± 0.018 0.553± 0.324 →0.506± 0.320 0.879± 0.107 0.600± 0.365

Bearing 3 1 →0.948± 0.010 0.941± 0.009 0.936± 0.063 ↔0.947± 0.009 0.938± 0.005 0.946± 0.057
Bearing 3 2 ↔0.948± 0.013 0.942± 0.005 0.938± 0.051 →0.955± 0.008 0.943± 0.004 0.956± 0.045
Bearing 3 3 ↔0.554± 0.229 0.922± 0.009 0.925± 0.063 →0.599± 0.127 0.918± 0.013 0.852± 0.143

Table 11. Soft Rank CCAE Vs. CCAE based performance evaluations on all pronostia bearings. Shaded rows indicate training
bearings; unshaded rows represent testing bearings.

Bearings Soft Rank CCAE based HI Estimation CCAE based HI Estimation
Trendability Robustness Consistency Trendability Robustness Consistency

Bearing 1 1 ↔0.893± 0.031 0.909± 0.003 0.978± 0.020 →0.991± 0.005 0.946± 0.003 0.921± 0.070
Bearing 1 2 ↔0.959± 0.006 0.898± 0.018 0.783± 0.014 →0.963± 0.019 0.941± 0.005 0.723± 0.244
Bearing 1 3 ↔0.298± 0.066 0.846± 0.025 0.849± 0.017 →0.392± 0.394 0.946± 0.016 0.856± 0.091
Bearing 1 4 →0.838± 0.090 0.825± 0.072 0.835± 0.045 ↔0.785± 0.109 0.948± 0.016 0.814± 0.147
Bearing 1 5 0.258± 0.105 0.928± 0.014 0.906± 0.081 0.316± 0.247 0.946± 0.006 0.922± 0.073
Bearing 1 6 0.161± 0.062 0.908± 0.022 0.922± 0.046 0.157± 0.227 0.922± 0.009 0.938± 0.059
Bearing 1 7 0.232± 0.048 0.901± 0.019 0.937± 0.064 0.339± 0.248 0.948± 0.004 0.949± 0.046

Bearing 2 1 ↔0.905± 0.040 0.842± 0.025 0.917± 0.018 →0.983± 0.000 0.943± 0.004 0.922± 0.070
Bearing 2 2 ↔0.950± 0.052 0.887± 0.012 0.972± 0.006 →0.981± 0.001 0.949± 0.006 0.959± 0.040
Bearing 2 3 →0.172± 0.083 0.859± 0.016 0.862± 0.035 ↔0.092± 0.337 0.879± 0.091 0.743± 0.184
Bearing 2 4 ↔0.627± 0.206 0.869± 0.015 0.929± 0.048 →0.665± 0.143 0.930± 0.008 0.937± 0.066
Bearing 2 5 →0.138± 0.153 0.817± 0.039 0.863± 0.035 ↔0.054± 0.488 0.874± 0.037 0.896± 0.082
Bearing 2 6 →0.278± 0.177 0.856± 0.027 0.832± 0.163 ↔0.220± 0.462 0.917± 0.009 0.907± 0.083
Bearing 2 7 ↔0.480± 0.140 0.887± 0.009 0.716± 0.074 →0.506± 0.320 0.879± 0.107 0.600± 0.365

Bearing 3 1 →0.964± 0.003 0.893± 0.022 0.932± 0.026 ↔0.947± 0.009 0.938± 0.005 0.946± 0.057
Bearing 3 2 ↔0.914± 0.042 0.888± 0.009 0.963± 0.006 →0.955± 0.008 0.943± 0.004 0.956± 0.045
Bearing 3 3 →0.670± 0.134 0.910± 0.067 0.841± 0.038 ↔0.599± 0.127 0.918± 0.013 0.852± 0.143
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