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ABSTRACT 

Bearing fault diagnosis and prognosis are crucial for the 
effective management of industrial equipment. Due to the 
automatic feature extraction of Deep Learning (DL) models, 
many recent studies have focused on using DL for these tasks. 
However, most studies address only one of these tasks. This 
study aims to present DL models and their powerful ML tools 
capable of both fault diagnosis and prognosis on industrial 
equipment. To identify the best DL model for both tasks, a 
comparative study is conducted on various DL models and 
ML tools, including Convolutional Neural Network (CNN), 
Long Short-Term Memory (LSTM), CNN in parallel with 
LSTM (CNN-LSTM), Bidirectional LSTM (Bi-LSTM), and 
transformer models. The ML tools investigated include 
Recurrent Dropout, Residual Network (ResNet), and Monte 
Carlo Dropout (MC Dropout). These models are validated 
using online datasets from Case Western Reserve University 
(CWRU) and Xi’an Jiao Tong University (XJTU-SY) for the 
task of fault diagnosis. For fault prognosis, datasets from 
XJTU-SY and IEEE PHM are used. The results demonstrate 
the superiority of the ResCNN-LSTM model in both fault 
diagnosis and prognosis tasks. It achieves prediction 
accuracy of 99.87% and 96.39% and F1-scores of 0.998 and 
0.964 for fault diagnosis on the CWRU and XJTU-SY 
datasets, respectively. Additionally, it shows a Root Mean 
Square Error (RMSE) of 8.56 and Mean Absolute Error 
(MAE) of 12.16 for fault prognosis on the XJTU dataset, and 
an RMSE of 12.18 using the IEEE PHM bearing dataset. 
These high performance metrics indicate the model's 
effectiveness in accurately diagnosing faults and predicting 
failures. 

1. INTRODUCTION 

Bearings are among the most common and crucial parts in 
industrial equipment, and the ability to monitor bearing 
health is essential to ensure safety and minimize maintenance 
costs of industrial equipment. Fault diagnosis and prognosis 
of bearings are fundamental aspects of bearing condition 
monitoring, where fault diagnosis determines the locations 
and types of faults, and fault prognosis predicts the 
Remaining Useful Life (RUL) of the bearing (Howard, 1994; 
Lee & Su, 2024; Qiao et al., 2024; Su & Lee, 2024b). 
Traditional model-based approaches often rely on 
interpretations of physical laws, which usually fail to capture 
the behaviors of complex systems. In contrast, Machine 
Learning (ML) is a better alternative, which classifies and 
predicts bearing health states based on historical data 
(Berghout & Benbouzid, 2022), and Deep Learning (DL) is a 
field within ML that has gained increasing popularity in 
recent years due to its automatic feature extraction.  

In the field of fault diagnosis, several DL models have been 
proposed and modified to enhance the extraction of high-
quality features, thereby improving the prediction accuracy. 
Inspired by the improved prediction accuracy of Convolution 
Neural Network (CNN)  in fruit classification and fruit 
quality detection(Naranjo-Torres et al., 2020), Hoang et al. 
(Hoang & Kang, 2019) proposed Vibration Image CNN (VI-
CNN) to capture the spatial features for the vibration signals. 
This proposed VI-CNN model attained a remarkable 
prediction accuracy of 100% on the CWRU dataset. 
Furthermore, some neural networks have been added to 
enhance the prediction performance of CNN models. On the 
one hand, an ensemble of Residual Networks (ResNet) was 
proposed by Kaiming et al. (He et al., 2016) achieved a 
remarkable prediction accuracy of 96.43% on the ImageNet 
test set, securing first place at ILSVRC 2015. Su et al. (Su & 
Lee, 2024a) proposed a residual-based deep CNN (ResCNN) 
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to predict degradation level, achieving scores of 574/813 
using the PHM North America 2023 Conference Data 
Challenge. Long et al. (Wen et al., 2020) advocated the use 
of Transfer CNN (TCNN) with ResNet-50, which exhibited 
prediction accuracies as high as 98.95% for the CWRU 
bearing dataset. On the other hand, the integration of Long 
Shot Term Memory (LSTM) with CNN aimed to extract both 
spatial-temporal features to enhance predictive performance. 
For instance, Chen et al. (Chen et al., 2021) proposed a Multi-
Scale CNN-LSTM (MSCNN-LSTM) model to predict, and 
compared its efficiency with the Support Vector Machine 
(SVM), K-Nearest Neighbour (KNN), Artificial Neural 
Network (ANN), and LSTM. These models were tested using 
the CWRU bearing dataset to categorize bearing fault type. 
Results indicated that the MSCNN-LSTM model achieved a 
prediction accuracy of 98.6%. In addition, the Bidirectional 
LSTM (Bi-LSTM), an LSTM variant, integrated with CNN 
was proposed by You et al. (You et al., 2021), to extract the 
bidirectional temporal feature and spatial features. The 
proposed CNN-Bi-LSTM model achieved a prediction 
accuracy of 99.2%. 
In the field of fault prognosis, various DL models have been 
proposed and modified to enhance the extraction of high-
quality features, thereby improving the prediction accuracy 
of RUL. Bingxi Zhao et al. (B. Zhao & Yuan, 2021) 
introduced Deep CNN (DCNN) to extract spatial features on 
the XJTU-SY bearing dataset. While CNN adepts at 
capturing spatial features within time series data but still 
often struggles to establish temporal dependencies. In order 
to address this limitation, Maan and Harsha et al. (Rathore & 
Harsha, 2022) used LSTM, Stacked LSTM, Bi-LSTM, and 
Bi-LSTM with self-attention mechanism for fault prognosis 
on self-collected bearing data. As a result, Bi-LSTM models 
performed better than LSTM models, and Bi-LSTM with 
self-attention mechanism achieved lowest Mean Absolute 
Error (MAE) of 0.0176, and Root Mean Square Error 
(RMSE) of 0.0209. Several methods are proposed to further 
improve the performance of the LSTM network.  On the one 
hand, Xin Guo et al. (Guo et al., 2023) proposed CNN-
Transformer to enhance its ability to improve the long-term 
temporal features extraction, achieving RMSE of 0.105 and 
MAE of 0.074. On the other hand, Brain Walker et al. 
(Walker, n.d.) combined the advantage of MSCNN and 
LSTM, proposing the Hybrid CNN and LSTM (MSCNN-
LSTM) model to capture the spatial-temporal features to 
enhance the features' quality. This model achieved an RMSE 
of 0.0645 using the XJTU-SY bearing dataset. In addition, 
the Monte Carlo dropout (MC dropout) technique is applied 
by Jinsong Yang (Yang et al., 2022) to randomly dropout the 
neurons in LSTM for predicting the probability distribution 
of RUL. This approach resulted in a 36% improvement 
compared to LSTM in bearing RUL prediction. 

Despite the proposals of various DL models, such as CNN, 
LSTM, CNN-LSTM, transformer along with powerful ML 
tools such as ResNet, dropout, and Monte Carlo Dropout 

(MC dropout), the prediction performance of DL models and 
the ML tools for both effective fault diagnosis and prognosis 
in industrial equipment remains uncertain. However, in 
complex machinery systems, such as those in the aerospace 
industry, merely detecting the fault location and mode, or 
predicting the remaining useful life (RUL) of a failure, is 
insufficient for conducting efficient maintenance with the 
lowest maintenance costs. Therefore, this study aims to find 
optimized DL models in both tasks by comprehensively 
comparing these DL models and ML tools based on their 
prediction accuracy using the CWRU bearing dataset for fault 
diagnosis and the XJTU-SY dataset for fault prognosis. 
Specifically, this paper is organized as follows: Section 2 
outlines the architectures of RUL prediction and introduces 
the DL models and the ML tools in detail. Section 3 
delineates datasets and the results of DL models and ML tools 
across various tasks. Section 4 synthesizes the findings 
discussed in this paper. 

2. METHODOLOGY 

This section introduces the framework for fault diagnosis and 
prognosis used in this study and explains the working 
principle of the DL models discussed in this study. Section 
2.1 and Section 2.2 introduce the full framework and the 
structures of DL models, respectively.  

2.1. Framework for Fault Diagnosis and Prognosis  

The flowchart consists of data pre-processing, model 
training, and model testing, illustrated in the Figure 1. The 
data pre-processing phase involves removing outliers, and 
normalizing data within the range of 0 to 1 to facilitate rapid 
convergence in subsequent processes. Subsequently, five-
fold cross-validation techniques involve splitting the data 
into K equally sized folds or subsets. The model is trained on 
K-1 folds and tested on the remaining fold. This process is 
repeated K times, with each fold used as a test set once, to 
mitigate overfitting and strive for optimal model 
performance. In the training process of five-fold cross-
validation, the training dataset is further split into training 
data and validation data. The training data is utilized for 
model training, the validation data aids in predicting targets 
and recording losses, and the results are juxtaposed with 
those from the training data to identify overfitting or 
underfitting instances. This training process stops until the 
overfitting happens. Finally, the test data is utilized to 
evaluate the trained model’s performance. 

2.2. Deep Learning (DL) Model  

2.2.1. Convolution Neural Network (CNN) model 

CNN was initially developed for image processing but has 
found versatile applications in processing complex data. A 
standard CNN comprises convolutional and pooling layers as 
features extraction, also referred to as sub-sampling layers,  
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Figure 1. Flowchart of the proposed methodology. 

 
Figure 2.  Overview of the CNN model for fault diagnosis 

and fault prognosis. 

where the outputs are subsequently forwarded to a classifier 
or regressor, as illustrated in Figure 2 (Z. Li et al., 2022). 
Specifically, Convolutional layers employ sets of kernels as 

filters to extract features, while pooling layers down-sample 
the extracted features to decrease computational complexity 
and mitigate overfitting. The classifier and regressor are the 
downstream task for fault diagnosis and prognosis, typically 
implemented as one-layer linear neural networks. 

2.2.2. Long Short-Term Memory (LSTM) model 

LSTM, an enhanced Recurrent Neural Network (RNN), 
mitigates the challenges of exploding and vanishing gradient 
prevalent in traditional RNNs. Mainly employed for time-
series data analysis, LSTM excels at capturing sequential 
dependencies by retaining and processing information from 
past inputs across extended sequences, followed by 
downstream tasks of fault diagnosis and prognosis similarly 
depicted in Figure 3 (Berghout & Benbouzid, 2022; C. Zhao 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

4 

et al., 2020). LSTM leverages a gate mechanism comprising 
forget, input, and output gates to manage the flow and 
retention of features, making it particularly adept at handling 
long time series data compared to RNN. The architecture of 
a typical LSTM cell is depicted in Figure 3. Within an LSTM 
cell, the hidden ℎ𝑡−1 and cell states 𝑐𝑡−1 from the preceding 
cell are merged with the current input 𝑥𝑡  to compute the 
present cell state ℎ𝑡 and hidden state 𝑐𝑡, which also serves as 
the current output. Activation functions 𝑡𝑎𝑛ℎ, in conjunction 
with learned weights and biases, are employed to govern the 
information flow within the cell. 

Furthermore, the Bi-LSTM network is proposed to extract the 
temporal bi-features from both the past and the future, while 
the LSTM network extracts temporal features only from the 
past. A typical Bi-LSTM is shown in Figure 4. 

2.2.3. Hybrid Convolution Neural Network and Long 
Short-Term Memory (CNN-LSTM) 

 
Figure 3.  Structure of one LSTM Cell. (Berghout & 

Benbouzid, 2022; C. Zhao et al., 2020) 

 
Figure 4. Academic diagram of the Bi-LSTM. 

By amalgamating the strengths of the CNN model in 
capturing spatial features and the LSTM model in capturing 
temporal features, the CNN-LSTM model effectively 
processes time series data, concurrently handling and 
merging the extracted features for fault diagnosis or 
prognosis. 

2.2.4. ML tools 

Apart from the predominantly utilized DL models, various 
ML tools are also leveraged to boost the efficacy of DL 
models. One ML tool is the Residual Network (ResNet) 
introduced by Kaiming et al. (Hoang & Kang, 2019) to avoid 
the challenges of gradient vanishing or exploring that arise 
with the addition of more neural layers. With an escalation in 
the number of neural layers, DL models can extract high-
level features (C. Zhao et al., 2020). To counter this, a 
residual connection is established by adding the input to the 
output within the block, as depicted in Figure 5.  

Another ML tool to boost the efficacy of DL models is the 
regularization technique, dropout. Semeniuta et al. (M. Li et 
al., 2019) proposed dropout techniques, which extend the 
dropout concept to Fully Connected Neural Networks 
(FCNNs). Dropout is a standard regularization technique 
used in FCNNs to prevent model overfitting, which works by 
setting a dropout rate to randomly dropout neurons in the 
hidden layers, as shown in Figure 6(b) to enhance the 
robustness of FCNNs. Moreover, Monte Carlo Dropout (MC 
dropout) has been proposed to estimate the uncertainty of DL 
models (Gal & Ghahramani, 2016; Wang et al., 2023). A 
CNN operates deterministically by optimizing a single set of 
fixed model parameters post-training. The output remains 
consistent when such a network is repeatedly evaluated with 
the same input. MC dropout addresses this limitation by 
repeatedly assessing a given input with the trained network, 
introducing dropout to the layers of the network in each 
iteration to attain the output distribution.  

This study delves into the examination of the CNN, LSTM, 
and CNN-LSTM models, along with ResNet and MC dropout. 

 
Figure 5. Structure of ResNet (Hoang & Kang, 2019) 

3. CASE STUDY 

In this article, the RTX 4070 Ti Super graphics card is 
employed to train the DL model, and PyTorch 2.2.0 is used 
for developing the DL framework. 

3.1. Data Description and Pre-processing 
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Figure 6. (a) Fully Connected Neural Network; (b) Fully Connected Neural Network with dropout. (M. Li et al., 2019) 

3.1.1. CWRU dataset 

The CWRU dataset does not contain a complete run-to-
failure dataset, it is used exclusively for fault diagnosis. The 
CWRU dataset is one of the most utilized datasets for this 
purpose, offering vibration signals of normal bearings and 
those with faults in the inner raceway, ball, and outer raceway 
under 3 motor load (Smith & Randall, 2015). Data are labeled 
according to health states and fault locations: 0 for Healthy, 
1 for Inner Race, 2 for Ball, and 3 for Outer Race, facilitating 
multiclass classification. There are three operating conditions 
with different motor loads, named HP0, HP1, and HP2. 
Subsequently, the max-min normalization is applied to range 
the data from 0 to 1, as described in Eq. (1). Finally, 1000, 
400, and 500 data are chosen randomly as training, 
validation, and testing data. 

𝑥∗ =
(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
 

(1) 

3.1.2. XJTU-SY dataset 

The XJTU-SY dataset includes run-to-failure horizontal and 
vertical vibration signals from 15 bearings under 3 different 
working conditions, as outlined in Table 1 (Yaguo et al., 
2019). This dataset is applicable for both fault prognosis and 
diagnosis tasks. For fault diagnosis, the vibration data are 
labeled based on the Fault Occurrence Time (FOT), 
calculated in (Wang et al., 2023) using the time-varying 3σ 
criterion on the Root Mean Squared (RMS) values of 
horizontal vibration signals. Data is labeled as healthy before 
reaching the FOT and as faulty after the FOT. For fault 
prognosis, the sliding window technique is employed for data 
sampling, as shown in Figure 7. This technique, used in 
computer science and signal processing, involves selecting a 
fixed-size subset or "window" from a larger dataset and 
moving this window through the dataset incrementally. The 
fixed-size subset is used as input, and the last value of this 
subset serves as the RUL label for DL model training. 

3.1.3. IEEE PHM Dataset 

The IEEE 2012 PHM bearing dataset is a collection of  

  
Operating 
condition 

Datasets Working 
life 

Fault 
Occurrence 
Time 

 
 
1 

Bearing 1_1 2 h, 3 min 78 min 
Bearing 1_2 2 h, 41 min 37 min 
Bearing 1_3 2 h, 38 min 59 min 
Bearing 1_4 2 h, 2 min 88 min 
Bearing 1_5 52 min 35 min 

 
 
2 

Bearing 2_1 8 h, 11 min 453 min 
Bearing 2_2 2 h, 41 min 47 min 
Bearing 2_3 8 h, 53 min 128 min 
Bearing 2_4 42 min 31 min 
Bearing 2_5 5 h, 39 min 1122 min 

 
 
3 

Bearing 3_1 42 h, 18 
min 

2341 min 

Bearing 3_2 41 h, 36 
min 

1232 min 

Bearing 3_3 6 h, 11 min 342 min 
Bearing 3_4 25 h, 15 

min 
1418 min 

Bearing 3_5 1 h, 54 min 21 min 

Table 1. Overview of XJTU-SY bearing dataset. 

 
Figure 7. Sliding window technique. 

experimental data from 17 ball bearings provided by the 
IEEE Reliability Society (Nectoux et al., 2012). The dataset 
consists of sets of six and 11 bearings used for training and 
testing purposes, respectively. The data were collected from 
an accelerated degradation test rig, shown in Figure 8, in 
which bearings were simultaneously tested until failure under 
constant radial load and rotational speed values. The bearings 
were tested for three distinct operating conditions: 
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• Condition 1: A rotational speed of 1,800 𝑟/𝑚𝑖𝑛 and a 
radial force of 4,000 𝑁, 

• Condition 2: A rotational speed of 1,650 𝑟/𝑚𝑖𝑛 and a 
radial force of 4,200 𝑁, 

• Condition 3: A rotational speed of 1,500 𝑟/𝑚𝑖𝑛 and a 
radial force of 5,000 𝑁. 

 
Figure 8. Photograph of the experimental platform used to 
investigate accelerated bearing degradation (Nectoux et al., 

2012). 

Datasets Operating Conditions 
Condition 1 Condition 2 Condition 3 

Training 
dataset 

Bearing 1_1 Bearing 2_1 Bearing 3_1 
Bearing 1_2 Bearing 2_2 Bearing 3_2 

 
 

Test 
dataset 

Bearing 1_3 Bearing 2_3 Bearing 3_3 
Bearing 1_4 Bearing 2_4  
Bearing 1_5 Bearing 2_5  
Bearing 1_6 Bearing 2_6  
Bearing 1_7 Bearing 2_7  

Table 2. Overview of the IEEE 2012 PHM bearing dataset. 

The experimental platform for the acceleration bearings 
included three parts: a rotary mechanism, a radial force 
generator, and data acquisition equipment. An AC motor 
applied rotational energy to the shaft, while a force actuator 
generated a force that acted on the bearing. At the 
measurement point, vibration signals along the vertical and 
horizontal axes and a temperature signal were collected using 
vibration and temperature sensors. The collected vibration 
and temperature data were then divided into 6 training and 11 
test datasets, as shown in Table 2. The training dataset was 
used to train the model, while the test dataset was utilized to 
verify the trained model’s performance. Both the training and 
test datasets include the horizontal and vertical acceleration 
and temperature signals collected by the DYRAN 3035B 
accelerometers and the RTD PT100 PROSENSOR.  

3.2. Comparative study 

 

3.2.1. Fault diagnosis 

As mentioned in Section 3.1, the CWRU and XJTU-SY 
bearing datasets are utilized for the task of fault diagnosis. F1 
scores and prediction accuracy are the evaluation metrics of 
the task of fault diagnosis, as described in Eqs. (2~3). Table 
3 provides the specifications of hyperparameters for the DL 
models during training, including the loss function, 
optimizer, batch size, learning rate, and number of epochs. 
Below are the results of the comparative study for the CWRU 
and XJTU-SY bearing datasets. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = (2 ∗ 𝑇𝑃)/(2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
  

(3) 
Where TP means the true positive, TN denotes the true 
negative, FP is the false positive, and TN is the true negative.  

Hyperparameter CWRU XJTU-SY 
Loss function Sparse categorical cross-entropy 

Optimizer SGD Adam 
Batch Size 256 100 

Learning Rate 1𝑒 − 1,1𝑒 − 2,1𝑒 − 3,1𝑒 − 4 
Epoch 10,30 10,20,35 

Table 3. Specification of hyperparameters for the task of 
fault diagnosis. 

CWRU bearing dataset  
Table 4 lists the abbreviations of the proposed models to 
facilitate easy comparison. Figure 9 illustrates the prediction 
accuracy and F1-score using the CWRU dataset for fault 
diagnosis. Specifically, Figure 9(a) presents prediction 
accuracy and F1-score under different motor loads—HP1, 
HP2, and HP3. The orange bars represent the prediction 
accuracy and yellow bars demonstrate the F1-score.  All basic 
models achieved prediction accuracy above 99% and F1-
score above 0.95. The CNN model emerged as the best 
model, outperforming the LSTM under HP1 and HP3, the 
CNN-LSTM under HP1, and transformer under HP1, HP2, 
and HP3. This superiority is attributed to the CNN model's 
efficiency in extracting spatial features, which is crucial for 
detecting health and failure in bearings during fault diagnosis. 
This is because the LSTM and transformer models struggle 
with extracting temporal features effectively, Additionally, 
the CNN-LSTM model outperformed LSTM by 0.11% under 
HP3, showing similar results under HP1 and HP2 compared 
to the LSTM. This improvement is due to the integration of 
LSTM with the CNN model, forming the CNN-LSTM 
model, which compensates for the LSTM's shortcomings in 
extracting spatial features. Furthermore, the average 
prediction accuracy and F1-score were calculated, as shown 
in Figure 9(b). The prediction accuracy and F1-score 
represent the average results under a fused dataset that 
includes HP1, HP2, and HP3. Results indicate that the CNN-
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LSTM model and its variants demonstrate the highest 
prediction accuracy among the CNN, LSTM, and transformer 
models and their respective variants. This is due to the 
complexity of the fused bearing dataset compared to data 
from a single motor load. The CNN model alone struggles to 
extract high-level features effectively, while the CNN-LSTM 
model addresses this limitation by combining spatial and 
temporal feature extraction capabilities, which better suits 
complex datasets. Among the variations of the CNN-LSTM 
model, the ResCNN-LSTM and ResCNN-Bi-LSTM models 
achieved the highest prediction accuracy, with 99.87% and 
99.85%, respectively. This suggests that the ML tool of 
ResNet can enhance the performance of the CNN-LSTM and 
CNN-Bi-LSTM models by solving the vanishing and 
exploding gradient problem of the CNN-LSTM. Although 
MC dropout can provide a confidence level when diagnosing 
faults, it slightly compromises the prediction accuracy and 
F1-score of the CNN, LSTM, and CNN-LSTM models. 

XJTU-SY Dataset 
Figure 10 illustrates the prediction accuracy using the XJTU-
SY bearing dataset for fault diagnosis. The CNN-LSTM and 
its variants achieved the highest prediction accuracy, while 
the transformer model demonstrated the highest F1-score. 

This suggests that while CNN-LSTM excels in overall 
accuracy, the transformer model is better at balancing 
precision and recall, which can be crucial in applications 
where false positives and false negatives have different costs. 
Among all the variants in the CNN-LSTM model, ResCNN-
LSTM-MC, ResCNN-Bi-LSTM, and ResCNN-LSTM 
attained 96.42%, 96.4%, and 96.39% prediction accuracy, 
respectively. ML tools, such as MC dropout, recurrent 
dropout, and ResNet, enhance the performance of the CNN, 
LSTM, and CNN-LSTM models for the XJTU-SY bearing 
dataset in the task of fault diagnosis. This improvement is due 
to MC dropout preventing overfitting during the training 
process, and ResNet mitigating the gradient vanishing and 
explosion issues in deeper neural layers. In contrast, 
employing MC dropout in DL models does not improve the 
performance for fault diagnosis using the CWRU bearing 
dataset. This discrepancy is likely because the CWRU dataset 
lacks degradation patterns, resulting in lower performance, 
whereas the XJTU-SY bearing dataset includes degradation 
patterns. 

3.2.2. Fault Prognosis 

For the task of fault prognosis, MAE and RMSE are the  
main evaluation metrics, as described in Eqs. (4~5). 

𝑀𝐴𝐸 =
1
𝑛

∑ |𝑅𝑈𝐿𝑖 − 𝑅𝑈𝐿�̂�|
𝑛

𝑖=1
 (4) 

𝑅𝑀𝑆𝐸 = √
1
𝑛

∑ (𝑅𝑈𝐿𝑖 − 𝑅𝑈𝐿�̂�)2
𝑛

𝑖=1
 

 

(5) 

Model Abbreviation 
CNN C 

LSTM L 
CNN-LSTM C_L 

CNN-Bi-LSTM C_BL 
Model with MC Dropout _MC 

Model with Recurrent Dropout _Rec 
Bi-LSTM BL 

ResNet RC 
Transformer T 

Table 4. Abbreviations of proposed models. 

 

 
Figure 9. Prediction accuracy and F1-score using CWRU 

bearing dataset for the task of fault diagnosis:(a) under three 
motor loads;(b) under fused motor loads. 

Where the 𝑅𝑈𝐿𝑖  is the real RUL label, and the 𝑅𝑈𝐿�̂� is the 
predicted RUL label.  

XJTU-SY Dataset 
Figure 11 illustrates the prediction accuracy using the XJTU-
SY bearing dataset for the task of fault prognosis. It shows 
that the LSTM model and its variants exhibit the highest 
RMSE and MAE, while the transformer achieves the lowest 
RMSE of 9.47 and the lowest MAE of 11.07. This 
performance is attributed to the transformer's ability to 
effectively handle both spatial and temporal features, making 
it superior to the CNN and LSTM models in fault prognosis. 
However, among the variants of the CNN-LSTM, the 
ResCNN-Bi-LSTM-MC achieved an MAE of 8.52 and 
RMSE of 12.26, and the ResCNN-LSTM achieved an MAE 
of 8.56 and RMSE of 12.16. Another model with notable 
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performance is the ResCNN, which achieved an MAE of 8.61 
and an RMSE of 12.32. Similar to fault diagnosis, ResNet is 
the best ML tool for enhancing the performance of the CNN-
LSTM by avoiding gradient vanishing.  

IEEE PHM Dataset 

Figure 12 illustrates the prediction accuracy using the IEEE-
PHM bearing dataset for the task of fault prognosis. It shows 
that the CNN model and its variants exhibit the highest 
RMSE and MAE, while the transformer achieves the lowest 
RMSE of 11.94 and the lowest MAE of 12.13. This 
performance is attributed to the transformer's ability to 
effectively handle both spatial and temporal features, making 
it superior to the CNN and LSTM models in fault prognosis. 
However, among the variants of the CNN-LSTM, the 
ResCNN-Bi-LSTM achieved an MAE of 12.89 and an 

RMSE of 9.923. Similar to fault diagnosis, ResNet is the best 
tool for enhancing the performance of the CNN-LSTM by 
avoiding gradient vanishing. 

4. CONCLUSION 

The fault diagnosis and prognosis of industrial equipment are 
vital in the field of Prognosis Health Management (PHM) for 
effective and reliable operations, reducing downtime costs. 
However, there is a lack of comprehensive comparative 
studies addressing both fault diagnosis and prognosis. This 
study compares CNN, LSTM, CNN-LSTM, and transformer 
models for these tasks. Additionally, ML tools such as MC 
dropout, Recurrent dropout, and ResNet are integrated with  

 

 
Figure 10.  Prediction accuracy(a), and F1-Score (b) using XJTU-SY dataset for the task of fault diagnosis. 
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DL models to investigate their effects on fault diagnosis and 
prognosis. 

Results indicate that the transformer model achieves its 
lowest Mean Absolute Error (MAE) of 11.07 and 12.13 when 
using the XJTU-SY and IEEE PHM bearing datasets, 
respectively. However, it performs poorly in fault diagnosis 
tasks. In contrast, the ResCNN-LSTM model excels in both 
fault diagnosis and prognosis. It achieves high prediction 
accuracy of 99.87% and 96.39% for diagnosis using the 
CWRU and XJTU datasets, respectively. Additionally, the 
ResCNN-LSTM model shows an RMSE of 8.53 for 
prognosis using the XJTU dataset, highlighting its robust 
performance across these tasks.  Furthermore, the ResNet 
technique enhances the performance of DL models in both 

fault diagnosis and prognosis, while MC dropout improves 
DL model performance in fault prognosis and fault diagnosis 
using the XJTU-SY dataset. However, due to the limited 
length of the article, other DL models such as, autoencoder, 
Generative Adversarial Networks (GAN), and diffusion 
models were not explored. In the future, real-time 
applications in the aerospace industry will leverage the 
ResCNN-LSTM model to further demonstrate its superiority 
in both fault diagnosis and prognosis. Specifically, detecting 
failure modes such as compressor stalls or turbine blade 
damage, alongside predicting engine failure times, can 
significantly enhance safety and reduce maintenance costs by 
utilizing advanced DL tools to analyze real-time data from 
aircraft engines. 

 

 
Figure 11.   RUL prediction using the XJTU-SY bearing dataset for the task of fault prognosis with the evaluation metric of: 

(a). RMSE; (b) MAE. 
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Figure 12.   RUL prediction using the IEEE PHM bearing dataset for the task of fault prognosis with the evaluation metric of: 

(a). RMSE; (b) MAE. 
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