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ABSTRACT 

This study presents a preventive maintenance methodology 

to predict the remaining useful life (RUL) of mechanical 

systems and determine cost-effective replacement 

schedules. The approach integrates machine learning for 

RUL prediction, Weibull distribution for reliability analysis, 

and a block replacement model with minimal repair to 

optimize preventive maintenance. Many existing studies 

rarely incorporate RUL prediction results into determining 

optimal maintenance actions due to the high uncertainty in 

RUL prediction. To address this, the proposed methodology 

emphasizes not stopping at the prediction stage but 

integrating RUL predictions into actionable maintenance 

strategies to reduce uncertainty and improve applicability in 

industrial contexts. A case study using the open CMAPSS 

dataset demonstrates the feasibility of the approach. The 

value of this study lies in proposing a methodology that not 

only utilizes prediction-based proactive outcomes instead of 

predefined replacement intervals but also integrates them 

with subsequent maintenance strategies, providing practical 

and cost-effective solutions for industrial applications. 

1. INTRODUCTION 

Maintenance is important in mechanical machine systems 

because failures during operation can cause severe damage 

and breakdown. Accordingly, proper maintenance actions 

should be undertaken periodically and intermittently to 

avoid repetitive degradation that causes damage and safety 

problems in machine systems (Rebaiaia et al., 2017). This 

significance of maintenance has increased the development 

of optimal maintenance strategies to improve system 

reliability, prevent system failure, and reduce maintenance 

costs owing to system deterioration (Wang, 2002).  

Maintenance strategies can be classified as corrective 

maintenance (CM), preventive maintenance (PM), 

condition-based maintenance (CBM), and predictive 

maintenance (PdM), based on the timing and actions of 

maintenance (Biggio and Kastanis, 2020). The CM fixes 

and recovers a system after failure. As PM is popular in the 

industry, it maintains a system at scheduled intervals before 

a failure occurs, and the intervals are determined by the 

system’s expected age and replacement cycle. The CBM 

monitors and diagnoses the health of a system and performs 

maintenance actions when the system is detected to be 

unhealthy. PdM has recently gained the attention of 

industries because it can be implemented with advances in 

information and communication technology, such as 

artificial intelligence, data analytics, and internet of things, 

although it still remains a challenge. PdM is similar to CBM 

because of its dependency on the system’s health; however, 

it differs in that proactive maintenance is pursued by 

predicting the future failure occurrence or remaining useful 

life (RUL) of a system.  

In PdM, RUL prediction is a key technology for accurately 

forecasting the occurrence of system failures. RUL 

prediction directly affects the planning and execution of 

proactive maintenance actions (Aydemir and Acar, 2020). 

Good RUL prediction results lead to an increase in the 

overall equipment effectiveness and maintenance cost 

efficiency across the system lifecycle. Figure 1 illustrates 

the concept of RUL. The RUL represents the system’s 

available time from the current time to the expected failure 

occurrence. RUL prediction relies primarily on the analysis 

of process data collected from the sensors attached to a 

system. Machine-monitoring data can provide meaningful 

information to represent a system’s health and state, and 
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they can be used broadly for anomaly detection, diagnostics 

and prognostics, and RUL prediction on a system.   

 

Figure 1. Concept of remaining useful life (RUL) 

 

However, RUL prediction still remains a challenge because 

of the difficultly in RUL prediction at the current time due 

to the uncertainty of the next occurrence of a failure. 

Uncertainty induces the occurrence of expected or 

unexpected failures for various reasons such as degradation, 

deterioration, abrasion, friction, breakage, operation 

conditions, environment, or even unknown disturbances. 

Nevertheless, the RUL should be accurately predicted using 

process data. Well-predicted RULs aid in establishing 

optimal maintenance timing in PdM, as well as in 

determining optimal overhauls, repairs, and replacements to 

reduce maintenance costs.   

The importance of RUL prediction in PdM has led to studies 

relevant to the development and validation of feasible 

methods and algorithms for performance measurement (Lei 

et al., 2018). They mostly developed RUL prediction 

models using machine learning techniques and compared 

the model performances to derive the best model for a target 

system. These studies have contributed valuable methods 

and algorithms to increase the prediction accuracy of RUL 

in a system. However, relevant studies rarely apply RUL 

prediction results to determine the optimal maintenance 

actions because they treat RUL prediction as a stand-alone 

study. Our approach directly addresses this gap by 

integrating RUL predictions with a cost-optimal block 

replacement model. This integration ensures that predictive 

insights are not merely theoretical but actionable, enabling 

industries to transition from reactive or static maintenance 

strategies to dynamic, data-driven decisions. Furthermore, 

by optimizing replacement schedules based on RUL 

predictions, this study offers a practical methodology for 

reducing operational costs and downtime. In addition, these 

studies did not consider diverse operation conditions on 

multiple systems because they targeted RUL prediction for a 

single system. To overcome these limitations, it is essential 

to develop a PdM-based method that can predict RULs for 

multiple systems and apply the RUL prediction results to 

determine the maintenance actions required to minimize 

maintenance costs. RUL prediction becomes more practical 

when applied to a holistic system comprising several 

systems and is integrated with the following maintenance 

strategy. 

In contrast, PM is a maintenance strategy currently popular 

in industries. In PM, system or part replacements can occur 

at scheduled intervals or when necessary. This replacement 

mostly relies on an age replacement model or a block 

replacement model. The age replacement model replaces the 

system and/or its parts with predetermined replacement 

ages. Meanwhile, a system must be replaced immediately 

with a new one if failure occurs before the system’s 

replacement age. This model is useful when the failure rate 

increases over time; otherwise, preventive replacement 

incurs lower expenses than replacement after failure (failure 

replacement). Meanwhile, the block replacement model 

replaces a system and/or its parts with predetermined 

schedules or intervals, regardless of their expected ages. 

Here, “block” represents a set of multiple components to be 

grouped as a system due to their homogeneity or similarity. 

This model has the advantage of convenient maintenance 

because it replaces a block as a whole at a given point in 

time, without considering failure replacement. However, 

this model may have a disadvantage because some 

components can be replaced with new ones, although their 

RULs remain sufficient. Accordingly, the block replacement 

model necessitates the determination of optimal replacement 

schedules to minimize the replacement of components that 

possess sufficient RULs and eventually reduces the wastage 

of cost incurred for maintenance. In this regard, RUL 

prediction can be a solution for optimizing replacement 

schedules because it enables the time-driven prediction of 

system failures. The block replacement model can be 

synergistically integrated with RUL prediction because the 

former is common in PM, whereas the latter is known to be 

a key technology in PdMs. This was the motivation for the 

present study. The proposed method is particularly relevant 

for industries where machinery reliability is critical and 

operational costs are high. Examples include the aviation 

industry, where optimizing the maintenance schedules of 

turbofan engines can prevent costly flight delays and 

enhance passenger safety; the manufacturing sector, where 

reducing unexpected equipment failures can increase 

production efficiency; and the energy industry, where 

predictive maintenance can extend the lifespan of turbines 

and reduce downtime in power generation systems. These 

contexts highlight the potential impact of integrating 

predictive analytics with preventive maintenance strategies.  

Machine learning can underlie RUL prediction as a feasible 

data-driven approach. Machine learning has demonstrated 

good performance in PdM applications and has been 

broadly applied across manufacturing sectors (Thyago et al., 

2019). The applications of machine learning in RUL 

prediction have increased owing to its good precision, 

applicability, and cost-effectiveness (Ferreira and 
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Gonçalves, 2022). Machine learning provides the capability 

for early prediction of failures by learning process data. In 

particular, machine learning has demonstrated excellent 

performance in failure prediction when sufficient data are 

trained.  

To address the aforementioned challenges, this study 

explores the following research question: How can the 

integration of machine learning-based RUL predictions with 

cost-optimal block replacement models improve the 

effectiveness and efficiency of preventive maintenance 

strategies? This study proposes a preventive maintenance 

method to generate prediction models of the RUL and 

derive cost-optimal replacement times based on the RUL 

prediction model and the block replacement model with 

minimal repair. In the proposed method, (1) machine 

learning models are generated to predict the RULs of 

mechanical systems by training historical process data, (2) 

the Weibull distribution is fitted to identify the failure rate 

and reliability of the system by estimating its scale and 

shape parameters using the predicted RULs, and (3) the 

block replacement model with minimal repair is applied to 

determine the optimal preventive replacement times and 

costs based on the predicted RULs and the Weibull 

distribution. The proposed method aims to interconnect the 

PM and PdM through the integration of RUL prediction and 

block replacement models. In addition, the proposed method 

is targeted for a “block” system that combines multiple 

systems as a group due to their similarity. A case study was 

conducted to demonstrate the feasibility of the proposed 

method using an open and referential commercial modular 

aero-propulsion system simulation (CMAPSS) dataset for 

turbofan engine systems.  

The remainder of this paper is organized as follows. Section 

2 explains related work, Section 3 proposes the method, 

Section 4 describes the case study, and Section 5 discusses 

strategies and impacts of the proposed method. Section 6 

concludes the paper. 

2. RELATED WORK 

2.1. RUL prediction using machine learning 

Machine learning has been widely used to develop RUL 

prediction models based on historical processes and sensor 

data (Kraus and Feuerriegel, 2019). Models have been 

generated using typical data analytics procedures, including 

data extraction, feature extraction and classification, model 

building and training, and RUL prediction and evaluation 

(Ferreira and Gonçalves, 2022). Machine learning 

techniques include linear regression (LR), support vector 

regression (SVR), ridge regression, random forest (RF), 

extreme gradient boosting (XGBoost), and artificial neural 

networks (ANN). LR is a general technique used to model 

numerical relationships between independent and dependent 

variables. SVR is a regression version of a support vector 

machine, wherein a decision boundary is projected for 

classification and the margin width is adjusted to contain as 

much data as possible. Ridge regression comprises a 

residual sum of squares and a penalty term that can be 

differentiated and optimized as the sum of the squares of the 

parameters. RF and XGBoost are ensemble learning 

techniques that create several classifiers and combine their 

prediction results to obtain the final result. Ensemble 

learning aids in increasing accuracy and avoiding 

overfitting, which occurs in machine learning when a model 

is too attuned to the training data. An ANN constructs a 

network structure by mimicking neurons in layers, similar to 

the neural network in the human brain. The ANN outputs a 

predicted value by iteratively adjusting and converging the 

weights and bias of each neuron in a network with minimal 

error.  

Shi et al. (2021) used XGBoost, RF, and SVM to predict the 

RULs of bearings. Tong et al. (2021) used XGBoost, 

AdaBoost, and gradient boost to predict the RULs of 

lithium-ion batteries and compared the performances of 

these models. Aydemir and Acar (2020) applied RF and 

long short-term memory (LSTM) to predict the RULs of 

turbofan engines using the CMAPSS dataset. Xue et al. 

(2020) predicted the RUL of a lithium-ion battery using an 

adaptive unscented Kalman filter and SVR. Park et al. 

(2020) used ridge regression to predict the RULs of 

bearings. Cailian and Chun (2020) predicted the RULs of 

lithium-ion batteries by applying a genetic algorithm to RF. 

Liu et al. (2021) used XGBoost, an RNN, and deep neural 

networks to predict the RULs of turbofan engines in the 

CMAPSS dataset. Wu et al. (2021) combined classification 

and regression using a CNN, SVR, and LSTM to predict the 

RUL of a CMAPSS turbofan engine. Chen et al. (2022) 

predicted the RULs of turbofan engines and optimized 

maintenance cost by balancing corrective and preventive 

maintenance costs. Lv et al. (2023) integrated a LSTM-

based failure prediction model with a Deep Q-Network 

(DQN)-based maintenance decision-making system. Najdi 

et al. (2024) applied an adaptive residual attention LSTM 

for RUL prediction of rolling bearings. Zonta et al. (2022) 

predicted the RULs of industrial systems and optimized 

production schedules using multiple deep learning 

algorithms, such as CNN, LSTM, and RNN, in Microsoft 

Azure. Narayanan et al. (2024) applied RF and SVM to 

predict RULs for maintenance efficiency and effectiveness 

in manufacturing plants, energy production facilities, and 

transportation fleets. They validated the applicability of 

machine learning-based predictive maintenance using real 

data in various industrial domains. 

Many previous studies utilized reference datasets such as 

CMAPSS turbofan engines, lithium-ion batteries, and 

bearings because of difficulties in data acquisition. RUL 

prediction essentially requires long-term data; thus, such 

referential data can be useful because they provide process 

data over the lifecycle of the system.  
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Furthermore, many of the previous studies have contributed 

to deriving the methods required to create accurate RUL 

prediction models by learning process data in target 

systems. However, these methods do not suggest the 

application of predicted RULs to determine the system’s 

replacement actions during maintenance. This is because 

they typically apply more than two machine learning 

techniques for model generation and determine the best 

model through model verification and validation on a single 

system. They could not estimate the probability of failure 

for replacement time optimization in multiple systems. 

Replacement time should not be optimized at a single but at 

a holistic system because maintenance comes into action for 

a factory or shop floor where multiple machines exist. The 

rest of the studies do not fully address the integration of 

predictive insight into preventive maintenance, which 

pursues cost optimization. In contrast, our study proposes a 

quantitative method that integrates machine learning-driven 

RUL prediction with a block replacement model to decide 

optimal replacement times for cost optimization. Hence, the 

proposed method is expected to bridge the gap between 

industrial practice and technological advancement, ensuring 

a systematic and data-driven maintenance strategy. 

2.2. Replacement models in preventive maintenance 

2.2.1. Age replacement model 

The Figure 2 illustrates the age replacement model. The age 

replacement model aims to replace the system immediately 

after the replacement time 𝑡0. If system failure occurs before 

𝑡0, the system is replaced at that point. This model is useful 

when a system’s failure rate increases over time, or when 

preventive replacement incurs lower expenses than failure 

replacement.  

 

 

Figure 2. Concept of age replacement model 

 

The system-replacement time can be either i) the time when 

a failure occurs before 𝑡0 or ii) the time when replacement 

occurs as planned after 𝑡0, given a failure time 𝑇 , failure 

distribution function 𝐹(𝑡) , and failure density function 

𝑓(𝑡) = 𝑑/𝑑𝑡𝐹(𝑡). Equation (1) expresses the expected time 

𝐸(𝑡). Equation (2) expresses the expected total cost 𝐸(𝑐), 

where 𝐶𝑝 is the total cost of preventive replacement and 𝐶𝑓 

is the total cost of failure replacement. Generally, 𝐶𝑓  is 

higher than 𝐶𝑝 owing to the additional cost incurred by the 

failure of post-treatment and system recovery.  

𝐸(𝑡) = ∫ 𝑡𝑓(𝑡)𝑑𝑡
𝑡0

0

+  𝑡0 ∙ Pr(𝑇 ≥ 𝑡0)

=  ∫ (1 − 𝐹(𝑡))𝑑𝑡
𝑡0

0

 

(

(1) 

𝐸(𝑐) =  𝐶𝑝 + (𝐶𝑓 −  𝐶𝑝)𝐹(𝑡0) 
(

(2) 

In the age replacement model, an economic analysis should 

be conducted to determine whether system replacement is 

cost-efficient at a particular point in time. Equation (2) is 

inappropriate for economic analysis because 𝐸(𝑐) 

represents the total cost. For this purpose, an expected cost 

rate per unit time is preferable because costs can be 

measured and compared based on an identical unit. The 

expected cost rate per unit time corresponds to the unit cost 

obtained by dividing 𝐸(𝑐) by 𝐸(𝑡), i.e., an expected time 

consumed for complete recovery (Ross, 1980). Equation (3) 

expresses the expected cost rate per unit time, 𝐶𝐴(𝑡0) . 

Differentiating Equation (3) allows the determination of the 

optimal replacement time 𝑡0
∗ . Equation (4) expresses the 

differentiation equation with respect to 𝑡0 , where 

𝑑𝐶𝐴(𝑡0) 𝑑𝑡0⁄ = 0 (Jin and Yamamoto, 2017). Here, 𝑅(𝑡) is 

a reliability function, where 𝑅(𝑡) = 1 − 𝐹(𝑡).  

𝐶𝐴(𝑡0) =
𝐶𝑝 + (𝐶𝑓 − 𝐶𝑝)𝐹(𝑡0)

∫ (1 − 𝐹(𝑡))𝑑𝑡
𝑡0

0

 

=
𝐶𝑝(1 − 𝐹(𝑡0)) + 𝐶𝑓𝐹(𝑡0)

∫ (1 − 𝐹(𝑡))𝑑𝑡
𝑡0

0

 

(

(3) 

ℎ(𝑡0
∗) ∫ 𝑅(𝑡)𝑑𝑡 − 𝐹(𝑡0

∗) =  
𝐶𝑝

𝐶𝑓 − 𝐶𝑝

𝑡0
∗

0

 
(

(4) 

In Equation (4), as the failure rate indicates ℎ(𝑡0)  with 

regard to 𝑡0, ℎ(𝑡0) equals to 𝑓(𝑡0)/(1 − 𝐹(𝑡0)). However, 

obtaining 𝑡0
∗  using Equation (4) is mathematically 

challenging. Alternatively, 𝑡0
∗  can be obtained using the 

Newton-Raphson method or reliability engineering 

software. 𝐶𝐴(𝑡0
∗)  satisfies Equation (5) when ℎ(𝑡0

∗) 

exhibits an increasing failure rate (IFR) (Zhao et al., 2017).  

𝐶𝐴(𝑡0
∗) =  ℎ(𝑡0

∗)(𝐶𝑓 − 𝐶𝑝) 
(

(5) 

2.2.2. Block replacement model 

Figure 3 depicts the block replacement model. Preventive 

replacements occur repetitively at constant intervals, 

denoted as 𝑡𝑝 . This model is useful for maintenance 

planning and execution because maintenance actions are 

Preventive 

replacement

Preventive 

replacement

Failure 

replacement

Time 

Replacement Replacement
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performed regularly during a scheduled period or interval. 

In addition, this model can apply the concept of a block, as 

it targets multiple systems that can be grouped based on 

their similarity. The block replacement model involves the 

following three cases depending on the replacement timing 

and actions.  

⚫ Case I: A failed system is replaced immediately with a 

new system when failure occurs before 𝑡𝑝. 

⚫ Case II: A failed system is left unrepaired and replaced 

at the next 𝑡𝑝. 

⚫ Case III: A failed system is run with minimum repair 

and replaced at the next 𝑡𝑝. Minimum repair refers to 

the reuse of second-hand or remanufactured parts. 

 

 
Figure 3. Concept of the block replacement model 

 

In Case I, the replacement cost can be wasted because the 

failed system is replaced again when 𝑡𝑝 is reached. Equation 

(6) expresses the expected cost rate per unit time, 𝐶𝐵1(𝑡𝑝) , 

where 𝑀(𝑡𝑝) is a renewal function (Nakagawa, 1979). The 

differentiation of Equation (6) allows the determination of 

the optimal expected cost rate per unit time 𝐶𝐵1(𝑡𝑝
∗) . 

Equation (7) expresses the differentiation equation with 

respect to 𝑡𝑝 , where 𝑑𝐶𝐵1(𝑡𝑝) 𝑑𝑡𝑝⁄ = 0 . Here, 𝑚(𝑡𝑝) is a 

renewal density function, given 𝑚(𝑡𝑝) = 𝑑/𝑑𝑡𝑀(𝑡) . 

Equation (8) expresses 𝐶𝐵1(𝑡𝑝
∗) (Nakagawa, 1979). 

𝐶𝐵1(𝑡𝑝) =  
𝐶𝑝 +  𝐶𝑓𝑀(𝑡𝑝)

𝑡𝑝
 

(

(6) 

𝑡𝑝𝑚(𝑡𝑝) − ∫ 𝑚(𝑡𝑝) =  
𝐶𝑝

𝐶𝑓

𝑡𝑝

0

 
(

(7) 

𝐶𝐵1(𝑡𝑝
∗) =  𝐶𝑓𝑚(𝑡𝑝

∗) 
(

(8) 

In Case II, the replacement cost can be beneficial; however, 

system availability may decrease because a failed system 

runs down until the next 𝑡𝑝 . Equation (9) expresses the 

expected cost rate per unit time, 𝐶𝐵2(𝑡𝑝), where 𝐶𝑑  is the 

downtime cost caused by the elapsed time from failure to 

the next 𝑡𝑝  (Dong et al., 2020). Similarly, Equation (10) 

expresses the differentiation equation of Equation (9), and 

Equation (11) expresses the optimal expected cost rate per 

unit time 𝐶𝐵2(𝑡𝑝
∗)  with respect to 𝑡𝑝 , where 

𝑑𝐶𝐵2(𝑡𝑝) 𝑑𝑡𝑝⁄ = 0 (Dong et al., 2020).  

𝐶𝐵2(𝑡𝑝)

=  
𝐶𝑝 (1 − 𝐹(𝑡𝑝)) +  𝐶𝑓𝐹(𝑡𝑝) +  𝐶𝑑 ∫ (𝑡𝑝 − 𝑡)𝑓(𝑡)

𝑡𝑝

0

𝑡𝑝

=
𝐶𝑝 (1 − 𝐹(𝑡𝑝)) +  𝐶𝑓𝐹(𝑡𝑝) +  𝐶𝑑 ∫ 𝐹(𝑡𝑝)𝑑𝑡

𝑡𝑝

0

𝑡𝑝
 

 

 

(9) 

(𝐶𝑝 − 𝐶𝑓) ∫ [𝑓(
𝑡𝑝

∗

0

𝑡𝑝
∗) −  𝑓(𝑡)]𝑑𝑡 

+  𝐶𝑑 ∫ [𝐹(𝑡𝑝
∗)

𝑡𝑝
∗

0

− 𝐹(𝑡)]𝑑𝑡 = 𝐶𝑝 

 

 

(10) 

𝐶𝐵2(𝑡𝑝
∗) =  (𝐶𝑝 −  𝐶𝑓)𝑓(𝑡𝑝

∗) +  𝐶𝑑𝐹(𝑡𝑝
∗) (11) 

In Case III, the replacement cost can be reduced because a 

failed system runs without downtime when multiple systems 

operate simultaneously as they belong to a block. Case III 

was applied to the proposed method. This is because 

maintenance costs can be optimized for multiple systems 

grouped into blocks. To simplify the problem, the following 

assumptions are made: 1) a failed system is immediately 

repaired when a failure occurs, 2) the repair time is 

negligible, and 3) the failure rate of the system is stationary 

even after repair. 

Equation (12) expresses the expected cost rate per unit time 

𝐶𝐵3(𝑡𝑝), where ℎ(𝑡) is a failure rate function, and 𝐶𝑘 is the 

minimum repair cost (Nakagawa, 1979). Similarly, Equation 

(13) expresses the differentiation of Equation (12), and 

Equation (14) expresses the optimal expected cost rate per 

unit time 𝐶𝐵3(𝑡𝑝
∗) (Rebaiaia et al., 2017). In Equation (13), 

𝐶𝐵3(𝑡𝑝
∗) satisfies Equation (14) when ℎ(𝑡)  increases 

monotonically (Rebaiaia et al., 2017).   

𝐶𝐵3(𝑡𝑝) =  
𝐶𝑝 +  𝐶𝑘 ∫ ℎ(𝑡)𝑑𝑡

𝑡𝑝

0

𝑡𝑝
 (12) 

𝑡𝑝ℎ(𝑡𝑝) −  ∫ ℎ(𝑡𝑝)𝑑𝑡 =  
𝐶𝑝

𝐶𝑘

𝑡𝑝

0

 
(13) 

 

𝐶𝐵3(𝑡𝑝
∗) =  𝐶𝑘ℎ(𝑡𝑝

∗) (14) 

3. PROPOSED METHOD 

The proposed method aims to optimize the preventive 

replacement time using RUL prediction models and a block 

replacement model to minimize the maintenance cost of a 

block system. Figure 4 illustrates the procedure of the

Preventive 

replacement

Preventive 

replacement

Failure 

occurrence

Time 

Case I

Case II

Case III

Replacement

ReplacementUnrepaired

Minimum-

repair
Replacement

Down

Replacement

Running

Running
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Figure 4. Procedure of the proposed method 

 

proposed method. The method comprises two phases: RUL 

prediction modeling and replacement cycle optimization.  

 In the first phase, model generation is required to generate 

models that can predict the RULs of individual machines. 

Several types of models have been generated using machine 

learning techniques by training using historical process data. 

Model evaluation must be conducted to identify the best 

model among the models and then to use it for outputting a 

predicted system failure time. In the second phase, 

replacement cycle optimization is required to derive the 

optimal preventive replacement time and cost based on the 

predicted failure time and the two replacement models. The 

predicted system failure time is applied to specify scale 

parameter 𝛼 and shape parameter 𝛽 to be used for fitting a 

Weibull distribution, which enables the estimation of the 

failure rate and reliability of each system. These two 

parameters allow the calculation of preventive replacement 

times and their corresponding costs in certain scenarios. The 

block replacement model derives the optimal preventive 

replacement times to minimize maintenance costs. Finally, 

the best maintenance strategy is determined based on the 

optimal preventive replacement time and cost, considering 

the system operations and environments, including the 

system repairability, multiplicity, and performance.   

3.1. RUL prediction modeling  

The primary concept of RUL prediction is to infer an RUL 

from the process data that reflect system degradation. Some 

process data provide important information for RUL 

prediction because they represent the health state of a 

system by showing different, unusual, or gradually changing 

patterns from a normal pattern. Such dissimilar patterns can 

be detected and recognized using machine learning 

techniques by determining the causality between the process  

 

(a) Historical process data 

 
(b) System degradation 

Figure 5. Concept of RUL prediction modeling 

 

data and degradation features. Figure 5 illustrates the RUL 

prediction concept. As shown in Figure 5 (a), the sensor 

measures and acquires vibration data to monitor the health 

state of the system. Vibration data can act as a health 

indicator because they may exhibit dissimilarities with the 

normal pattern in a long-term trend along a system that 

continues to operate. In Figure 5 (b), the health indicator 

begins to increase gradually from the normal state, revealing 
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the appearance of continuous degradation in the system. 

Machine learning facilitates the detection and recognition of 

increasing patterns by training the historical vibration data 

recorded during the run-to-failure of the system. Failure 

occurrence can be set as the failure threshold for the next 

use. Machine learning then enables the prediction of the 

RUL at the current time because it can draw an increasing 

trend for the future without future data and determine the 

time point of threshold exceedance on degradation. 

3.1.1. Model generation  

The input of the model generation is historical process data 

of mechanical systems. The historical process data signify a 

dataset that records the health state and failure occurrence of 

a system at unit time during the system lifecycle. Process 

data are typically acquired from physical, chemical, or 

electrical sensors attached to a target system. Process data 

can also contain information on failure occurrences. Failure 

occurrences can be detected when sensor data are 

discontinued or exceptional at a certain time; otherwise, 

they can be acquired from an external data source or human 

input into a system. Historical process data require two 

premises for RUL prediction: the data should be fully 

recorded from a system’s run-to-failure without missing 

data, and they should properly reflect the system’s 

degradation with an unusual or dissimilar pattern that is 

different from the normal pattern.  

Feature selection involves the identification of sensor 

attributes that directly affect model generation. Some 

features need to be excluded for efficient modeling if they 

are redundant, stationary, or irrelevant. Duplicate features 

can be found by correlation analysis with other features and 

need to be excluded from a dataset. Principal component 

analysis is a useful technique for reducing data 

dimensionality and estimating the distribution of 

multidimensional data. Data preprocessing includes data 

cleaning and data normalization. Data cleaning removes 

missing data, outliers, or noisy data that frequently occur in 

sensory data. Data normalization adjusts the original feature 

values to notionally common values within a specific range, 

such as the min-max and 0-to-1 scales. Feature selection and 

data preprocessing are important in machine learning 

because they affect the data quality. The performance of 

machine-learned models largely relies on the data quality 

(Woo et al., 2018).  

Dataset partition divides the entire dataset into training and 

testing datasets. A training dataset can be further segregated 

into training and validation datasets, if necessary. The 

training dataset is used to learn the data for generating the 

models, whereas the validation dataset is used to measure 

the learning error to check the correctness of the learning 

models. The testing dataset is used to measure the prediction 

error to verify the prediction accuracy when the models are 

applied to a target system. A ratio of 7:3 or 8:2 is generally 

used for the training or testing datasets. A ratio of 5:3:2 can 

be used when the dataset is separated into three sub-

datasets.  

Model generation is related to the generation of the RUL 

prediction models. In this study, the models were generated 

using six machine learning techniques: LR, SVR, RF, 

XGBoost, ridge regression, and ANN. These models were 

selected based on their established performance in 

predictive tasks, including RUL estimation, and their 

suitability for handling industrial datasets. Improved 

prediction accuracy has significant implications for 

operational cost reduction. When prediction models can 

estimate failure times more precisely, industries can identify 

optimal replacement schedules earlier during machine 

operation. This leads to fewer unexpected failures, less 

downtime, and reduced costs associated with corrective 

maintenance. For instance, XGBoost's ability to capture 

non-linear relationships makes it highly effective for 

modeling complex systems like turbofan engines, where 

sensor data exhibit intricate patterns. Similarly, ANN is 

well-suited for detecting subtle trends in high-dimensional 

data, which are critical for predicting system degradation 

accurately. By leveraging these strengths, this study 

demonstrates how precise RUL predictions can directly 

inform and improve maintenance strategies. They were 

selected because of their superior performance in numerical 

prediction problems in machine learning. Figure 6 (a) shows 

the structure of the XGBoost-based model. In XGBoost, a 

prediction model is generated by deploying multiple 

decision trees as separate predictors and combining their 

predictions to draw substantive conclusions. A decision tree 

creates a predictor to derive a predicted output, and the next 

tree creates another predictor successively to reduce the 

residual of the prior predictor, while the decision trees are 

dependently and consecutively combined. Each predictor is 

weighted to impose a high weight on incorrect answers and 

a low weight on correct answers. For example, the first 

decision tree creates 𝑓1(𝑥1) by training a historical process 

dataset, the following decision trees continuously create 

their 𝑓𝑘(𝑥1), and the RUL is lastly predicted by summing 

the predicted values from all trees, as derived by 

∑ 𝑓𝑘(𝑥𝑖)
𝑁
𝑘=1 .  

Figure 6 (b) shows the structure of the ANN-based model. 

An ANN predicts the value by constructing a network 

comprising neurons in multiple layers. The layers consist of 

an input layer to receive multiple input data, hidden layers 

to connect the input and output layers, and an output layer to 

produce a predicted value. An ANN uses activation 

functions to find the weights between prior and subsequent 

nodes as well as the bias in each node in a backpropagated 

or feedforward fashion. The network is trained repeatedly 

and eventually converges when the errors are minimized. 

Individual feature vectors (𝑥𝑖), such as sensor values, are 

multiplied by their weights (𝑤𝑚), and the results are then 

transmitted to a hidden layer. Similarly, neurons ( 𝑗 ) 
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belonging to a hidden layer are multiplied by their weights 

(𝑤𝑛), and their results are transmitted to an output layer. 

Finally, the output layer derives the predicted RUL (𝑦𝑘 ).  

Note that a specific machine learning technique does not 

always outperform the remaining techniques. The model 

performance largely depends on the quantity and quality of 

the historical process data of the systems. Data quantity and 

quality are essentially case-specific owing to the diversity of 

data environments that are affected by the system 

performances, operations, and environments. Hence, RUL 

prediction models should be validated and verified to 

identify the best model for failure-time prediction.  

 
(a) XGBoost 

 

(b) ANN 

Figure 6. Structures of XGBoost and ANN-based RUL 

prediction models  

 

3.1.2. Model evaluation  

Model evaluation is performed to identify the best RUL 

prediction model among models by measuring and 

comparing model performances. The model performance 

can be evaluated using the difference between the actual and 

predicted RULs. The actual and predicted RULs were 

obtained from the real measurements and the best model, 

respectively. In this study, the article, Root Mean Square 

Error (RMSE) and Mean Absolute Percentage Error 

(MAPE) were used as performance metrics. These two 

metrics are commonly used to measure the performance of 

RUL prediction models. Equation (15) expresses the RMSE, 

where 𝑌 is an actual RUL and �̂� is a predicted RUL. RMSE 

is suitable for representing model precision because it is less 

sensitive in terms of errors than the mean absolute error, 

which is sensitive to outliers. Equation (16) expresses the 

MAPE, as it allows a simple and intuitive interpretation in 

evaluating models. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑖 − 𝑌𝑖)̂2𝑛

𝑖=1

𝑛
 (15) 

𝑀𝐴𝑃𝐸(%) =
100

𝑛
× ∑

|𝑌𝑖 − 𝑌�̂�|

𝑌𝑖

𝑛

𝑖=1

 (16) 

The best RUL prediction model is selected and applied to 

predict the RUL of a system when it shows excellence in 

RMSE and MAPE; the lower the value, the better the 

prediction. Finally, the predicted failure time is derived as 

the output of the RUL prediction modeling phase. The 

predicted failure time should be used instead of the RUL in 

the next phase because a Weibull distribution can be fitted 

only when the failure time is specified. The predicted failure 

time was calculated as the time required to add the predicted 

RUL to the current time, as shown in Figure 5 (b).  

3.2. Replacement cycle optimization  

The replacement cycle optimization derives an optimal 

preventive replacement time and cost based on the predicted 

failure time and two replacement models. For problem 

simplification, the assumptions are as follows:1) the target 

system comprises multiple machines, 2) the age replacement 

model does not conduct repairs for preventive replacement 

and failure replacement,3) the block replacement model 

conducts minimum repairs (Case III), and 4) the predicted 

failure time follows a Weibull distribution for each machine. 

These assumptions are commonly used in reliability 

engineering to streamline complex systems (Rebaiaia and 

Ait-kadi, 2020). For example, the assumption of minimal 

repair is often applied in industries where components are 

refurbished for short-term use, such as the aviation sector, 

where remanufactured parts temporarily extend operational 

life. Similarly, the Weibull distribution is widely adopted 

due to its flexibility in modeling different failure rates and 

its practical feasibility in reliability analyses of mechanical 

systems.  

The Weibull distribution is acceptable for predicting failure 

time because of its common use in reliability engineering. 

This distribution enables the flexible modeling of various 

types of failure rates in mechanical systems. Furthermore, it 

retains practical feasibility in reliability engineering based 

on the weakest-link principle, wherein the lifespan of a 

system depends on the weakest component that may initially 

cause failure. Equations (17), (18), and (19) express the 
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failure probability density function 𝑓(𝑡), failure probability 

distribution function 𝐹(𝑡), and reliability function 𝑅(𝑡) of 

the Weibull distribution, respectively. 𝛼  denotes a scale 

parameter that affects the stretch-out of a distribution. 𝛽 

denotes a shape parameter that takes on various shapes of a 

distribution.  

𝛼  and 𝛽  can be estimated using the maximum likelihood 

estimation (MLE) among several techniques. MLE is a 

method of estimating a parameter 𝜃  to maximize the 

likelihood function 𝐿 = ∏ 𝑓(𝑥1, 𝜃𝑛
𝑖=1 ), wherein 𝑥𝑛 is a data 

observation, 𝑓(𝑥)  is a density function, and 𝜃  is an 

unknown parameter. 𝜃  is estimated by substituting the 

likelihood function with the Weibull probability density 

function and then differentiating the Weibull function with 

respect to 𝛼 and 𝛽. 

𝑓(𝑡) =
𝛽

𝛼
(

𝑡

𝛼
)

(𝛽−1)

exp [− (
𝑡

𝛼
)

𝛽

] (17) 

𝐹(𝑡) = 1 − exp [− (
𝑡

𝛼
)

𝛽

] 
(18) 

 

𝑅(𝑡) = exp [− (
𝑡

𝛼
)

𝛽

] (19) 

 

 Figure 7 illustrates the types of failure rates in the Weibull 

distribution. The failure rate types are the decreasing failure 

rate (DFR), constant failure rate (CFR), and increasing 

failure rate (IFR), depending on the distribution of ℎ(𝑡). The 

failure rate becomes DFR, CFR, and IFR if 𝛽 < 1, 𝛽 = 1, 

and 𝛽 > 1, respectively. Determining 𝛼 and 𝛽 is critical to 

fit 𝑓(𝑡), 𝐹(𝑡), and 𝑅(𝑡) in a Weibull distribution. This is 

because 𝛼 and 𝛽 values are instantiated to the equations of 

the following replacement models so as to obtain the 

optimal replacement time and cost rate per unit time. 

 

 
Figure 7. Types of failure rates  

3.2.1. Age replacement model 

It is necessary to determine 𝑡0
∗  and 𝐶𝐴(𝑡0

∗)  once the 

predicted failure time is fitted to a Weibull distribution. 

Three functions, 𝑓(𝑡) , 𝐹(𝑡) , and 𝑅(𝑡) , in the Weibull 

distribution were applied to the age replacement model. 

Equation (20) expresses 𝐶𝐴(𝑡0), where Equations (18) and 

(19) are substituted into Equation (3). In case of IFR (𝛽 >
1), Equation (21) expresses a Weibull distribution ℎ(𝑡0

∗), 

and Equation (22) expresses 𝐶𝐴(𝑡0
∗) , where ℎ(𝑡0

∗)  is 

substituted to Equation (5).  

𝐶𝐴(𝑡0)

=
𝐶𝑝 (exp [− (

𝑡0

𝛼 )
𝛽

]) + 𝐶𝑓 (1 − exp [− (
𝑡0

𝛼 )
𝛽

])

∫ (exp [− (
𝑡0

𝛼 )
𝛽

]) 𝑑𝑡
𝑡0

0

 
(20) 

ℎ(𝑡0
∗) =

𝑓(𝑡0
∗)

1 − 𝐹(𝑡0
∗)

=  
𝛽

𝛼
(

𝑡0
∗

𝛼
)

𝛽−1

 
(21) 

 

𝐶𝐴(𝑡0
∗) = [

𝛽

𝛼
(

𝑡0
∗

𝛼
)

𝛽−1

] ( 𝐶𝑓 − 𝐶𝑝) (22) 

The cost efficiency should be analyzed when an age 

replacement model is applied (Rausand and Hoyland, 2004). 

In other words, preventive replacement must ensure high-

cost efficiency to provide more benefits than failed 

replacements. Otherwise, the age replacement model may 

become obsolete. The cost efficiency can be measured as 

the ratio of preventive to failure replacement costs (Rausand 

and Hoyland, 2004). The preventive replacement cost is 

derived from Equation (3). The failure replacement cost can 

be obtained using the following process: the divergence of 

the replacement time to infinity ( 𝑡0 → ∞ ) signifies that 

failure replacement occurs while preventive replacement 

does not occur. In Equation (3), when 𝑡0 → ∞ , the 

numerator 𝐹(∞)  becomes 1 and the denominator 𝐸(𝑐) 

becomes the mean time to failure (MTTF). MTTF refers to 

the case in which a system cannot be repaired. Equation (23) 

expresses 𝐶𝐴(𝑡0 → ∞). Equation (24) expresses MTTF of a 

Weibull distribution, where a gamma function is Γ(𝛽) =

 ∫ 𝑡𝛽−1𝑒−𝑡𝑑𝑡
∞

0
. 

𝐶𝐴(𝑡0) =
𝐶𝑝 + (𝐶𝑓 − 𝐶𝑝)𝐹(𝑡0)

∫ (1 − 𝐹(𝑡))𝑑𝑡
𝑡0

0

  

→  𝐶𝐴(∞) =
𝐶𝑝 +  (𝐶𝑓 − 𝐶𝑝)𝐹(∞)

∫ (1 − 𝐹(𝑡))𝑑𝑡
∞

0

=  
𝐶𝑝 +  (𝐶𝑓 − 𝐶𝑝)

𝑀𝑇𝑇𝐹
 

(23) 

𝑀𝑇𝑇𝐹 = 𝛼 ∙ Γ(1 +
1

𝛽
) 

(24) 

 

Equation (25) expresses the cost efficiency 𝐶𝐴(𝑡0)/𝐶𝐴(∞), 

where the numerator and denominator are divided 

individually by 𝐶𝑝 , when 𝑟 =  
(𝐶𝑓−𝐶𝑝)

𝐶𝑝
 (Rausand and 

Hoyland, 2004). The cost efficiency becomes higher as 

𝐶𝐴(𝑡0)/𝐶𝐴(∞) becomes lower. In other words, a change in 𝑟 

can affect the determination of preventive replacement 
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strategies owing to its influence on cost efficiency (Rausand 

and Hoyland, 2004). 𝐶𝑝  is generally predetermined. 𝐶𝑓 

varies depending on the system environment, where an 

indirect cost is added to 𝐶𝑝  due to the occurrence of a 

failure. Accordingly, changes in 𝐶𝑓  and 𝐶𝑝  affect the 

optimal replacement time. Therefore, a sensitivity analysis 

needs to be performed to determine the relevance of 𝐶𝑓 and 

𝐶𝑝 to an optimal replacement time.  

𝐶𝐴(𝑡0)

𝐶𝐴(∞)

=
𝐶𝑝 + (𝐶𝑓 − 𝐶𝑝)𝐹(𝑡0)

∫ (1 − 𝐹(𝑡))𝑑𝑡
𝑡0

0

 ×  (
𝐶𝑝 +  (𝐶𝑓 − 𝐶𝑝)

𝑀𝑇𝑇𝐹
)

−1

=   
1 +  𝑟 ∙  𝐹(𝑡0)

∫ (1 − 𝐹(𝑡))𝑑𝑡
𝑡0

0

 ×  
𝑀𝑇𝑇𝐹

1 +  𝑟
 

(25) 

3.2.2. Minimum-repair block replacement model 

In this study, we adopted a block replacement model with 

minimal repair, which corresponds to Case III in Section 

2.2.2, as the block replacement model. The model 

immediately conducts minimum repair of a system in which 

the occurrence of a failure precedes a scheduled 

replacement interval and then replaces all machines 

belonging to the block at the scheduled replacement time.  

Figure 8 shows the concept of the block replacement model 

with minimal repair. Because 𝑡𝑝  indicates a scheduled 

preventive replacement time, 𝑡𝑝  is generally determined as 

the near-average value of failure times on individual 

machines. Minimum repairs were conducted on the two 

machines when failure (i) occurred in machine 1 and failure 

(ii) occurred in machine 2 because the two failures occurred 

before 𝑡𝑝 . Machine 1 can be re-run with minimum repair 

during failure (i) to 𝑡𝑝 although failure (i) may break down 

machine 1. When current 𝑡𝑝 is applied, the minimum repair 

range for failure (i) corresponds to the time from failure (i) 

to 𝑡𝑝.  

When 𝑡𝑝
∗ is applied, all machines belonging to a block are 

replaced by 𝑡𝑝
∗. In this case, minimum repair is conducted 

only for failure (i) on machine 1 and not for failure (ii) on 

machine 2. The probability of failure (ii) dramatically 

decreases because all machines, including machine 2, are 

repaired and replaced at 𝑡𝑝
∗  prior to failure (ii). The 

minimum repair range is the duration from the time point of 

failure (i) to 𝑡𝑝
∗ . In this regard, 𝑡𝑝

∗  can positively affect 

failure prevention because it preemptively decreases the 

potential for failure in different machines. In contrast, 𝑡𝑝
∗ 

may increase expenditure as a negative impact owing to 

more frequent replacements of machines. Hence, 𝑡𝑝
∗ should 

be optimally determined using economic analysis as a 

tradeoff problem. 

 

 
Figure 8. Minimum-repair block replacement model  

 

Equation (26) expresses 𝐶𝐵3(𝑡𝑝)  derived from Equation 

(12). This equation is valid when the system failure time 

follows a Weibull distribution. In Equation (12), the failure 

rate function is ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=  −

𝑑

𝑑𝑡
𝑙𝑛𝑅(𝑡) . Equation (27) 

expresses the integral of ℎ(𝑡) , where Equation (19) is 

substituted with 𝑅(𝑡) . Equation (28) expresses the 

differential of Equation (26) with respect to 𝑡𝑝 . This 

equation is set to zero when 𝑡𝑝
∗  needs to be determined. 

Equation (29) expresses 𝑡𝑝
∗, which is derived from Equation 

(28) (Rebaiaia and Ait-kadi, 2020). 

Once 𝐶𝑘  and 𝐶𝑝  are determined, economic analysis is 

performed through a cost comparison between the current 

and optimal preventive replacements determined by 𝑡𝑝 and 

𝑡𝑝
∗, respectively. The economic analysis leads to establish a 

good strategy for PM by validating the comparative cost 

advantage of the minimum repair block replacement model 

against the current preventive replacement.  

𝐶𝐵3(𝑡𝑝) =  
𝐶𝑝 +  𝐶𝑘(

𝑡𝑝

𝛼 )𝛽

𝑡𝑝
 (26) 

∫ ℎ(𝑡)𝑑𝑡 =  −𝑙𝑛𝑅(𝑡) =  −𝑙𝑛𝑒−(
𝑡𝑝
𝛼

)𝛽
=  (

𝑡𝑝

𝛼
)𝛽 (27) 

𝑑𝐶𝐵3(𝑡𝑝)

𝑑𝑡𝑝
=  

𝛽𝐶𝑘(
𝑡𝑝

𝛼 )𝛽−1 − 𝐶𝑝 +  𝐶𝑘(
𝑡𝑝

𝛼 )𝛽

𝑡𝑝
2 = 0 (28) 

𝑡𝑝
∗ =  𝛼 (

𝐶𝑝

𝐶𝑘(𝛽 − 1)
)

1
𝛽

 (29) 

4. CASE STUDY 

We hypothesize that the proposed method, which 

incorporated RUL prediction into block replacement 

scheduling, leads to cost efficiency in maintenance strategy. 

This hypothesis is induced from that the proposed method 

helps reduce maintenance costs and improve system 

reliability by using values applied to a preventive 

maintenance model tailored to the system's characteristics, 

instead of utilizing the arithmetic mean of predicted values 

for multiple machines. A case study was conducted using 

Optimal preventive replacement time ( )

Machine 1 

failure 

(i)

time 

(ii)
Scheduled preventive replacement time ( )

Machine 2 
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the CMAPSS dataset to validate our hypothesis. The 

objectives were 1) to create RUL prediction models for 

turbofan engine systems and 2) to find an optimal 

replacement time and cost based on RUL prediction models 

and age and minimum-repair block replacement models. 

The CMAPSS dataset records operational parameters, 

sensor data, and RULs of turbofan engine systems, provided 

by the National Aeronautics and Space Administration 

(NASA) (Lei et al., 2018). While the dataset is widely used 

in RUL prediction studies for its completeness and 

reproducibility, its reliance on simulated data limits its 

direct applicability to real-world industrial environments, 

where data are often incomplete, noisy, or inconsistent. To 

address this, future studies could validate the proposed 

methodology using real-world data from industries such as 

aviation, energy, or manufacturing. Collaborations with 

industrial partners could provide access to operational and 

maintenance data, enabling a more comprehensive 

evaluation of the model’s performance in real scenarios. In 

addition, the dataset is useful for generating and validating 

models because it contains the real RULs of all engines and 

is subdivided into a training or testing dataset. However, the 

CMAPSS dataset excludes cost data relevant to replacement 

and maintenance. Accordingly, certain costs must be 

inevitably assumed. In this study, the cost of a single 

turbofan engine was estimated at $200,000. This assumption 

was based on interviews with two experts in the rotating 

machinery domain. It is important to note that actual 

turbofan engine prices are typically not disclosed due to 

business and security policies. A sensitivity analysis is 

conducted to investigate the changes in the total 

replacement cost with regard to changes in 𝐶𝑝 and 𝐶𝑓, in the 

case study. While this analysis provides valuable insights, 

future studies could expand on this by incorporating 

sensitivity analyses for additional factors, such as variations 

in system reliability, maintenance schedules, or operational 

environments. These analyses would allow the methodology 

to be tailored to a wider range of industries with diverse cost 

structures and maintenance requirements, enhancing its 

practical applicability. 

The following tools were used for data analysis: Python for 

programming language and environment; scikit-learn library 

for LR, SVR, RF, and Ridge regression-based modeling; 

XGBoost library for XGBoost-based modeling; Keras 

library for ANN-based modeling; Reliability library for 

Weibull distribution fitting and replacement-cycle 

optimization.  

4.1. Data specification 

The CMAPSS dataset comprises four sub-datasets, as listed 

in Table 1. We used only two sub-datasets, named FD001 

and FD003, because they provide complete datasets that 

contain twenty-one sensor data individually on one-hundred 

turbofan engines. Refer that Aydemir and Acar (2020) and 

Liu et al. (2021) used these two sub-datasets for the same 

reason. Figure 9 illustrates the main parts of the turbofan 

engine. Table 2 lists the sensor attributes for the CMAPSS 

dataset. Note that “use” indicates whether the attribute is 

used or not in the case study (will be explained in Section 

4.2). The details of the CMAPSS dataset are as follows 

(Chao et al., 2021; Saxena et al., 2008): 

⚫ A turbofan engine is primarily composed of rotating 

parts, including a fan, low-pressure compressor (LPC), 

high-pressure compressor (HPC), low-pressure 

turbine (LPT), and high-pressure turbine (HPT).  

⚫ The sensor data include numerical values that were 

measured and recorded historically without data 

missing during the run-to-failure of each turbofan. 

The data may reflect the behavior of failures and 

deteriorations owing to continuous rotations in the 

parts.  

⚫ The sensor data are measured not on a timestamp, but 

on a cycle unit. Hence, “cycle” is used as the time-

unit for RUL prediction.  

⚫ Real RULs were included, which served as ground 

truth. The ground truth enables the measurement of 

model performance by comparing the difference 

between the real and predicted RULs.  

⚫ Each sub-dataset was subdivided into training and

 

Item 
Sub-dataset 

FD001 FD002 FD003 FD004 

Engines in training dataset (unit) 100 260 100 249 

Engines in testing dataset (unit) 100 259 100 248 

Min/Max in training dataset (cycle) 128/362 128/378 145/525 128/543 

Min/Max in testing dataset (cycle) 31/303 21/367 38/475 19/486 

Table 1. Overview of the CMAPSS dataset
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testing datasets. This allowed dataset partitioning to 

be skipped 

⚫ The four sub-datasets comprising FD001–FD004 

involved different fault modes. FD001 and FD002 

incorporated one fault mode (HPC fault), whereas 

FD003 and FD004 incorporated two fault modes 

(HPC and fan fault).  

⚫ Each turbofan engine begins with different degrees of 

initial wear and manufacturing conditions; however, 

these are unknown.  

⚫ A turbofan engine operates in a normal state from the 

start but develops a fault at some point. 

 

 
Figure 9. Scheme of a turbofan engine (re-edited from 

Frederick et al., 2007) 

 

Symbol Attribute Unit Use 

T2 
Total temperature at 

fan inlet 
°R  

T24 
Total temperature at 

LPC outlet 
°R o 

T30 
Total temperature at 

HPC outlet 
°R o 

T50 
Total temperature at 

LPT outlet 
°R o 

P2 Pressure at fan inlet psia  

P15 
Total pressure in 

bypass-duct 
psia  

P30 
Total pressure at HPC 

outlet 
psia o 

Nf Physical fan speed rpm o 

Nc Physical core speed rpm o 

epr Engine pressure ratio -  

Ps30 
Static pressure at HPC 

outlet 
psia o 

phi 
Ratio of fuel flow to 

Ps30 
pps/psi o 

NRf Corrected fan speed rpm o 

NRc Corrected core speed rpm o 

BPR Bypass ratio - o 

farB Burner fuel-air ratio -  

htBleed Bleed Enthalpy - o 

Nf_dmd Demanded fan speed rpm  

PCNfR_dmd 
Demanded corrected 

fan speed 
rpm  

W31 HPT coolant bleed lbm/s o 

W32 LPT coolant bleed lbm/s o 

Table 2. Sensor attributes in CMAPSS 

4.2. Result of RUL prediction  

We generated and evaluated RUL prediction models by 

following the RUL prediction modeling procedure, as 

described in Section 3.1. The CMAPSS dataset files were 

acquired from their data sources. These files were converted 

from the original text (.txt) into comma-separated value 

(.csv) formats for convenient data analysis. In feature 

selection, we excluded operational parameters because they 

were not used for RUL prediction. In addition, we excluded 

the sensor attributes that are irrelevant to the RUL 

prediction in our feature analysis. Figure 10 shows the three 

types of sensor attributes. In Figure 10 (a) and (b), “T2” and 

“P15” sensor attributes need to be excluded because the 

former has a constant value, and the latter has categorical 

values. In Figure 10 (c), “Nf” sensor attribute needs to be 

selected as a feature because it may represent health states 

of engines while it shows increasing trends. In this regard, 

we include the 14 sensor attributes as the features for RUL 

prediction (marked ‘o’ in Table 2). We exclude “T2”, “P2”, 

“epr”, “farB”, “Nf_dmd”, “PCNfR_dmd”, and “P15”. 

During data preprocessing, we performed min-max 

normalization to scale all the values of each sensor attribute 

in the range of 0-1. Data cleaning was not conducted 

because missing data were not found, and noise data were 

unknown.  

For machine learning modeling, we generated RUL 

prediction models using LR, SVR, RF, ridge regression 

(hereafter, Ridge), XGBoost (XGB), and ANN. We 

heuristically determined the hyperparameters of individual 

models. The hyperparameters were determined as follows: 

radial basis function as a kernel in SVR; 100 as the number 

of trees, and 6 as the maximum depth in RF; 500 as an alpha 

(a penalty term to represent a constraint) in Ridge, 100 as 

the number of trees, and 6 as the maximum depth in XGB; 

14 as the number of nodes in an input layer, 10 as the 

number of hidden layers, and rectified linear unit as an 

activation function in the ANN. 

Fan

Low pressure turbine

(LPT)

Nozzle

High pressure turbine

(HPT)
Low pressure compressor

(LPC) High pressure compressor

(HPC)

fan spool

speed
Combustor

core spool

speed
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We evaluated six RUL prediction models based on 

performance metrics, including RMSE and MAPE, as 

expressed in Equations (15) and (16), respectively. Tables 3 

and 4 present the performance results for the FD001 and 

FD003 sub-datasets, respectively. As listed in Table 3, XGB 

achieved the lowest RMSE and MAPE, indicating the best 

prediction accuracy. As shown in Table 4, XGB had the 

lowest RMSE, although ANN had the lowest MAPE.  

Additionally, the coefficient of determination (R²) was 

calculated to further evaluate the predictive performance of 

the models. The results showed that XGB achieved the 

highest R² value of 0.815, followed by ANN (0.808) and RF 

(0.791). SVR also attained 0.785, while LR and Ridge both 

recorded 0.722. These results indicate that XGB 

demonstrated the strongest correlation between predicted 

and actual RUL values, reinforcing its superior predictive 

capability. 

Consequently, the XGB-based model in FD001 showed the 

best prediction accuracy, with an RMSE of 17.86 and a 

MAPE of 11.04%. This result demonstrates the suitability of 

XGB for RUL prediction in systems with limited but 

meaningful features, such as turbofan engines. The practical 

implications of this accuracy are significant: industries 

implementing this model can expect improved reliability in 

failure forecasts, leading to fewer unexpected downtimes. 

For instance, in the aviation sector, this model could enable 

airlines to optimize engine replacement schedules, 

minimizing both the risk of in-flight failures and operational 

disruptions. Similarly, manufacturing plants could adopt this 

approach to align maintenance actions with production 

schedules, improving overall equipment effectiveness. We 

infer that XGB generates decision trees correctly to reduce 

errors at individual branches sequentially and effectively 

during the training of datasets, where the number of features 

is relatively small. Li et al. (2018) also demonstrated that a 

decision-tree-based approach performs well in numerical 

prediction, particularly when the number of features is 

small.  

Hence, the XGB-based model in FD001 was used as the 

RUL prediction model in the case study because it 

outperformed the other models in both FD001 and FD003. 

Figure 11 shows a visualization of Alpha-Lambda-RMSE 

for different RUL prediction models in the FD001. The X-

axis represents bias (Alpha), the Y-axis indicates error 

magnitude (Lambda), and the Z-axis shows overall 

prediction accuracy (RMSE). The red marker represents the 

actual RUL as a reference point. Models closer to this 

reference exhibit higher prediction accuracy. Among them, 

XGB and ANN perform best, showing minimal bias and 

lower RMSE values. 

 
(a) Constant type 

 
(b) Categorical type 

 
(c) Changeable type 

Figure 10. Types of sensor attributes  

 

 

 

Performance LR SVR RF Ridge XGB ANN Average 

RMSE 21.90 19.25 18.97 21.90 17.86 18.20 19.72 

MAPE (%) 32.28 16.75 19.58 32.30 11.04 12.27 20.73 

Table 3. Prediction result in the FD001 sub-dataset 

 

Performance LR SVR RF Ridge XGB ANN Average 

RMSE 23.88 22.90 22.05 23.88 20.69 22.42 22.64 

MAPE (%) 30.47 19.97 21.46 30.64 16.56 16.42 22.59 

Table 4. Prediction result in the FD003 sub-dataset 
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Number of 

engines 

Average 

(cycle) 

Standard 

deviation 

Range 

(cycle) 

Minimum 

(cycle) 

Maximum 

(cycle) 

Kurtosis Skewness 

100 206.97 39.31 173.09 140.98 314.07 -0.01 0.61 

Table 5. Descriptive statistics of the predicted failure times 

 

Interestingly, the six models in FD001 obtained better 

prediction accuracy, on average, than FD003. It is 

conjectured that the two fault modes in FD003 affected 

these features. Deteriorations can result in the occurrence of 

two fault modes; thus, clearly differentiating and extracting 

the features from the sensor data that compositely possess 

the characteristics of the two fault modes is challenging. 

This phenomenon can negatively affect the prediction 

accuracy of the models. Meanwhile, deterioration induced a 

singular fault mode in FD001, and its features were more 

distinguishable and extractable than those in FD003. 

 
Figure 11. Alpha-Lambda-RMSE for different RUL 

prediction models in the FD001 sub-dataset 

 

Now, we can calculate the predicted failure time by adding 

the predicted RUL to the current time on the turbofan 

engine, as shown in Figure 5 (b). Equation (30) expresses 

the predicted failure time. For example, the predicted failure 

time becomes 148.81 cycles for Engine 1 when its predicted 

RUL is 117.81 and its current cycle is 31. In this manner, 

we obtained all the predicted failure times for the one-

hundred turbofan engines. Table 5 lists the descriptive 

statistics of the predicted failure times. In our prediction, the 

average of the predicted failure times is 206.97 cycles, the 

earliest time is 140.98 cycles on Engine 85, and the latest 

time is 314.07 cycles on Engine 49.   

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 (𝑐𝑦𝑐𝑙𝑒)
= 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑈𝐿 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑦𝑐𝑙𝑒 

(30) 

4.3. Result of replacement time optimization 

We optimized the preventive replacement times by 

following the replacement cycle optimization procedure, as 

suggested in Section 3.2. For this purpose, we derived a 

preventive replacement time to minimize the expected cost 

rate per unit time using the predicted failure times that were 

obtained in Section 4.2. The Weibull distribution was 

applied to obtain the failure times of the 100 engines. We 

estimated 𝛼 and 𝛽 using MLE, as explained in Section 3.2. 

Table 6 presents the 𝛼 and 𝛽 values estimated in the case 

study. Figure 12 presents a probability plot of the Weibull 

distribution for all engines. The failure times exhibited a 

desirable fit with the Weibull distribution, as the majority of 

the black dots were located within the confidence bounds 

(sky blue area), although the two tails of the distribution 

deviated slightly.  

 

Dataset 
Scale parameter  

(𝛼) 

Shape parameter 

(𝛽) 

100 223.46 5.41 

Table 6. Parameters determined for Weibull distribution 

 

 
Figure 12. Weibull probability plot for predicted failure 

times on turbofan engines 

 

4.3.1. Age replacement model 

We applied the age replacement model to determine the 

optimal replacement times and their expected cost rate per 
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unit time for individual engines. For this, we predetermined 

and assumed 𝐶𝑝  and 𝐶𝑓  because the CMAPSS dataset 

excludes cost data, as described in Section 4. 𝐶𝑝  was 

assumed to be $200000 based on an engine’s approximate 

price, whereas 𝐶𝑓  varied from $220000 to $2200000. As 

described in Section 2.2.1, 𝐶𝑓  depends on the operational 

environment and is higher than 𝐶𝑝 owing to the additional 

indirect cost of post-treatment after failure. Accordingly, a 

sensitivity analysis was conducted to determine the change 

in the total replacement cost with respect to the changes in 

𝐶𝑓 and 𝑟 under the given assumptions.  

 Table 7 presents the results of the age–replacement model. 

𝑡0
∗  is determined using the Reliability library in Python 

because 𝑡0
∗  is difficult to obtain mathematically, as 

described in Section 2.2.1. Once 𝑡0
∗  has been determined, 

𝐶𝐴(𝑡0
∗) and 𝐶𝐴(∞) are calculated using Equation (22) and 

Equation (23), respectively. In addition, cost-effectiveness 

was analyzed to compare the benefits of the model between 

preventive replacement and failure replacement. The cost-

effectiveness, i.e., 𝐶𝐴(𝑡0
∗) /𝐶𝐴(∞) , is obtained using 

Equation (25). Here, the MTTF is 206.11 cycles as it is 

derived from Equation (24).  

As shown in Table 7, 𝑡0
∗ decreases, and 𝐶𝐴(𝑡0

∗) increases as 

𝑟 increases. This result indicates that an increase in indirect 

costs is accompanied by faster replacement cycles and 

higher total maintenance costs. In other words, sustaining a 

small difference between 𝐶𝑝 and 𝐶𝑓 can be a good strategy 

in PM because it makes the engines operate longer as well 

as expends lower maintenance cost. In contrast, 𝐶𝐴(𝑡0
∗) /

𝐶𝐴(∞)  decreases as 𝑟  increases. A lower 𝐶𝐴(𝑡0
∗) /𝐶𝐴(∞) 

implies superior cost-effectiveness of preventive 

replacement to failure replacement, as 
𝐶𝐴(𝑡0

∗) 

𝐶𝐴(∞)
= 1 stands for 

no difference between the two replacements. 

 

𝐶𝑝 𝐶𝑓 𝑟  𝑡0
∗ 𝐶𝐴(𝑡0

∗) 𝐶𝐴(∞) 
𝐶𝐴(𝑡0

∗)

/𝐶𝐴(∞) 

200 220 0.1 267.24 1.066 1.067 0.999 

200 240 0.2 232.16 1.147 1.164 0.985 

200 260 0.3 214.42 1.210 1.261 0.959 

200 280 0.4 202.77 1.263 1.358 0.929 

200 300 0.5 194.27 1.307 1.456 0.898 

200 320 0.6 187.64 1.346 1.553 0.867 

200 340 0.7 182.29 1.380 1.650 0.837 

200 360 0.8 177.73 1.411 1.747 0.808 

200 380 0.9 173.78 1.439 1.844 0.781 

200 400 1 170.44 1.465 1.941 0.755 

200 1200 5 126.25 1.951 5.822 0.335 

200 2200 10 110.99 2.214 10.674 0.207 

Table 7. Result of age replacement model 

(𝐶𝑝, 𝐶𝑓, 𝐶𝐴(𝑡0
∗), 𝐶𝐴(∞): thousands $, 𝑡0

∗ : cycles) 

4.3.2. Minimum-repair block replacement model  

We applied the block replacement model to determine the 

optimal replacement times and their expected cost rate per 

unit time on a block comprising 100 engines. We adopted 

the minimum-repair block replacement model, which is 

defined as Case III in Section 2.2.2. This model allows 

failed engines to be recovered with minimal repair by 

reusing second-hand or remanufactured engines; thus, the 

model is useful when it is difficult to detach and repair 

broken parts in a system, such as an engine system. The 

model has an advantage in maintenance compared with 

Cases I and II. However, it may force inventory 

management of second-hand systems and change 

management of 𝐶𝑘.   

Similar to the age replacement model, we predetermined 

and assumed 𝐶𝑝  and 𝐶𝑘  for individual engines. 𝐶𝑘  was 

assumed to be $120000, considering a 40% discount on the 

replacement cost of a new engine (𝐶𝑝=200000). Here, 𝑡𝑝 

was set to 205 cycles as the rounded-down value of the 

average predicted failure time (206.97 cycles in Table 5). As 

shown below, 𝐶𝐵3(𝑡𝑝) was obtained using Equation (26), 

given 𝑡𝑝=205, 𝐶𝑘=120000, and 𝐶𝑝=200000. The values of 

𝑡𝑝 and 𝐶𝐵3(𝑡𝑝) act as ground values for cost comparison in 

the following optimization.  

𝑡𝑝
∗ was determined using Equation (29), and 𝐶𝐵3(𝑡𝑝

∗) was 

obtained using Equation (26). Here, the difference between 

𝑡𝑝=205 and 𝑡𝑝
∗=186.68 is revealed with 18.32 cycles. The 

difference in maintenance costs between 𝐶𝐵3(𝑡𝑝)  and 

𝐶𝐵3(𝑡𝑝
∗)  was $29. Expectedly, these reduced 𝑡𝑝

∗ , and 

𝐶𝐵3(𝑡𝑝
∗) contributed to saving 29$/cycle on each engine as 

the average maintenance cost per unit time.  

𝐶𝐵3(205) =  
𝐶𝑝 +  𝐶𝑘 (

𝑡𝑝

𝛼 )
𝛽

𝑡𝑝

=  
200,000 + 120,000(

205
223.46)5.41

205
= $1343 

 

𝑡𝑝
∗ =  𝛼(

𝐶𝑝

𝐶𝑘(𝛽 − 1)
) 

1
𝛽 = 223.46(

200,000

120,000(5.41 − 1)
)

1
5.41

= 186.68 𝑐𝑦𝑐𝑙𝑒𝑠 

𝐶𝐵3(186.68) =  
𝐶𝑝 +  𝐶𝑘 (

𝑡𝑝

𝛼 )
𝛽

𝑡𝑝

=  
200,000 + 120,000(

186.68
223.46)5.41

186.68
= $1314 

 

We conducted a sensitivity analysis to investigate the 

changes in 𝑡𝑝
∗ and 𝐶𝐵3(𝑡𝑝

∗) with respect to the changes in 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

16 

𝐶𝑘 and 𝐶𝑝. Table 8 presents the sensitivity analysis results. 

𝑡𝑝
∗ decreased, whereas 𝐶𝐵3(𝑡𝑝

∗) continually increased with 

increasing 𝐶𝑘. In addition, 𝑡𝑝
∗ and 𝐶𝐵3(𝑡𝑝

∗) increased as 𝐶𝑝 

increase. From the PM perspective, this result implies that a 

decrease in 𝐶𝑘  is necessary to reduce 𝐶𝐵3(𝑡𝑝
∗) although it 

induces an increase in 𝑡𝑝
∗ . In addition, 𝐶𝑝  needs to be 

decreased to reduce maintenance costs when 𝐶𝑘 remains the 

same. Moreover, decreasing 𝐶𝑘 and 𝐶𝑝 leads to a reduction 

in the total maintenance cost when the replacement time is 

fixed. 

Table 9 lists the changes in 𝑓(𝑡𝑝
∗), 𝑅(𝑡𝑝

∗), and ℎ(𝑡𝑝
∗) in 

the Weibull distribution with respect to the change in 𝑡𝑝
∗, 

given a constant 𝐶𝑝 =200000. 𝑓(𝑡𝑝
∗) and 𝑅(𝑡𝑝

∗)  were 

obtained using Equations (17) and (19), respectively. ℎ(𝑡𝑝
∗) 

was derived from 𝑓(𝑡𝑝
∗)/ 𝑅(𝑡𝑝

∗). As 𝑡𝑝
∗ decreases, 𝑅(𝑡𝑝

∗) 

increases and ℎ(𝑡𝑝
∗)  decreases. This indicates that 𝑡𝑝

∗  is 

proportional to ℎ(𝑡𝑝
∗) and inversely proportional to 𝑅(𝑡𝑝

∗). 

In other words, a short preventive replacement time with 

minimal repair can positively affect the robustness of a 

system owing to its contribution to increasing the system’s 

reliability and decreasing its failure rate. From the PM 

perspective, determining 𝑡𝑝
∗  makes the system reliability 

manageable because of its quantitative influence on the 

failure rate and reliability. In the meantime, it turns out that 

the failure rate follows IFR because 𝛽(=5.41) is larger than 

1 in the Weibull distribution. This is also reasonable in 

terms of physical aspects because each engine is gradually 

worn out as a typical mechanical system. Therefore, 

𝐶𝐵3(𝑡𝑝
∗) satisfies Equation (14) and can be obtained using 

Equation (14). For example, 𝐶𝐵3(𝑡𝑝
∗) is $1314 when 𝑡𝑝

∗ is 

186.68 cycles, as follows:  

𝐶𝐵3(186.68) =  𝐶𝑘  × ℎ(186.68) = 120,000 × 0.01095

= 1314$ 

4.3.3. Cost analysis in sub-block segmentation 

In Section 4.3.2, the optimization results indicate that short 

replacement times result in a reduction in the minimum 

number of repair engines. However, wastage of expenses 

can occur and, in turn, have a negative impact on the total 

operating cost if all engines must be replaced 

simultaneously; nevertheless, some engines possess 

sufficient RULs. Conversely, long replacement times 

positively affect the preventive maintenance cost; however, 

they may induce maintenance inefficiency, as more failed 

engines should be repaired immediately before the 

replacement time arrives. Such a trade-off relationship can 

occur in the minimum-repair block replacement model, 

wherein the “block” is treated as a group of maintenance. 

This trade-off results in an optimization problem. We apply 

block segmentation to overcome this, which partitions an 

entire block into several sub-blocks. Block segmentation 

enables the derivation of 𝑡𝑝
∗  and 𝐶𝐵3(𝑡𝑝

∗)  diversely and 

flexibly on sub-blocks, thereby achieving cost optimization 

and improving the maintenance efficiency.  

We segment the one-hundred engines into three sub-blocks. 

The predicted failure cycles of the individual engines are 

used as criteria for segmentation. This segmentation 

approach offers several advantages: 

⚫ Precision in maintenance strategies: Tailors 

maintenance schedules to the specific RUL 

characteristics of each engine, ensuring efficient 

allocation of resources. 

⚫ Cost efficiency: Minimizes unnecessary expenses by 

avoiding excessive repairs for engines with sufficient 

RUL. 

⚫ Reduced operational downtime: Limits disruptions 

caused by simultaneous failures or repairs, enhancing 

system reliability. 

⚫ Flexibility in scheduling: Provides adaptability to 

varying operational demands, improving the resilience 

of maintenance plans. 

Thus, a short replacement cycle needs to be applied to 

engines in which RULs remain short because it can reduce 

maintenance costs by decreasing the number of minimum-

repair engines. In contrast, a long replacement cycle needs 

to be applied to engines that possess sufficient RULs to 

prevent dissipative replacement expenses. In this regard, 𝑡𝑝
∗ 

(=186.68) is set as the lower threshold, and the top 20% of 

the predicted failure cycles is set as the upper threshold for 

segmentation into three sub-blocks. Table 10 presents the 

descriptive statistics for the three sub-blocks. Sub-block 1 

contains engines that belong under the lower threshold, Sub-

block 2 contains engines that belong over the lower 

threshold and under the upper threshold, and Sub-block 3 

contains engines that belong over the upper threshold.  

Table 11 presents the optimization results of the sub-block 

segmentation. In each sub-block, 𝛼  and 𝛽  are estimated 

using MLE. 𝑡𝑝
∗  was derived using Equation (29), and 

𝐶𝐵3(𝑡𝑝
∗)  was calculated using Equation (26), given 

𝐶𝑝=200000 and 𝐶𝑘=120000. In Sub-block 1, the shortened 

𝑡𝑝
∗  requires five engines to undergo minimum repairs, 

resulting in an increase (+119 $/cycle) in cost to 1433 

$/cycle compared to the original cost of 1314 $/cycle. This 

demonstrates that while frequent replacements can improve 

reliability, they may incur higher costs due to the increased 

repair frequency. Meanwhile, in Sub-block 2, the extension 

of 𝑡𝑝
∗  to 188.23 cycles reduces the number of engines 

requiring minimum repairs to one, reflecting a balance 

between extending operational cycles and controlling 

maintenance costs. The result shows a decrease of 183 
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$/cycle in cost to 1250 $/cycle compared to the original cost 

(1314 $/cycle). In Sub-block 3, no engines require minimum 

repairs under the optimized strategy, resulting in the most 

significant cost reduction of 402 $ per cycle, highlighting 

the efficiency of applying longer replacement cycles for 

engines with extended RULs. The analysis suggests that 

maintaining the original 𝑡𝑝
∗ of 186.68 cycles for engines in 

Sub-block 1 is cost-effective, as it minimizes unnecessary 

expenses while maintaining repair efficiency. In contrast, 

adjusting 𝑡𝑝
∗  for Sub-blocks 2 and 3 achieves significant 

cost savings of up to $183 and $402 per cycle, respectively, 

demonstrating the benefits of segmentation in optimizing 

maintenance strategies for diverse engine conditions. 

Consequently, these optimization results demonstrate the 

monetary benefit from the sub-block segmentation. The 

total maintenance cost was reduced to $23,106,745 (derived 

from optimized 𝐶𝐵3(𝑡𝑝
∗) in three sub-blocks, calculated as 

(166.33 cycles × $1314 × 33) + (209.33 cycles × $1131 × 

47) + (268.48 cycles × $912 × 20)), compared to 

$27,195,858 (derived from fixed 𝐶𝐵3(𝑡𝑝
∗ ), calculated as 

(206.97 cycles × $1314 × 100)), under the conventional 

method. Algorithm 1 expresses the pseudo-code of the cost 

optimization procedure based on the sub-block 

segmentation. The inputs of the algorithm are predicted 

failure cycles (derived from the RUL prediction model), 

optimal replacement time (derived from the minimum-repair 

block replacement model), Weibull parameters (derived 

from MLE), cost parameters (derived from assumption). 

The outputs of the algorithm are the optimal replacement 

time and its corresponding maintenance cost. 

 

 

 

 

 

 

 

 

Algorithm 1: Sub-block Segmentation and Cost 

Optimization 

Input: Predicted failure cycles {T_𝑖}, Optimal replacement 

time 𝑡𝑝
∗  = 186.68, Weibull parameters ( 

𝛼, 𝛽), Cost parameters (𝐶𝑝, 𝐶𝑓, 𝐶𝑘) 

Output: Optimal replacement time 𝒕𝒑
∗ and its maintenance 

cost 𝐶𝑜𝑝𝑡 = 𝐶𝐵3(𝑡𝑝
∗) 

1: Sort {T_𝒊} in ascending order 

2: Determine segmentation thresholds: 

𝑡𝑝
∗_U ← 80th percentile of {T_ 𝑖 } ▷ Upper threshold 

(Top 20% of engines) 

3: Segment engines into three sub-blocks: 

 Sub-block 1: {T_𝑖 | T_𝑖 ≤ 𝒕𝒑
∗} ▷ Engines with lower 

endurance 

Sub-block 2: {T_𝑖 | 𝒕𝒑
∗  < T_𝑖 ≤ 𝑡𝑝

∗ _U} ▷ Medium 

endurance engines 

Sub-block 3: {T_𝑖 | T_𝑖 > 𝑡𝑝
∗_U} ▷ High endurance 

engines (Top 20%) 

4: For each sub-block 𝑗 ∈ {1,2,3} do: 

5: Fit Weibull distribution using (𝛼, 𝛽) for sub-block 𝑗 

6: Compute optimal replacement time 𝒕𝒑
∗_ 𝑗 using: 

Solve Equation (28): 𝑑𝐶𝐵3(𝑡𝑝) / 𝑑𝑡𝑝 = 0 for 

𝒕𝒑
∗_ 𝑗,  Equation (29) ▷ 𝒕𝒑

∗_ 𝑗 

7: Compute expected maintenance cost 𝐶𝑜𝑝𝑡, 𝑗 using: 

Apply Equation (26) 

8: End for 

9: Compare 𝐶𝑜𝑝𝑡 1, 𝐶𝑜𝑝𝑡 2, 𝐶𝑜𝑝𝑡 3 and select 𝒕𝒑
∗ with 

minimum 𝐶𝑜𝑝𝑡 

Return: Optimal replacement time 𝒕𝒑
∗ and its maintenance 

cost 𝐶𝑜𝑝𝑡 

 

𝐶𝑘 
𝐶𝑝 = 180000 𝐶𝑝 = 200000 𝐶𝑝 = 220000 

 𝑡𝑝
∗ 𝐶𝐵3(𝑡𝑝

∗)  𝑡𝑝
∗ 𝐶𝐵3(𝑡𝑝

∗)  𝑡𝑝
∗ 𝐶𝐵3(𝑡𝑝

∗) 

80,000 197.32 1119 201.20 1219 204.78 1318 

100,000 189.35 1166 193.07 1271 196.51 1373 

120,000 183.08 1206 186.68 1314 189.99 1421 

140,000 177.93 1241 181.43 1352 184.66 1462 

160,000 173.59 1272 177.01 1386 180.15 1498 

180,000 169.86 1300 173.20 1417 176.27 1531 

Table 8. Result of sensitivity analysis (𝐶𝑘, 𝐶𝑝, 𝐶𝐵3(𝑡𝑝
∗) : $, 𝑡𝑝

∗: cycle) 
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𝑡𝑝
∗ 𝐶𝑘 𝑓(𝑡𝑝

∗) 𝑅(𝑡𝑝
∗) ℎ(𝑡𝑝

∗) 

201.20 80,000 0.00865 0.56732 0.01524 

193.07 100,000 0.00807 0.63542 0.01271 

186.68 120,000 0.00751 0.68525 0.01095 

181.43 140,000 0.00699 0.72330 0.00966 

177.01 160,000 0.00653 0.75317 0.00866 

173.20 180,000 0.00612 0.77726 0.00787 

Table 9. Result of Weibull distribution functions at 𝐶𝑝 = 200000 (𝐶𝑘 , 𝐶𝑝 ∶ $, 𝑡𝑝
∗: cycle) 

 

Sub-block 
Number of 

engines 

Average 

(cycle) 

Range 

(cycle) 

Minimum 

(cycle) 

Maximum 

(cycle) 

Standard 

deviation 

1 33 166.33 44.97 140.98 185.94 13.31 

2 47 209.33 50.44 187.95 238.39 13.15 

3 20 268.48 73.18 240.88 314.07 21.70 

Table 10. Descriptive statistics of block segmentation 

 

Sub-block 𝛼 𝛽 𝑡𝑝
∗ 𝐶𝐵3(𝑡𝑝

∗) Cost comparison 
Optimization 

selection 

1 172.35 15.00 149.55 1433 + 119/per cycle X 

2 215.51 16.45 188.23 1131   - 183/per cycle O 

3 278.73 12.36 238.64 912   - 402/per cycle O 

Table 11. Optimization in sub-block segmentation (𝒕𝒑
∗: cycle, 𝑪𝑩𝟑(𝒕𝒑

∗), comparison: $) 

 

 

5. DISCUSSION 

5.1. Industrial application strategies  

In this section, industrial application strategies are proposed 

based on the suggested method and case study. To illustrate 

these strategies, scenarios are provided demonstrating RUL 

prediction methods and preventive replacement model 

applications for equipment and components commonly used 

in industrial settings.  

Figure 13(a) presents the prediction and preventive 

maintenance methodology for turbo compressors, depicted 

as a flowchart for better comprehension. Turbo compressors 

are predominantly used in large-scale industries such as 

steel manufacturing, petrochemicals, and gas power plants. 

These devices compress atmospheric air using the 

centrifugal force of the impeller and utilize the compressed 

air to drive or operate various equipment.  

The key characteristic of turbo compressors is their critical 

role in industrial operations; unexpected failures can halt the 

entire production line. Moreover, turbo compressors are 

large, heavy, and difficult to replace with alternative 

equipment due to their unique functionality. Functionally, 

turbo compressors can be divided into components such as 

coolers, motors, pumps, and filters, each comprising 

multiple subparts. Typically, turbo compressors, as one of 

the most vital pieces of equipment on the production line, 

are managed with numerous sensors attached. Given these 

characteristics, machine learning modeling is recommended 

to predict the RUL and failure time of the equipment. 

Considering the nature of the equipment, delays caused by 

component replacements result in increased losses, making 

it crucial to enhance equipment availability. Therefore, in 

terms of component replacement, Case III of the block 

replacement model, which considers availability, is 

prioritized. However, adjustments and refinements can be 

made based on field process conditions, environmental and 

operational variables, and priority shifts. 

Figure 13(b) illustrates the predictive and preventive 

maintenance approach for a wire EDM (Electrical Discharge 

Machining) machine. A wire EDM machine cuts a metal 

workpiece using a thin brass wire. This machine is primarily 

used for precision and complex metal processing in 

industries such as automotive, industrial robot, and large-

scale machinery manufacturing. They are often a part of 

metal processing production lines in manufacturing plants, 

where multiple machines exist and run simultaneously. 

Compared with a turbo compressor, the failures of wire 

EDM machines do not halt the entire production line 
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(a) Turbo compressor 

 

 

(b) Wire EDM machine 

Figure 13. Industrial application scenarios  
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because substitutes of the wire EDM machine exist in the 

line. The replacement model is applied differently based on 

the importance and characteristics of the components. An 

age replacement model is applied when the failure rate 

gradually increases over time or when replacement is 

preferred over repair. For components with a large quantity 

or those subject to repair, a block replacement model can be 

used.  

In practice, the adaptability and scalability of the proposed 

method can be flexibly adjusted depending on operational 

constraints and failure rate distributions in various industries. 

For instance, stochastic variations must be considered in 

wind turbines, hierarchical optimization is required for 

railway infrastructure, and conservative maintenance 

strategies are essential in highly regulated industries like 

energy power plants and aerospace. Therefore, the proposed 

method can be effectively tailored to different industrial 

environments, enabling dynamic and cost-efficient 

maintenance planning across various sectors, including 

manufacturing and large-scale production systems. 

5.2. Potential impacts in industries 

The highlight of the proposed method is to minimize 

maintenance cost and enhance system availability 

simultaneously by integrating machine learning-based RUL 

prediction with a cost-optimal block replacement model. 

Machine learning reduces uncertainty in RUL estimation 

through providing data-driven intelligence beyond statistics.  

The proposed method aimed to optimize preventive 

maintenance by reducing the uncertainty in RUL estimation. 

In industrial environments where multiple machines operate 

simultaneously, traditional maintenance strategies determine 

maintenance schedules typically using the arithmetic mean 

of the RUL values predicted for multiple machines. 

However, such arithmetic mean is limited to account for the 

variability and uncertainty inherent from individual machine 

conditions, thereby leading to premature or delayed 

replacements in traditional maintenance strategies. On the 

contrary, the proposed method achieved a cost reduction of 

2.2% per cycle in the case study, compared with the 

arithmetic mean of predicted RUL values. For large-scale 

manufacturing industries, where maintenance costs can 

reach millions of dollars annually, a 2.2% per cycle cost 

reduction represents substantial economic benefits. 

Additionally, under optimal operating conditions, the 

proposed method theoretically reduced maintenance costs 

by up to 32% (from $1,343 to $912 per cycle). It should be 

noted that cost saving can vary in industrial applications 

depending on system configurations and maintenance 

policies.  

In addition, the proposed method aimed to improve system 

availability toward downtime minimization by optimizing 

maintenance schedules and reducing MTTR (Mean Time To 

Repair). Such schedule optimization in preventive 

replacements can minimize unnecessary downtime and 

improve overall system reliability. Our data-driven method 

aids in achieving more system-efficient operations by 

transitioning from traditional static maintenance strategies.  

6. CONCLUSION  

This study proposes a PM method to predict the RULs of 

multiple mechanical systems to decide their optimal 

replacement times for maintenance cost minimization. First, 

machine learning models were generated to predict the 

RULs of mechanical systems and were evaluated to select 

the best model based on several regression evaluation 

metrics. Second, preventive replacement cycles were 

optimized to minimize maintenance costs based on the best 

RUL prediction model and minimum-repair block 

replacement model. Optimization could be achieved by 

utilizing the predicted RULs to fit the Weibull distribution 

that represented the probability of failure and reliability in 

the PM. 

The contributions of this study are as follows. First, this 

work bridges the theoretical and practical gaps in 

maintenance optimization by integrating predictive analytics 

with actionable preventive strategies. Unlike traditional 

RUL prediction studies that remain at the prediction stage, 

this study demonstrates how to apply RUL predictions to 

optimize maintenance schedules and reduce costs in real-

world industrial settings. Second, the proposed method is an 

intermediator between PM and PdM, that is, it is a PdM-

based PM, enabling industries to transition from static to 

dynamic maintenance strategies. Third, by targeting 

multiple systems grouped as blocks, this study enhances the 

scalability and applicability of maintenance optimization 

methods to complex industrial environments. 

While our method demonstrated cost saving and improved 

maintenance efficiency, some limitations remain. First, the 

proposed method was validated only using the CMAPSS 

dataset, which might not fully capture the variability of real 

industrial settings. Second, the proposed method assumed 

relatively stable failure distributions. Future work will focus 

on validating the proposed method using actual industrial 

datasets to reinforce its applicability in industries. The 

proposed method needs to validate applicability by 

analyzing actual datasets in diverse industrial sectors, such 

as power generation, railways and manufacturing. Another 

future work will increase adaptability of the proposed 

method through integrating a dynamic method in highly 

variable operation conditions. Expectedly, dynamic 

maintenance scheduling needs to be developed in the 

systems with markedly different failure rates or highly 

variable operational conditions owing to uncertainty or 

instability in the environment of the systems. A dynamic 

PdM-PM method would provide deeper insights into 

enhancing adaptability in complex and heterogeneous 

industrial environments. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

21 

 

ACKNOWLEDGEMENT 

This research was supported by the Ministry of SMEs and 

Startups, Republic of Korea, under ‘Continuous Process 

Manufacturing Standardization of Shared Data between 

Facilities/Factories/Businesses in Characteristic Industries’ 

in ‘Smart Manufacturing Innovation R&D Program’ (RS-

2022-00140694). 

 

NOMENCLATURE 

PdM Predictive maintenance 

CM Corrective maintenance 

PM Preventive maintenance 

CBM Condition-based maintenance 

𝑡0 Replacement time 

𝑡0
∗ Optimal replacement time 

𝑇 Failure time 

𝐹(𝑡) Probability distribution function 

𝑓(𝑡) Probability density function 

𝑅(𝑡) Reliability function 

ℎ(𝑡) Failure rate function 

𝐸(𝑡) Expected time 

𝐸(𝑐) Expected total cost 

𝐶𝑝 The total cost of preventive replacement 

𝐶𝑓 The total cost of failure replacement 

𝐶𝑑 Downtime cost 

𝐶𝑘 Minimum-repair cost 

𝐶𝐴(𝑡0) 
Expected cost rate per unit time of age 

replacement model 

𝑡𝑝 Interval of block replacement model 

𝑡𝑝
∗ Interval of optimal block replacement model 

𝑀(𝑡𝑝) Renewal function 

𝑚(𝑡𝑝) Renewal density function 

𝐶𝐵1(𝑡𝑝) 
Expected cost rate per unit time for Case I in 

block replacement model 

𝐶𝐵2(𝑡𝑝) 
Expected cost rate per unit time for Case II in 

block replacement model 

𝐶𝐵3(𝑡𝑝) 
Expected cost rate per unit time for Case III in 

block replacement model 

RMSE Root mean square error 

�̂� Predicted value 

𝑌 Actual value 

𝛼 Scale parameter of Weibull distribution 

𝛽 Shape parameter of Weibull distribution 

DFR Decreasing failure rate 

CFR Constant failure rate 

IFR Increasing failure rate 

MTTF Mean time to failure 

MTTR Mean time to repair 

𝛤 Gamma function 

𝑟 (𝐶𝑓 − 𝐶𝑝)/𝐶𝑝 

MLE Maximum likelihood estimation 
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