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ABSTRACT

To enhance the maintainability of rotating machines, such as
wind turbines, where the response to bearing damage is both
costly and time-consuming, it is essential to predict the pro-
gression of flaking, which is a common rolling bearing fault.
Conventional rule-based methods estimate the magnitude of
flaking by analyzing the time interval of feature vibrations.
However, this method requires trial-and-error adjustments by
experts, limiting its applicability to a wide range of rotat-
ing machines. To overcome this limitation, we developed a
deep learning-based estimation model and demonstrated that
its performance depends on the distribution of time-domain
features in the training data, which are associated with flak-
ing damage. We then analyzed the manner in which these
feature distributions impose limitations on the estimation ac-
curacy of the model. Additionally, we incorporated explain-
ability using Grad-CAM to verify that the extracted features
were aligned with the physical phenomena of flaking dam-
age, thereby confirming the link between the feature vibra-
tions and estimation results. Our experiments under various
training–test split conditions indicate that time-domain shifts
of these features affect the model’s performance, providing
insight into how feature distributions constrain the estimation
of the flaking size.

1. INTRODUCTION

To optimize the performance of rotating machines, it is essen-
tial to regularly assess and diagnose its condition and main-
tain it at an appropriate time. One of the most critical tar-
gets for maintenance is the detection of rolling bearing faults,
which are mechanical components subjected to loads in the
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rotating parts of a machine. Among the various types of
rolling bearing faults, flaking on the raceways of the bear-
ings is the most common. The diagnosis of flaking involves
identifying periodic shocks in bearing vibrations (Randall &
Antoni, 2011).

The development of a method for diagnosing rolling bearing
flaking involves estimating the remaining useful life (RUL)
by determining the size of flaking through vibrations. As the
flaking size increases with continued operation after the on-
set of flaking, it can cause severe problems with the rotational
accuracy, vibration, and acoustics of machines. Using this
diagnosis method, severe damage can be avoided, which is
particularly beneficial for machinery with high maintenance
costs such as wind turbines. A common approach for estimat-
ing the flaking size is to measure the vibration of the rolling
elements of the bearing as they enter and exit flaking and
then calculate the interval between the two events (Sawalhi
& Randall, 2011). Because the flaking progression rate ac-
celerates sharply when the flaking size exceeds the rolling
element pitch interval, estimating the flaking size within the
range below this interval has been confirmed to be effective
in reducing operational risks (Maekawa, Mizokuchi, Taguchi,
Miyasaka, & Shibasaki, 2018).

However, estimating the flaking size from vibrations on a
rule-based basis is time consuming and costly because it usu-
ally requires trial and error with high expertise. High ex-
pertise in installing appropriate vibration sensors and tuning
the parameters of noise reduction methods in vibration im-
proves the detectability of feature vibrations for flaking-size
estimation. The difficulty of detecting vibrations, particularly
those of rolling elements entering flaking, was mentioned in
(Smith, Hu, Randall, & Peng, 2015). Moreover, (F. Zhang,
Huang, Chu, & Cui, 2020) highlighted that when the flak-
ing size expands beyond the rolling element pitch interval,
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the overlapping of the feature vibrations resulting from the
simultaneous entry and exit of multiple rolling elements fur-
ther complicates the size estimation process.

We propose a deep learning-based model for estimating the
flaking size in rolling bearing vibrations, with the aim of re-
ducing diagnostic costs and leveraging the expertise of highly
skilled professionals. Previous studies have mainly focused
on using deep learning models to classify the flaking-damaged
parts of the rolling bearings. (W. Zhang, Peng, Li, Chen, &
Zhang, 2017) proposed deep convolutional neural networks
with wide first-layer kernels (WDCNN) that utilized 1D vi-
bration acceleration waveforms as input and employed large
kernel sizes in shallow layers. Lu et al. (Lu et al., 2023)
proposed a Pulse Induction Convolutional Neural Network
(PICNN) that used the envelope spectrum of the vibration
acceleration waveform as the input, with weights assigned
based on the impact vibration period in the case of bearing
flaking. We applied the CNN-LSTM model to a variety of
flaking size vibration dataset in (Yoshimatsu, Taguchi, Yoshi-
hiro, & Yairi, 2023) to estimate the flaking size. The previous
study did not address the distribution of the feature vibrations
of flaking sizes within the training data.

This study investigated the effect of feature vibration interval
distribution on the performance of a model that estimates the
flaking size. The variations in the distribution were caused
by changes in the flaking size and operational parameters of
the training data. The investigation focused on understanding
how the time-domain feature distribution affects the model
performance. A CNN-LSTM architecture was employed for
the flaking size estimation model. The model’s training data
incorporated test data featuring artificially created defects on
the inner ring of the cylindrical roller bearing as well as flak-
ing that developed through ongoing operation. In addition,
Grad-CAM (Selvaraju, Cogswell, Das, & others, n.d.) was
used to confirm whether the feature vibrations were related
to the estimated results, similar to rule-based methods that
require high expertise.

The contributions of this study are as follows:

1. The relationship between the performance of the flak-
ing size estimation model and the distribution of time-
domain feature vibrations in the training data was veri-
fied.

2. The limitations imposed on the performance of the es-
timation model were analyzed using the distribution of
time-domain features when such relationships were present.

3. The association between the feature vibrations related to
the physical phenomena and estimation results were ver-
ified by incorporating explainability into the model.

The remainder of this paper is organized as follows. Section
2 provides an overview of the proposed method, evaluation
process, and dataset. Section 3 presents the evaluation results,
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Figure 1. Overview of proposed flaking size estimation CNN-
LSTM model.

and Section 4 presents the conclusions.

2. METHODOLOGY

In this section, we present the proposed deep learning-based
methodology for estimating the flaking size of rolling bear-
ings. Section 2.1 discusses how multiple feature vibrations
derived from 1D time-domain signals are captured through
a combined CNN-LSTM framework. Section 2.2 explains
how Grad-CAM to interpret the focus of the trained model
on flaking-induced vibrations. Section 2.3 outlines the over-
all architecture of the proposed model. Section 2.4 describes
the contents of the dataset used. Finally, section 2.5 and
2.6 describes the train-test procedure and data scenarios for
changing the distribution of time-domain feature vibrations
for evaluation.

2.1. CNN-LSTM Model for Multiple Feature Vibrations
in 1D Time Waveforms

A convolutional neural network (CNN) (Lecun, Bottou, Ben-
gio, & Haffner, 1998) is widely used in rolling bearing diag-
nostics, particularly because it can strongly extract frequency-
domain features. CNN excel at capturing short-duration shock
components, which often indicate the presence of flaking.
However, CNN are constrained by their limited receptive field.
This limitation makes it difficult for a CNN to learn the re-
lationships among feature vibrations that occur far apart in
the time domain. (J. Chen et al., 2021) applied a multiscale
CNN to deal with changes in impact vibration intervals due to
differences in the parts on which flaking occurred on rolling
bearings. Few studies have considered the distant or diverse
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event intervals.

To address this challenge, previous studies have explored the
use of sequence models that retain temporal information, or
methods that add positional information to the model dur-
ing data processing. Sequence models include RNN (Elman,
1990), LSTM (Hochreiter & Schmidhuber, 1997), and oth-
ers, such as phased-LSTM (Neil, Pfeiffer, & Liu, 2016), a
variant of LSTM that considers periodic events. CoordConv
was used to add a position channel to the input data (Liu et
al., 2018). Moreover, transformer-based approaches leverage
self-attention to capture the relationships among features at
distant positions by incorporating position encoding to pre-
serve the sequence information (Vaswani et al., 2017). Al-
though these positional methods have not yet been widely
adopted for rotating machinery diagnosis, there are studies
that apply transformers with rotary position embedding (Su et
al., 2024) to bearing-fault detection (Zhou & Farimani, 2023).
However, few studies have directly addressed the impact of
the time-domain position of the multiple-feature vibrations
on the output of the trained model.

Given the goal of flaking size estimation and the known effi-
cacy of CNNs in extracting critical frequency-domain signa-
tures, we adopted a CNN-LSTM model. The CNN identifies
localized shocks, whereas the LSTM layer captures longer
time-domain dependencies, which are important for measur-
ing the intervals between shocks. We intentionally omitted
the integration of position-aware techniques such as Coord-
Conv or rotary position embedding. By excluding these, we
focus on examining how time-domain shifts in the input sig-
nals, caused by changes in flaking size, affect model perfor-
mance in a simpler, more controlled setting.

The CNN-LSTM architecture is suitable for deployment in
condition monitoring environments for rotating machines. Al-
though it features a reduced parameter count compared to
models with advanced time-domain processing capabilities,
such as transformers, it incurs higher computational costs and
relies on sequential processing relative to conventional ma-
chine learning approaches. Consequently, this is less appro-
priate for high-speed execution on memory-constrained edge
devices. However, condition monitoring for systems such
as wind turbines is typically performed at intervals of ten
minutes or longer using Supervisory Control And Data Ac-
quisition (SCADA) systems, which are adequate for track-
ing drivetrain damage that progresses over several hours to
months (Shi, Liu, & Gao, 2021). Therefore, when diagnos-
tics are executed on server-class hardware, the memory foot-
print and processing time of the proposed approach remain
within the practical limits. These considerations substantiate
the efficacy of the CNN-LSTM framework for flaking size
estimation in real-world applications.

2.2. Explainability via Grad-CAM

We employ Gradient-weighted Class Activation Mapping (Grad-
CAM) to investigate whether the intervals between flaking-
induced shocks affect flaking-size estimation. Previous stud-
ies on deep learning-based rolling bearing diagnostics have
mainly explored classification tasks, verifying whether model
decisions correlate with periodic shocks that are also recog-
nized by rule-based methods. For instance, (Li, Zhang, &
Ding, 2019) introduced an attention mechanism to a one-
dimensional vibration waveform classification model and con-
firmed that high attention weights coincide with periodic im-
pacts. (B. Chen, Liu, He, Liu, & Zhang, 2022) proposed
GS-CAM to visualize the relationship between periodic im-
pacts and the classification outputs in more detail.

However, few studies have discussed how such periodic shock
vibrations are directly related to flaking size estimation per-
formance in deep learning models. In this study, we applied
Grad-CAM to determine whether the CNN-LSTM model high-
lights the time-domain feature vibrations of the rolling el-
ement entry and exit into the flaking area when estimating
the flaking size. By comparing the input waveforms with the
Grad-CAM outputs, we verified whether the features learned
by the model were associated with impact vibrations caused
by rolling elements entering and exiting flaking. A quantita-
tive evaluation based on the precise time-domain positions of
the shock vibrations is desirable. Because obtaining such de-
tailed positional data on a large scale requires high-cost sys-
tems, such as absolute angle sensors or high-speed cameras,
which are not available in our dataset, we opted to manu-
ally analyze a subset of the data. This approach allowed us
to identify the time-domain position of the feature vibrations
and use this information for visualization. We hypothesize
that this visualization step demonstrates that the flaking size
estimation of the proposed model is based on physical events,
similar to those targeted by rule-based methods.

2.3. Proposed Model Architecture

Figure 1 illustrates the overall structure of the proposed CNN-
LSTM model. The model is designed to estimate the flak-
ing size from rolling bearing vibration signals and comprises
three main components: Feature Extractor (CNN), LSTM
layer, and regressor. Two channels of 1D signals were input
into the model: the original vibration acceleration waveform,
and a velocity-equivalent waveform obtained by integrating
the acceleration signal. This dual-channel input is motivated
by physical principles from rule-based flaking-size estima-
tion, where low-frequency velocity-dominated signals are as-
sociated with flaking entry, and high-frequency acceleration-
dominated signals are tied to the flaking exit (Maekawa et al.,
2018).

The feature extractor was composed of nine convolutional
blocks, each containing the following layers: a convolutional
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Figure 2. Example of progressed flaking resulting from arti-
ficial defect.

layer with a wide-to-narrow kernel (WDCNN), swish activa-
tion, an average pooling layer, batch normalization (Ioffe &
Szegedy, 2015), and a squeeze-and-excitation (SE) block (Hu,
Shen, & Sun, 2018). This architecture employs progressively
narrower kernels to capture both broad- and fine-scale vibra-
tion characteristics. The model effectively isolates the low-
frequency and high-frequency components associated with
flaking entry and exit events using large kernels in the initial
layers and smaller kernels in the deeper layers. The applied
activation function swish is expressed by the following equa-
tion,

Swish(x) = x · ω(x) (1)

where ω denotes a sigmoidal function. Swish was used in-
stead of ReLU because its smooth, non-monotonic shape em-
pirically yields a better performance and facilitates richer fea-
ture extraction. Average pooling reduces the temporal dimen-
sion of the feature maps and mitigates overfitting by provid-
ing coarse-level features to subsequent layers. Batch normal-
ization stabilizes and accelerates the training by normalizing
the outputs of the convolutional layers, thereby reducing the
internal covariate shift. The SE block adaptively recalibrates
channel-wise feature responses, emphasizing the signal com-
ponents that are highly relevant to the flaking damage.

Following the feature extraction, concatenated features are
fed into the LSTM layer. LSTM integrates the time-domain
context by retaining pertinent information over multiple time
steps. This property is crucial for capturing the sequential na-
ture of flaking events, where the time interval between shocks
can indicate flaking size. The hidden states of the LSTM
track how these feature intensities change over time, allowing
the network to learn the relationship between repeated shocks
and flaking progression.

The output of the fourth convolutional block was targeted for
the Grad-CAM. At this stage, the original 8,192-point wave-
form is downsampled to 512 points, thereby producing a sim-
ilarly reduced resolution in the Grad-CAM result.

2.4. Dataset

To train and evaluate the proposed model, a vibration dataset
was acquired using a cylindrical roller bearing, specifically
the NU2228EM (NSK) model. This bearing was intention-
ally machined to include artificial defects in the inner ring to
simulate flaking, and the size of the flaking progressed dur-
ing the long-term operation (Figure 2). The dimensions of the
artificial defects were 45 mm axial length, 0.3 mm circumfer-
ential length, and 0.2 mm groove depth. The test conditions
were a radial load of 205 kN (P/C = 0.35), a rotational speed
of 1,500 min→1, and circulating lubrication. The dataset con-
sisted of the vibration data acquired from the housing of the
test rig. The bearings in which the flaking occurred were op-
erated under various conditions. The runs were designed to
replicate real-life scenarios in which flaking had progressed,
thereby ensuring a comprehensive dataset.

During the experiments, the test rig was stopped several times
to measure the size of the flaking and to acquire vibration
data corresponding from 0.03 up to 1.44 times the rolling ele-
ment spacing pitch. After each measurement, the test rig was
restarted under a range of conditions, including variations in
load, rotational speed, and sensor placement. This systematic
variation in the operational conditions enabled the acquisi-
tion of vibration data corresponding to a wide array of flak-
ing sizes and configurations. Importantly, for each measured
flaking size, multiple datasets were recorded under different
operational parameters, which enhanced the variability of the
dataset.

The key operating conditions included three rotational speeds
(1,200, 1,500, and 1,750 min→1) and seven radial load lev-
els ranging from 29.3 kN to 205k N. Vibration data were ac-
quired in both radial and axial directions using sensors config-
ured at a sampling frequency of 96 kHz over a duration of 30
s per test. The dataset includes measurements from two test
pieces, each subject to different operational protocols, result-
ing in varying numbers of measurements for each test piece.
Table 1 summarizes the test conditions and measurement pa-
rameters used for data acquisition.

This dataset provides a critical resource for understanding the
relationship between the flaking size and time-domain feature
vibrations. In particular, (Maekawa et al., 2018) confirmed
using a rule-based method that the interval of time-domain
feature vibrations expands with the progression of the flaking
size during testing in this dataset. Consequently, variations in
the train–test split scenarios allow control over the distribu-
tion of these time-domain features in the training data. The
influence of time-domain feature distribution on the flaking-
size estimation performance of the proposed model was then
compared across multiple split scenarios.
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Table 1. Operating and measurement conditions of test for
the various flaking size dataset

Bearing number NU2228EM(NSK)
Bearing type Cylindrical roller
Rotational speed 3 speeds(1,200, 1,500, 1,750 min→1)
Load 7 radial loads(29.3 k - 205 kN)
Test pieces num. 2
All condition num. 220 (Test piece A: 52, B: 168)
Sensor type Accelerometer
Sensor direction Radial, Axial (On housing)
Sampling frequency 96,000 Hz
sampling time 30 s

Table 2. Training conditions

Epoch num. 50
Learning rate 2.5e→4 to 1.0e→3 (WarmUp)
Optimizer Adam
Loss function Mean squared error (MSE)
Train frames num. 61,776 (or 18,200)
Length of frame 8,192
Mini-batch frames num. 32

2.5. Train-Test Procedure

To evaluate the effect of the time-domain feature distribution
within the training data on the performance of the proposed
model in estimating the flaking size, K-fold cross validation
was conducted under three distinct scenarios. In each sce-
nario, the dataset was divided into several folds. Although
cross validation typically involves separate test data, this study
utilized split-fold data for test purposes to maintain the qual-
ity and quantity of flaking size. The remaining folds were
used to train the model.

• Scenario A: The dataset was randomly split into five folds
such that all data corresponding to the same flaking size
were assigned to one fold to avoid data leakage. In this
scenario, the domain shift of the time-domain features
between the folds is expected to be small. This scenario
replicates the methodology of a previous study by the
authors, which confirmed a high flaking size estimation
performance and the extraction of time-domain features
owing to the physical phenomena in (Yoshimatsu et al.,
2023).

• Scenario B: The dataset was sorted in ascending order of
the flaking size and divided into five folds. This resulted
in similar values of the flaking size within each fold, in-
dicating that there was a domain shift in the time-domain
features between the folds.

• Scenario C: The dataset was partitioned into two folds
based on the two test pieces employed in the experiment,
with data from each test piece allocated to distinct folds
comprising 52 and 168 operating conditions, respectively.
Although the domain shift in the time-domain feature
distributions between the folds was minimal, there was
an imbalance in the number of operating conditions rep-
resented in the training and test data.

For each operating condition, the vibration data were seg-
mented into frames consisting of 8,192 points. An equal
number of frames were randomly selected from each file cor-
responding to a given condition, resulting in a maximum of
61,772 frames used for training. For training runs that in-
volved extensive hyperparameter searches, such as those in
subsequent ablation and comparative studies, a subset of 18,200
frames was used. Even with different frame counts across
conditions, the proportion of data corresponding to each test
condition in the training set was maintained so that the time-
domain feature distribution remained unchanged. The output
of the flaking size estimation model was defined as the log-
arithmic ratio of the feature vibration interval corresponding
to the flaking size to the frame length, as expressed by the
following equation:

Y = → ln

(
Pflaking

Pframe

)
(2)

where Y is the true output value. Pflaking denotes the num-
ber of data points equivalent to the ground-truth flaking size.
Pframe denotes the total number of data points in a frame. This
output formulation was chosen to mitigate the learning bias
caused by a large amount of data with extremely short fea-
ture vibration intervals relative to the frame length, thereby
suppressing biased output values for the model.

In each scenario, the data from each fold were used as the
test data, and the remaining folds were used as the training
data. The train-test was repeated for the number of folds.
The performance of the model under different scenarios was
systematically analyzed to assess the influence of the data-
splitting strategies on estimation accuracy and generalizabil-
ity. This comprehensive approach enabled a robust evaluation
of the adaptability of the proposed methodology to variations
in time-domain feature distributions. The training conditions,
including the number of epochs, learning rate scheduling, and
batch size, are listed in Table 2.

2.6. Ablation and Comparative Evaluation

An ablation study was conducted to elucidate the impact of
the individual technical elements incorporated into the pro-
posed method, as well as the overfitting prevention strategies,
on the performance of the model. In this study, we evalu-
ated the contributions of the additional speed channel and SE

5



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

block to investigate how these components enhance flaking
size estimation. Moreover, we examined the effects of over-
fitting mitigation techniques and data augmentation by ana-
lyzing variations in estimation performance when batch nor-
malization, dropout, L2 weight decay, average pooling and
window sliding were added or removed. In all cases, cross
validation was employed for training and evaluation to clearly
delineate the influence of each component. Ultimately, this
evaluation aimed to derive insights for selecting the optimal
technical elements and for effective model improvement in
the proposed framework.

Furthermore, to evaluate the suitability of the proposed method,
we performed a comparative evaluation against alternative
architectures, the details of which are presented in Table 3.
For comparison, we selected a transformer encoder capable
of handling time-domain features through an attention mech-
anism and position encoding and a CNN-based WDCNN,
which is widely utilized in rolling bearing diagnostics. In the
transformer encoder model, a CNN-based embedding layer
was employed to extract local features (Zhou & Farimani,
2023), and the resulting sequential data were fed into the
transformer encoder. In contrast, the CNN-based model adopts
a WDCNN architecture with an enlarged kernel size in the
convolution layer near the input. Both models incorporate a
structure that combines CNN-based local feature extraction
with an expanded receptive field in the time domain. We
conducted cross validation on these architectures and, after
optimizing the hyperparameters, compared their flake size
estimation performance to determine the suitability of each
model for evaluating the influence of time-domain feature
distributions.

Table 3. Comparative Models List

Model
name

Local
feature

extractor

Time-domain
feature

extractor

WDCNN CNN Wide kernel
on 1st CNN layer

Transformer CNN Transformer
encoder

CNN-LSTM CNN LSTM

3. RESULTS

3.1. Results in Scenario A

Figure 3 shows the estimated and truth flaking lengths for
each test dataset under five-fold cross validation performed
in scenario A. This figure shows the flaking sizes (both pre-
dicted and ground truth) as a ratio of the rolling-element pitch
to compare the results across all operational conditions. The

estimation error, defined as the difference between the esti-
mated and true values, has a mean average error of 0.039 pitch
for all 220 conditions, confirming its useful performance in
facility operational decision making. However, the estimation
performance tended to decline for flaking sizes larger than 1.4
pitches. These large flaking sizes corresponded to the operat-
ing conditions closest to extrapolation. In flaking-size estima-
tion, maintaining accuracy for sizes below 1 pitch is critically
important for predicting the remaining useful life of bearings.
Therefore, the impact of reduced extrapolation performance
on excessively large flaking sizes is limited. Overall, these
findings confirm that a deep learning model can accurately es-
timate flaking sizes from bearing vibration data under a ran-
dom train-test split that does not consider the time-domain
feature distribution.

Figure 4 shows an example of the Grad-CAM result when
test data with a flaking size of 0.769 pitch, rotational speed of
1,200 min→1, and an interval of approximately 376 points be-
tween the feature vibrations were input to the trained model
in scenario A. The estimated flaking size was 0.719 pitch,
which indicates a high estimation accuracy. The top and bot-
tom rows show 8,192 points of input normalized accelera-
tion and velocity, and the middle row shows 512 points of
Grad-CAM results, with these waveforms corresponding to
the time-direction position. A part of each row has a colored
area, which indicates the actual timing of the rolling element
entry and exit from flaking. The Grad-CAM results show the
importance of the feature vibration when the rolling element
enters and exits the flaking region. These results indicate that
the trained model with a high size estimation performance in
scenario A emphasizes physically meaningful features, simi-
lar to those used in expert rule-based methods for flaking size
estimation.

Figure 5 presents an example of the Grad-CAM result ob-
tained in scenario A when the trained model received input
with data containing a flaking size of 1.440 pitch, a rotational
speed of 1,500 min→1, and a feature vibration interval of ap-
proximately 564 points. The model estimated a flaking size
of 1.304 pitch, demonstrating reasonable accuracy even for
damage exceeding the 1.0 pitch criterion. In this figure, the
top and bottom display the 8,192 point normalized acceler-
ation and velocity signals, respectively, whereas the middle
panel shows the Grad-CAM output at a resolution of 512
points along the time axis. The colored areas in the figure
highlight the timing of the two rolling elements entering and
exiting the flaking area, with the Grad-CAM activation maps
emphasizing the importance of the corresponding feature vi-
brations. These results indicate that the high-performance
model in scenario A effectively aggregates feature vibrations
from multiple rolling elements to estimate larger flaking sizes,
a task that has proven challenging for previous rule-based ap-
proaches.
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Ground-truth

Figure 3. Comparison of estimates and truth of flaking size
compared to pitch between rollers for each tests in scenario
A. Pitch basis MAE = 0.039.

Entry 

Exit 

Waveform points

Im
po

rta
cn

e
A

m
pl

itu
de

A
m

pl
itu

de

Figure 4. Example of Grad-CAM results in scenario A. Flak-
ing size: Truth: 0.769 pitch, Estimation: 0.719 pitch

3.2. Results in Scenario B

Figure 6 shows the estimated and ground-truth flaking lengths
for each test data under scenario B. A five-fold cross valida-
tion arrangement was designed such that the flaking-size dis-
tributions in the training data differed from those in the test
data. Compared to scenario A, the estimation performance
across a wide range of flaking sizes was lower in scenario
B. The effect of the domain shift on the time-domain features
between the train and test data is likely. This reduction in esti-
mation performance adversely affects the prediction of the re-
maining life because errors in smaller flaking sizes are ampli-
fied over time. These results confirm that the proposed model
has limitations when attempting to estimate flaking sizes that
are not well represented within the time-domain feature dis-
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Roller A Entry Roller A Exit
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Figure 5. Example of Grad-CAM results in scenario A. Flak-
ing size: Truth: 1.440 pitch, Estimation: 1.304 pitch

Ground-truth

Figure 6. Comparison of estimates and truth of flaking size
compared to pitch between rollers for each tests in scenario
B. Pitch basis MAE = 0.239.

tribution of training data.

Figure 7 shows an example of the Grad-CAM result for the
test data frame with a flaking size of 0.08 pitch and a ro-
tational speed of 1,200 min→1 under scenario B. The esti-
mated flaking size was 0.238 pitch, which was an error. The
Grad-CAM results showed that the importance was correctly
high at the time of the flaking entry point of the colored area,
whereas the colored exit timing was higher at a different po-
sition than the exit timing. This mismatch suggests that when
the training data do not include similar time-domain feature
distributions, the model struggles to extract the correct feature
vibrations, leading to reduced estimation performance.
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Figure 7. Example of Grad-CAM results in scenario B. Flak-
ing size: Truth: 0.08 pitch, Estimation: 0.238 pitch

3.3. Results in Scenario C

Figure 8 shows the estimated and truth flaking size in scenario
C (i.e., two-fold cross validation), where the dataset was split
based on the test pieces. In figure 8a, the distribution of time-
domain features is limited to 52 conditions, which are the
number of flaking sizes and operating conditions of the train-
ing data. Therefore, the estimation performance of the test
data was low (MAE = 0.265). By contrast, as shown in Fig-
ure 8b, when the number of flaking sizes and operating condi-
tions included in the training data was 168, the performance
of the flaking size estimation in the test data was improved
(MAE = 0.113). These results indicate that even moderate
improvements in the distribution of time-domain features and
number of conditions present in the training data can improve
the performance of the model.

Figure 9 shows an example of the Grad-CAM results for sce-
nario C, which was trained with test piece data for 168 flaking
sizes and operating conditions. The input data had a flak-
ing size of 0.77 pitch and a rotational speed of 1,200 min→1.
The estimated flaking size was 0.756 pitch, which is a high
estimation performance. The model correctly extracted the
time-domain positions corresponding to both events of the
rolling element entering and exiting flaking. This feature ex-
traction trend was similar to that in scenario A, where the
fold data were randomly split. This confirms that enhancing
the time-domain feature distribution in the training data al-
lows the trained model to effectively extract features that are
in accordance with physical phenomena.

Ground-truth

(a) Train: Test piece B, Test: Test piece A(168 condi-
tions), Pitch basis MAE = 0.265

Ground-truth

(b) Train: Test piece A, Test: Test piece B(52 condi-
tions), Pitch basis MAE = 0.113

Figure 8. Comparison of estimates and truth of flaking size
compared to pitch between rollers for each tests in scenario
C: Data were split by test piece.

3.4. Results in Ablation and Comparative Studies

Table 4 presents the results of the ablation study in which
nine variants of the proposed model were evaluated under the
same data-split conditions as in scenario A. Specifically, the
study compared a full model incorporating all seven technical
components, a baseline model omitting all of them, and seven
additional models, each with one element removed from the
full configuration. The performance was quantified using the
MAE of the estimated flaking size, normalized by the rolling
element pitch. The results indicated that models incorporat-
ing individual components, such as the velocity waveform
channel, SE block, and batch normalization, consistently yielded
improved estimation performance and mitigated overfitting
compared with the baseline. In particular, the exclusion of
batch normalization led to a marked decline in performance,
whereas dropout and data augmentation via window sliding,
although offering moderate benefits, did not exert a strong
influence.
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Figure 9. Example of Grad-CAM results in scenario C 168
conditions train. Flaking size: Truth: 0.770 pitch, Estimation:
0.756 pitch

Table 4. Ablation study results with test metric in scenario A
for the proposed model variants

Variants name Pitch basis MAE
With all elements 0.0445
Without all elements 0.0814
Without velocity ch. 0.0434
Without SE block 0.0428
Without drop out 0.0477
Without batch normalization 0.1261
Without average pooling (with max) 0.0509
Without window sliding 0.0490
Without weight decay (L2) 0.0541

Table 5 presents a comparative evaluation of three distinct
models—WDCNN, transformer encoder, and the proposed
CNN-LSTM—applied under identical data split conditions in
scenario A. The evaluation metric was defined as the MAE,
which was computed as the ratio of the estimated flaking size
to the rolling element pitch in the test data. All methods in-
corporated effective overfitting prevention techniques, such
as batch normalization, as evaluated in our ablation study.
Notably, the proposed CNN-LSTM model achieved superior
performance in flaking size estimation compared to the trans-
former encoder, which is recognized for its efficiency in han-
dling temporal information, and the CNN-based WDCNN.
These results substantiate that the CNN-LSTM architecture is
well suited to the dataset scale and extraction of time-domain
features in this study, providing an appropriate framework for

Table 5. Compalative study results with test metric in sce-
nario A for the proposed model variants

Model name Pitch basis MAE
WDCNN 0.0565
Transformer 0.0937
CNN-LSTM (Proposed) 0.0445

examining the influence of time-domain feature distributions.

3.5. Discussion

In summary, these results demonstrate that the distribution
of time-domain features in the training data critically affects
the ability of the proposed model to estimate flaking sizes in
rolling bearings. The estimation performance remained high
under random splits without significant domain shifts. How-
ever, when substantial portions of the time-domain feature
distribution are absent from the training data, the estimation
errors increase, and the Grad-CAM results reveal a focus on
nonmeaningful vibrations. Furthermore, improving the va-
riety of operational conditions in the training set can over-
come these limitations, thereby increasing the performance
of the flaking size estimation and aligning the extracted fea-
tures with those used in rule-based approaches.

Finally, it is important to note that all experiments in this
study were performed on a single test rig with a fixed bearing
specification, where changes in the frequency-domain fea-
tures were relatively small. To ensure broader applicability
for industrial use, future work should simultaneously con-
sider the frequency- and time-domain feature distributions
under diverse machine, installation, and measurement con-
ditions. Additionally, verifying the benefits of domain gener-
alization with broader datasets may not only improve flaking-
size estimation but also advance fault diagnosis and remain-
ing useful life prediction across various types of rotating ma-
chines.

4. CONCLUSION

We proposed a CNN-LSTM model for estimating the flak-
ing size of rolling bearings from vibration signals. We con-
trolled the distribution of time-domain features in the train-
ing data by splitting the dataset under multiple scenarios. We
verified that the estimation performance improved when the
time-domain feature distribution was diverse and the domain
shift between the training and test data was reduced. We also
applied Grad-CAM to confirm that the features contributing
to the accurate estimation were aligned with the physically
meaningful vibrations observed in rule-based diagnostics. In
scenarios with a high estimation accuracy, the model high-
lights the essential shock events corresponding to the entry
and exit of rolling elements into the flaked area.
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Furthermore, practical condition monitoring of rotating ma-
chines requires comprehensive coverage of both time- and
frequency-domain features. Consequently, it is necessary to
assess the domain generalization capability of the model across
diverse conditions including various bearing types, sizes, dam-
age states, operating parameters, and measurement setups. In
addition, enhancing the dataset with a precise time-domain
damage position is necessary for large-scale quantitative as-
sessments of the extracted features using explainable AI. These
efforts aim to broaden the range of feature distributions and
facilitate the industrial implementation of the proposed ap-
proach. In future research, the robustness of this method
can be further enhanced by applying techniques such as rep-
resentation learning, domain adaptation, and domain gener-
alization to datasets acquired under more varied conditions,
thereby extending its applicability to a wide array of rotating
machines.
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