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ABSTRACT

The development of new modes of transportation, such as elec-
tric vertical takeoff and landing (eVTOL) aircraft and the use
of drones for package and medical delivery, has increased the
demand for reliable and powerful electric batteries. The most
common batteries in electric-powered vehicles use Lithium-
ion (Li-ion). Because of their long cycle life, they are the
preferred choice for battery packs deployed over a lifespan of
many years. Thus, battery aging needs to be well understood to
achieve safe and reliable operation, and life cycle experiments
are a crucial tool to characterize the effect of degradation and
failure. With the importance of battery durability in mind,
we present an accelerated Li-ion battery life cycle data set,
focused on a large range of load levels, for batteries composed
of two 18650 cells. We tested 26 battery packs grouped by: (i)
constant or random loading conditions, (ii) loading levels, and
(iii) number of load level changes. Furthermore, we conducted
load cycling on second-life batteries, where surviving cells
from previously-aged packs were assembled to second-life
packs. The goal is to provide the PHM community with an
additional data set characterized by unique features. The ag-
gressive load profiles create large temperature increases within
the cells. Temperature effects becomes therefore important
for prognosis. Some samples are subject to changes in am-
plitude and number of load levels, thus approaching the level
of variability encountered in real operations. Reassembling
of survival cells into new packs created additional data that
can be used to evaluate the performance of recommissioned
batteries. The data set can be leveraged to develop and test
models for state-of-charge and state-of-health prognosis. This
paper serves as a companion to the data set. It outlines the
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design of experiment, shows some exemplifying time-series
voltage curves and aging data, describes the testbed design and
capabilities, and also provides information about the outliers
detected thus far. The data set is publicly available for down-
load on the NASA Ames Prognostics Center of Excellence
Data Repository1.

1. INTRODUCTION

The transformation of the transportation sector to environmen-
tally friendlier means observed in recent years is expected to
continue in accelerated fashion within the foreseeable future.
These sustainable transportation modalities include electric
powered cars, electrical vertical take-off and landing aircraft,
as well as small fixed-wing aircraft and rotorcraft (drones).
What all these vehicle types have in common is that the drive-
train represents the main cost driver, where the battery pack
alone can share up to 40% of the overall vehicle cost (Lutsey
& Nicholas, 2019). Knowledge about usage based battery
degradation is important to ensure cost-optimized, reliable
and safe operations. Although recent developments concern-
ing battery types like Lithium-Air (Girishkumar, McCloskey,
Luntz, Swanson, & Wilcke, 2010) or Sodium-ion (Hwang,
Myung, & Sun, 2017), (Yabuuchi, Kubota, Dahbi, & Komaba,
2014) are promising and might lead to future deployment in
electric vehicles, the vast majority of today’s electric-powered
vehicles relies on packs composed of Lithium-Ion (Li-ion) or
Lithium-Polymer (Li-Po) cells.

One crucial component in understanding usage-based battery
degradation is the acquisition of large and diverse experimen-
tal data sets that can be used for both validation of existing
battery degradation models and building new experimental
data-based as well as hybrid models. Many battery degrada-
1https://www.nasa.gov/intelligent-systems-division/
discovery-and-systems-health/pcoe/pcoe-data-set
-repository/
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tion models rely on electrochemistry-based principles, which
can accurately predict the state-of-charge (SOC) and state-of-
health (SOH), through carefully performed parameter estima-
tion (Karthikeyan, Sikha, & White, 2008). This parameter
estimation process usually requires validation using experi-
mental data. Other battery capacity degradation and remaining
useful performance studies that utilize large amounts of ex-
perimentally gathered data includes the contribution of (Xing,
Ma, Tsui, & Pecht, 2013), where an ensemble model with
fused empirical and polynomial regression components was
validated against experimental battery capacity data. Purely
data-driven approaches and combined electrochemistry and
data-based models require a large amount of experimental data
for model training and parameter identification (Li, He, Su, &
Zhao, 2020) (Shen, Sadoughi, Li, Wang, & Hu, 2020).

While, in literature, various experimental battery life cycle
studies are publicly available, gaps still remain. Many avail-
able Li-ion battery life cycle studies have been conducted
using single battery cells cycled at low current levels, which
only partially reflect the cycle behavior of batteries deployed
in real applications. Data sets where samples are subject a
wide range of different load levels are rarely available. So
are data sets with overloading conditions that exceed the cell
temperature limits and fully exhaust the cell current limits.
Battery life cycle data gathered from aging entire packs as
opposed to single cells are only published to a limited extend.
On the other hand, such data offers crucial information about
batteries stressed at their limits, which is likely to occur in
real-life applications.

The data set we present here is characterized by unique fea-
tures with respect to existing, older data sets, as discussed in
the next Section. To achieve this goal, we opted to develop
our own testbed, which allowed us to control every aspect of
the experimental campaign.

With this approach, we ensured to collect a data set covering
a wide range of possible deployments and a balanced design
of experiments. The data set is pubicly available and can be
downloaded from the NASA Prognostics Center of Excellent
Data Repository (upon acceptance, the link to the data set will
be added here.).

The remainder of this paper is organized as follows. Section
2 offers a brief overview of older experimental studies and
how the proposed data set compares against them. Section
3 details the design of experiments. It describes the type of
batteries we utilized, the rationale behind the loading profile
choice and the recommissioning when only one of the cells
failed. Section 4 summarizes the critical features of the data
set and shows sample curves, how aging effect was tracked,
as well as outliers we detected. Section 5 presents the design
of the self-developed test-bed including hardware design and
architecture. The paper also describes the repository structure
in Section A.

2. LITERATURE REVIEW

This section provides an overview of previously conducted
Li-ion battery testing studies, where we want to highlight
key findings from each study, possible applications and put
them in context of our own work. All data sets listed in the
following summary are publicly available.

The Center for Advanced Life Cycle Engineering (CALCE)
at the University of Maryland provides a life cycle data set
for 15 prismatic CS2 cells. This study focused on different
discharge profiles while the charging profiles remain consis-
tent across the entire fleet of batteries. The batteries were
divided in 6 groups subjected to different discharge profiles,
where constant current discharge levels and variable current
levels were used to age the batteries until reaching a defined
end of performance capacity level. The different aging char-
acteristics for each group of batteries also comprised partial
charge and discharge profiles to simulate life cycle behavior
of batteries used in real world applications. In another, similar
study, a different prismatic cell type was cycled where, apart
from different cycling profiles, also variations in ambient air
temperature were applied to some of the battery cell groups.
The life cycle studies conducted by CALCE provide an ex-
tensive data set for single Li-ion batteries cells taking into
account variations in operation environments as as well as
realistic user operation characteristics. Publications utilizing
the aforementioned data sets include (He, Williard, Osterman,
& Pecht, 2011) and (Williard, He, Osterman, & Pecht, 2013).

Sandia National Laboratories conducted a battery life cycle
study involving 18650 battery cells of three different chem-
istry types (NCA, NMC, LFP) under various cycling condi-
tions (Preger et al., 2020). The batteries were cycled on a
multi-channel battery testing system placed within a thermal
chamber to control ambient air temperature. Different groups
of batteries were cycled at different ambient air temperatures,
discharge current levels and depth of discharges. Each bat-
tery was cycled until reaching 80% of initial capacity which
authors defined as EOL for that study. In a further life cycle
study Li-ion cells were subjected to cell abuse testing con-
ditions. Here, 18650 cells of four different cell chemistries
(LCO, LFP, NCA, NMC) were subjected to increasing current
levels at different ambient air temperatures until aborting the
cycling procedure when reaching the maximum cell tempera-
ture specified by the manufacturer.

Stanford University, in collaboration with MIT, published two
battery life cycle data sets using 18650 LFP cells, (Severson et
al., 2019; Attia et al., 2020). Both data sets focused mainly on
the effect of different charging profiles on capacity degrada-
tion, where a large number of different fast charging profiles
were applied, while the same discharge profile was used across
the entire battery fleet. In the first data set, 135 cells were
cycled to EOL and in the second data set further 135 cells
until reaching 20% capacity degradation. Both data sets can
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be used for battery SOH and remaining useful life (RUL)
prediction models, as well as for optimization of charging pro-
files to minimize battery degradation as function of charging
conditions.

The Prognostics Center of Excellence (PCoE) at NASA Ames
published four data sets which can be divided into two groups.
Two of them provide life cycling data of 18650 battery cells
conducted on a testbed in laboratory conditions. In the first
study, 34 cells with 2Ah capacity were cycled at discharge
current levels up to 4A divided in groups subjected to dif-
ferent loading conditions, ambient temperatures and end-of-
discharge (EOD) voltages, until reaching a defined end-of-life
(EOL) at 12%, 20% or 30% of capacity degradation (Saha
& Goebel, 2007). In a second life cycle study 28 LCO bat-
tery cells were cycled at variable loading conditions between
0.5A and 4A (Random walk discharge) or applying pulsed
current, where discharge cycles with pauses between sections
of applied loading were conducted (Bole, Kulkarni, & Daigle,
2014). The cells were divided into groups cycled at room
temperature and controlled ambient air temperature at 40C.
Both of the aforementioned data sets collected single-cell data,
opposed to entire battery packs. The applied current levels
remained in the range of 4A, which, in case of the 2.0Ah and
2.1Ah rated cells used, corresponds to 2 C. Both data sets
were used in several studies aiming to forecast SOH and SOC
for Li-ion battery cells, where the data was either used for
validation of existing models or training of data-based models.

The University of Oxford published a Li-ion battery degra-
dation data set that aims to capture the path-dependence of
battery aging (Raj, Wang, Monroe, & Howey, 2020; Raj,
2020). Here, the correlation of both aging modes, calendar ag-
ing at rest and cyclic aging is considered while aging profiles
are applied to 4 groups of cells. Two groups are aged accord-
ing to one day of cycling and 5 days of aging at rest, and the
other two groups are aged at two days of cycling and ten days
of aging at rest. The study gives insights about degradation
mechanisms that depend on both aging modes.

The‘‘Electric Vehicle Enhanced Range, Lifetime and Safety
Through Ingenious Battery Management’’ project published a
data set that focuses on capacity loss as function of different
ambient air temperature ad life cycling at different C-rates.
This data set contains a total of 28 Li-ion cells type 18650 sub-
ject to different ambient air temperatures as well as charge and
discharge rates. The intent was to gathered data on different
environmental conditions that can be encountered during real-
world electric vehicle operations (Trad, 2020; Govindarajan,
2021; Trad, 2021).

2.1. Novelty of the Proposed Data Set

Differently from existing works, the data we present in this
manuscript addresses aging of pack-level specimens, including
electrode connection and wiring, rather than studying degra-

Samsung INR18650-25R

Spec. Unit

Chemistry NCA -
Max. voltage 4.2 V
Min. voltage 2.5 V
Max. cont. discharge current 20 A
Max. pulse current (< 1 sec) 100 A
Rated capacity 2.5 Ah

Table 1. Li-ion battery cell specifications.

dation of single cells. We aged the battery packs at a wide
range of current levels, up to 8 C, hitting the maximum current
rating suggested by the manufacturer. On the other hand, most
data sets we found focused on discharge current levels in the
1 C - 3 C range. This unique property allows the study of
batteries under realistic loading profiles. Some of the samples
(i.e, some of the batteries) are subject to a single load level
throughout their life, some are subject to two load levels, and
some are subject to three load levels. This create a unique
variety of aging profiles. The high current profiles enable
the recording of the temperature build-up as a direct effect of
power dissipation during discharge, which is an important vari-
able to develop prognostic models. Contrarily, existing studies
focus on different ambient air temperatures. Additionally, this
data set extends the life cycle study to recommissioned battery
packs where the loading conditions vary between different
stages of life and we deploy previously aged cells for a second
life. To the best of our knowledge, no data set with such
recommissioning data has been published yet.

3. DESIGN OF EXPERIMENTS

3.1. Battery Type

We selected the INR18650-25R Li-ion battery cell manufac-
tured by Samsung based on a Nickel-Cobalt-Aluminium chem-
istry (‘‘Introduction of INR18650-25R’’, 2013). A summary
of the battery specifications provided by the manufacturer is
listed in Table 1. We assembled two 18650 cells in series (2S)
to replicate aging behavior of a pack instead of a single cell.
We used double-layered nickel plates attached through spot
welding to the electrode surfaces to accommodate the high
current levels passing through the cells. To further improve
the ability to handle high current levels we use 12 AWG cop-
per wires in a double-wire electrode connection to split the
current flow on the positive and negative side of the battery
pack. A thermistor sensor at the ground connection of each
pack allowed us to measure the cell surface temperature during
cycling, Figure 1.
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Figure 1. Fully assembled battery pack in 2S configuration.

Figure 2. Load profile of a quadcopter drone during missions
with different payloads.

3.2. Selection of Loading Profiles

This battery life cycle data set is intended to replicate battery
aging resulting from operation similar to real-world applica-
tions. Possible real world deployments include the operations
of quadcopters or eVTOLs. In case of small quadcopters,
for example, waypoint-based missions might produce quasi-
constant load while cruising in-between waypoints, and higher
or lower current draw based on the relative direction between
wind speed and trajectory, as well as within-mission changes
of payload (e.g., package delivery). As an example of a load
profile on a regular drone operation, Fig. 2 shows the current
drawn from a battery deployed on a quadcopter drone sub-
jected to different payloads. The signals refer to a steady-state
condition where the drone hovered with different payloads,
showing a quasi-constant current draw when the payload is
fixed. These steady-state signals then changes during the dif-

Constant profile [A]

9.3 12.9 14.3 16.0 19.0

Variable profile (avg. current) [A]

14.3 17.0

Table 2. Constant and variable current levels. Two batteries
were subjected to each load level.

ferent stages of flight, showing a step-wise behavior (ignoring
short spikes due to maneuvers). Other battery powered ap-
plications like electric cars can also show large variations in
loading conditions over the entire lifespan or within a single
discharge cycle, e.g. aggressive discharge during longer uphill
drives and mild battery loading during downhill drives.

Therefore, we opted to design a life cycle experiment with
batteries covering either constant or variable loading within
the discharge cycles and mild as well as aggressive average
loading over lifetime. Both constant and variable load levels
expand over a wide range of possible battery discharge mis-
sions. To remain within the battery cell load limits of 20 A,
we defined constant current levels ranging from 9.3A to 19.0A
and variable load missions ranging from 13 to 16A and 16 to
19A. Table 2 lists the load levels for batteries that were subject
to one loading condition. These load levels were assigned to
two battery packs each.

Charging profiles and resting time were defined as follows:
charging at 3 A constant current, with a rest phase of 10
minutes before each charge and discharge phases. This rest
helped removing Li-ion concentration gradients within the
cell. This choice allowed us to complete the experiments in a
reasonable time while maintaining realistic load levels given
the battery capacity.

Having in mind that battery packs can be subject to different
loading conditions throughout their lives, e.g. more aggres-
sive usage early in life and milder loading conditions later in
life, we additionally opted to cycle battery packs subjected to
different constant load levels at different stages of life. We se-
lected 6 batteries that were cycled at two different load levels
and two batteries subject to 3 different life cycle stages. Table
3 shows the load levels the recommissioned batteries were
assigned to. For the first two load profiles (16 to 14.3 A, 14.3
to 16 A) we assigned 1 battery each, whereas two batteries
each were cycled on the third and fourth profile (16 to 12.9 A,
16 to 9.3 A).

3.3. On the Estimate of Residual Capacity

As already mentioned in Section 4, the residual capacity of
each battery was estimated using reference discharge cycles
(very low and constant current level) at regular intervals. This
mild loading discharge ensures small and negligible Li-ion
concentration gradients between surface and bulk volumes of
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Figure 3. Life cycle operational procedure.

the two electrodes and prevents large temperature increases
within the cell. Keeping Li-ion concentration gradients and
temperature low is important for a correct estimation of bat-
tery capacity and ensures the reference discharge fulfills its
sole purpose of estimating capacity opposed to further age the
battery. Usually, a current level at or below the battery capac-
ity (1 C) satisfies the requirements of the reference discharge
cycle, which in case of the batteries used in this research, is
equivalent to 2.5 A. We opted to perform the reference dis-
charge cycle in regular intervals after 20 high current level
discharges. Figure 3 shows the life cycle procedure used to
age the battery packs.

3.4. Recommissioning of Used Cells

With the goal of producing a rich data set to investigate aging
of battery packs, we reused battery cells from battery packs
that were previously cycled until failure. Usually, within a
failed battery pack, one cell experiences failure while the
second cell is still functional. We removed the surviving cells
from the 6 battery packs cycled at 16 A, 14.3 A and 12.9 A and
reassembled them into 3 reusable packs. Those second-life
battery packs were then deployed at less aggressive current
levels compared to the loading conditions in their respective
first lives. The goal of this life extension study is to see by
how far reduced loading conditions can increase the life of
already aged battery cells. Table 4 summarizes the load levels
those reassembled battery packs were subject to during their
first and second life.

3.5. Assessment of Cell Failure

To evaluate a battery pack failure, we measured the voltages
across the positive and negative electrode of each cell. If at
least one cell had a short circuit across the electrodes, due
to internal damage or internal safety mechanisms that create
an intentional short circuit to prevent a hazardous failure, we
assumed the battery pack as failed. During each assessment,
we checked that the short circuit was not created by discon-
nection of the nickel plate. We reinforced the welded contact
in case we observed poor connection between plate and elec-
trode, and re-measured voltage across the electrodes. Only in
one instance, on battery pack 5.3, we observed a loose nickel
plate connection after approximately 150 cycles. We fixed
the contact between plate and electrode and the test proceeded
normally afterwards.

3.6. Battery Numbering

We adopted a two-digit numbering, both starting from 0, that
serves the purpose of identifying the battery packs, which
slot they were tested on, and keeping track of the cells before
and after the recommissioning testing. Battery X.Y means
‘‘testbed slot X, round Y,’’ where slot is the location on the
testbed (0 to 5), and round refers to a single test, with each
test corresponding to a battery pack. Therefore, round 0 corre-
spond to the first battery pack tested on that slot, round 1 to
the second battery pack tested on that slot, etc. For example,
Battery 3.6 means that the data refers to the fourth slot of the
testbed, and the 7th battery tested on that slot.

4. DATA SET OVERVIEW

In this Section, we present a summary of the data generated;
from examples of voltage discharge time series to aging effects
to outliers. The term ‘‘mission’’ utilized in this section means
a full discharge profile, from fully charged to cutoff voltage.

4.1. Testing Summary

The cycling process ran continuously for 24 hours a day where
6 battery packs are aged simultaneously. The data set is or-
ganized in 3 different groups. The first contains data from
batteries subject to a single loading profile. This can either be
constant loading or variable loading conditions. The second
group contains data from batteries subject to different loading
types throughout their life; the loading cycles changed once
or twice during testing. The third group contains data from
second-life batteries, where cells from previous battery packs
are combined into new packs and deployed at different current
levels. A description of the data set organization and each data
item can be found in Appendix A.

4.2. Discharge Time Series

A general overview of a 20 h excerpt of the data accumulated
throughout a 24 h cycling process is presented in Fig. 4.
The top plot shows voltage curves during discharge, and the
bottom plot shows discharge currents. This cycle started with a
reference discharge at 2.5 A for each of the six batteries, and is
followed by discharges at higher current levels. This snapshot
shows four batteries discharged at constant current levels (two
at 16 A and two at 19 A), and two batteries discharged at
variable current (between 16 A and 19 A).

Voltage time series are one of the most important data to
characterize discharge and aging. Figure 5 shows an example
of full discharge-charge cycle for each of the 6 batteries. The
curves show: (i) a steep voltage drop during discharge, (ii) a
10 minute pause where regeneration effects are visible, (iii) a
charge cycle at constant 3 A, and (iv) a 10-minute rest phase
where the voltage plateaus due to ion concentration balancing
between the bulk and surface volumes of each cell electrode.
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Two life stages [A]

Battery (3.2) (5.3) (0.2, 3.3) (1.2, 2.4)
First stage 16.0 14.3 16.0 16.0

Second stage 14.3 16.0 12.9 9.3

Three life stages [A]

Battery (0.3) (2.5)
First stage 16.0 16.0

Second stage 14.3 7.5

Third stage 7.5 14.3

Table 3. Recommissioned batteries loading profiles.

Constant current [A] and Battery #

First life 16.0 (0.0, 1.0) 14.3 (2.3, 5.2) 12.9 (3.1, 2.2)
Second life 9.3 (1.3) 7.5 (3.6) 5.0 (5.4)

Table 4. First and second life load profiles and corresponding batteries loads were applied to.

Figure 4. Snapshot of a day of test campaign, from the
slow-discharge curves at the beginning of the test to the faster,
high-current and random loading profiles. The six different

colors refers to six different battery samples.

The next discharge cycle then begins.

4.3. Loading Profiles

Figure 6 shows current, voltage and temperature readings
within one early-life discharge at constant current and variable
current. The variable-current mission is designed as step-wise
constant, with prescribed switching to different current levels
every 40, 60 or 80 seconds, selected randomly with equal
probability. The current levels were also selected randomly
within the defined upper and lower bounds for the different
missions. A pre-defined set of mission profile was generated

Figure 5. Voltage readings of an entire discharge and charge
cycle for 6 batteries of the first battery batch. After a

discharge cycle, the battery voltage recovers to roughly 6.0 V
within the 10 minutes rest phase.

off-line and then applied throughout the 24h cycling process.
When using constant-current profiles, a minor current drop
happens shortly before reaching EOD. The starting point is
not equal to the fully charged voltage of 8.4V due to the in-
stantaneous application of high discharge current levels above
4 C that cause a large initial voltage drop. The rapid change
of voltage at the corresponding current steps is an expected
behavior following Ohm’s law. The temperature readings for
this example, measured on the surface of one cell electrode,
starts at room temperature and reaches maximum temperatures
of 105 �C and 95 �C in the constant and variable load case,
respectively.
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Figure 6. Current, voltage and temperature readings for two
batteries discharged at constant and variable load.

4.4. Aging Effect and End-Of-Life

The life cycling process was continued until reaching EOL,
which was defined as the occurrence of cell failure in at least
one cell of the battery pack. Cell failure typically corre-
sponded to a short circuit between the positive and negative
cell electrode (see Section 3.5). Figure 7 shows an example
of the phenomenological effect aging has on voltage curves
at constant and variable loading discharge cycles. According
to our nomenclature, ‘‘Mission’’ in the legend refers to the
number of discharge cycles the battery was subject to. Here,
all loading conditions remain either identical (in the case of
constant-loading profile) or statistically the same (in the case
of variable-loading profiles) throughout the tests. The shorter
time to discharge as well as the lower intercept of the linear
portion are purely due to battery aging.

As one of the main goal of the life cycle testing is to charac-
terize the battery capacity degradation over time, we provide
an example of minimally post-processed data: the residual
capacity C as a function of the cumulative energy draw E.

Figure 7. Variable current (16 - 19 A, top panel) and constant
current (19 A, bottom panel) discharge missions at different

life stages.

Capacity degradation as function of cumulative energy can
serve as a surrogate to battery life time. To obtain such a
curve, first we need to obtain capacity C as the integral of
current draw over time t:

C =

Z t

0
A⌧ d⌧ ⇡

X

k

Atk ·�tk ,

where Atk is the current value at time tk and �tk represents
the time delta between the current and previous time step.
Similarly, cumulative energy E at time t can be expressed as:

E =

Z t

0
A⌧ · V⌧ d⌧ ⇡

X

k

Atk · Vtk ·�tk ,

where Vtk is the voltage at time tk. Figure 8 shows capacity
degradation curves for constant and variable load cases; for
clarity, only batteries subject to one loading condition are
shown. As mentioned earlier, two battery packs were assigned
to each load level. Each data point represents the capacity
from one reference discharge, whereas failures are marked
by x. For reference, the capacity degradation curve from the
manufacturer’s datasheet for 20 A is plotted as a gray line. We
can see a wide spread of the capacity degradation curves and
corresponding EOL caused by the large range of load levels.

4.5. Outliers

In this sub-section we want to address data outliers and ab-
normalities detected thus far during post-processing and data
analysis.
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Figure 8. Capacity degradation over cumulative energy for
batteries subjected to constant and variable loading. Cell

failures are marked by x.

Figure 9. Temperature build-up within first mission of
batteries subjected to 14.3A and 16A loading.

4.5.1. Temperature Readings

Generally, temperature readings from batteries subject to the
same load profile is fairly close to one another, but due to the
manual placement of the thermistor sensor to the nickel plate
connection using thermal glue, on top of natural variability
due to manufacturing processes, inter-specimen (i.e., battery-
to-battery) variations naturally occurred. In case of 14.3 A
constant-current discharge (Batteries 2.3 and 5.2) the observed
difference is significant. The result is reported in Fig. 9, top
panel. The temperature reaches around 80 �C for battery
5.2 but only around 65 �C for battery 2.3. For reference to
a ‘‘standard’’ case, the bottom panel of Fig. 9 shows the
16 A load applied to Batteries 0.0 and 1.0, which maximum
temperature was recorded as 98 �C and 93 �C, respectively.

Figure 10. Noise in voltage sensor reading.

In rare instances, the batteries placed on charger slot 2 logged
an invalid temperature reading due to thermistor connection
issues.

4.5.2. Sensor Noise

The data acquisition is based on analog-digital converter (ADC)
chips, which read analog voltage, current and temperature sen-
sor values. Voltage readings rely on a voltage divider to keep
values within bounds of the ADC. In some instances, noisy
behavior was visible in the signals, as shown in Figure 10.
When sensor noise was first observed, it was repeatedly de-
tected at the same voltage level and load amplitude. As the
observed phenomenon had no impact on the testing procedure
and minor impact on the main test results, we did not pursue
further investigation into its underlying causes.

4.5.3. Cycle Interruptions Due to Relay Malfunctions

The charger path relay occasionally failed to open the con-
nection between battery and charger module due to a coil
malfunction. Figure 11 presents the voltage curves measured
on the charger board for a ‘‘regular’’ and a relay-malfunction
cycle. In both cycles the charger relay is activated but, due to
the relay malfunction, in one case the battery remains at rest.

This happened rarely, when a battery completed its resting
phase after discharge and the microcontroller provided the dig-
ital signal for the charger module to the battery connection, but
the analog voltage operating the relay coil was not sufficient
to open the relay path. In this scenario, the battery remained in
resting state and a restart of the entire testbed was necessary.
If another battery happened to be within a discharge cycle, the
manual restart was postponed until after the discharge cycle
was finished to ensure that every discharge was completed.

8
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Figure 11. Charger relay malfunction effect on voltage.

Figure 12. Capacity recovery after cycling pause.

4.6. Other Factors

During testing of 4 batteries subject to two load levels, an
interruption of the cycling process for approximately 30 days
became necessary. The batteries that have been affected are:
Battery 2.4 and 0.2 (loaded with 16 A first, 9.3 A later), and
Batteries 1.2 and 3.3 (loaded with 16 A first, 12.9 A later).
After restarting the life cycle process, we observed slightly
different capacity values, which normalized after a few days
of continued cycling. Figure 12 shows the initial drop of ca-
pacity after a cycling pause of 4 weeks and the slight capacity
recovery within the first few life cycles.

Furthermore, due to a centralized temperature control of the
ambient air temperature in the testing laboratories, a temporary
temperature drop caused a reduced battery capacity which
recovered right after the return to the regular air temperature
of approximately 23�C. This temperature abnormality affected
battery packs 0.2, 2.4, 1.2 and 3.3 within a range of 3 to 5

kWh of battery pack age.

5. TESTBED DESIGN AND DEVELOPMENT

The testbed is designed to continuously cycle up to 6 batteries
at different discharge load levels and constant current charging,
Fig. 13. It is built on a vertical rack that includes a bottom
level where the motherboard, based on a printed circuit board
(PCB), microcontroller and AC-DC converter for the general
12V supply of the system is placed. Six identical charger
board levels follow above, each accommodating a charger
PCB including a DC-DC step-down converter, a 12V AC-DC
converter as power supply for charging, as well as a slot for
one battery pack. The top level of the test-rig is reserved for
the load PCB, which includes active cooling systems, and is
designed to function as discharge board to create a load for
controlled discharge.

Figure 14 shows all 3 different types of boards that were de-
signed using an online PCB design tool, printed and, after
assembly, integrated in the testbed. The picture on the left-
hand side shows the motherboard used as control system for
the entire testbed, where we integrated the Arduino Nano
Every microcontroller. A SD card breakout board hosting
a microSD card is also embedded in the motherboard, and
is used for data-logging and storage of test metadata that is
read and executed by the microcontroller. To ensure safe and
reliable communication between the microcontroller and the
remaining components we use the I2C communication pro-
tocol, where a I2C multiplexer is used to split the signals in
different buses, which became necessary to establish commu-
nication with the identical I2C components on the 6 charger
boards. We also equipped the motherboard with a WiFi mod-
ule for wireless access to the data readings during the cycling
process.

The board depicted in the center of Figure 14 serves as the
charger board. Its primary function is to charge the connected
battery using a DC-DC step-down converter. Additionally,
it controls the pathway, allowing for connection to either the
charger module or the load board. We integrated the XL4015
DC-DC step down converter to charge batteries at controlled
current levels, with a maximum charge current of 4 A. The
XL4015 is provided with 12V DC voltage from a separate
12V AC-DC converter. The board integrates two high-power
rated relays with continuous current ratings up to 35A that
control the path between the connected battery to either the
charger module or load board. For both the battery connection
and load path we use a 12AWG wire that is connected via
solder pads to the charger board. A XH-connector is used for
the I2C communication wire and the battery cell temperature
sensor connection. The PCB design integrates digital-analog-
converter (DAC) and ADC microchips for signal conversion
to and from the I2C bus, used for relay operation and data
acquisition from the voltage, current and temperature sensors.
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Figure 13. Testbed in operation.

The rightmost PCB represents the load board on Figure 14,
which is used to discharge the batteries at the desired cur-
rent levels. The board uses 4 IRF250 high power rated N-
channel MOSFETs to control the current levels, where an
operational amplifier (Op-amp) is used to drive the MOSFET
gates through a feedback control circuit. The Op-amp in turn
receives its analog target value from a DAC that is controlled
through the microcontroller with digital control signals. Due
to the high levels of power dissipation handled through the
MOSFETs, a heatsink with active cooling is placed in direct
surface connection to the MOSFETs to control the tempera-
ture buildup. In order to measure the actual discharge current,
we opted to integrate two 100 W rated current sense resistors
with a resistance of 0.1 ⌦, where the voltage drop across the
resistors is measured and converted to digital signals through
an ADC, which is then used to estimate the current flow. The
board also measures the temperature on the power MOSFETs
as well as the current sense resistors to ensure operation within
safety limits. A loadbus connection establishes a path from
the load board to all 6 charger boards via a shared 12AWG
bus cable.

5.1. Controls and Functionality

Figure 15 gives an overview over the functionality and de-
pendencies of each submodule integrated in the testbed. As
previously mentioned a 12V DC power supply provides all
boards with a basic operating voltage used for the microchips.
The I2C communication is established from the motherboard

to each charger board and the load board. Each charger board
is equipped with a separate 12V supply for battery charging
and is connected to one battery each. And a shared load bus is
used to connect the batteries via the charger boards to the load
board.

The microcontroller acts as the brain of the entire system while
functioning as a statemachine. The controller code is written
in C++, where the main task is the mission scheduling fol-
lowing a predefined mission plan with discharge missions
and charge phases, taking into account resting time between
charge phases and missions. The microcontroller converts mis-
sion information from the mission plan into specific discharge
current target setpoints forwarded to the load board and logs
the acquired data readings. Additionally, safety mechanisms
for operational safety are implemented in the controller code,
which ensure operational shutdown if temperature, current
and voltage limits are violated. The code operates through a
single iteration over a setup function, which establishes the
I2C communication to all components, initializes operational
parameters through reading global variables from the SD card
and initializes the battery and mission structures which contain
both the planned mission information and stores data readings
before logging. After the setup, a continuous loop function
reads the the previous states, controls the batteries and logs the
updated battery states on the microSD card as well as prints
the state on a serial monitor. The iteration over the main loop
and the data logging is executed with a frequency of 1Hz.
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A. DATA SET REPOSITORY STRUCTURE

The data set repository is organized into three main folders,
each containing one group of life cycled battery packs.

A.1. Folders

These are the sub-folders in the data set:

• Regular accelerated life test (‘‘regular alt batteries’’ folder):
This folder contains the data files from battery packs
subject to constant and variable loading conditions, where
the current range of the latter remains the same throughout
the battery life. The assigned battery packs in this folder
are numbered as follows:

– Constant current:

* 9.30 A: Battery pack 0.1 and 1.1
* 12.9 A: Battery pack 3.1 and 2.2
* 14.3 A: Battery pack 2.3 and 5.2
* 16.0 A: Battery pack 0.0 and 1.0
* 19.0 A: Battery pack 2.0, 3.0 and 2.1

– Variable current:

* 14.3 A (mean current): Battery pack 4.1 and 5.1
* 17.0 A (mean current): Battery pack 4.0 and 5.0

• Recommissioned batteries (‘‘recommissioned batteries’’
folder):
This folder contains the data files from battery packs
where the constant loading conditions were changed through-
out the battery life. The assigned battery packs in this
folder are numbered as follows:

– Two life stages:

* 16 A, 14.3 A: Battery pack 3.2
* 14.3 A, 16 A: Battery pack 5.3

* 16 A, 12.9 A: Battery pack 0.2 and 3.3
* 16 A, 9.30 A: Battery pack 1.2 and 2.4

– Three life stages:

* 16 A, 14.3 A, 7.5 A: Battery pack 0.3
* 16 A, 7.5 A, 14.3 A: Battery pack 2.5

• Second life batteries (‘‘second life batteries’’ folder):
This folder contains the data files from battery packs that
consist of battery cells which survived cycling as part of
previously cycled battery packs. The assigned battery
packs in this folder are numbered as follows:

– Second life battery packs:

* 16.0 A, 9.3 A: Battery pack 1.3
* 14.3 A, 7.5 A: Battery pack 3.6
* 12.9 A, 5.0 A: Battery pack 5.4

A.2. Files

Within each folder, individual battery packs own their dedi-
cated csv file for continuous data logging, which are named
with their respective battery pack number. The columns in
each csv file contain the following data: ‘‘start time’’, ‘‘rela-
tive time’’, ‘‘mode’’, ‘‘voltage charger’’, ‘‘temperature bat-
tery’’, ‘‘voltage load’’, ‘‘current load’’, ‘‘temperature mos-
fet’’, ‘‘temperature resistor’’, ‘‘mission type’’.

The first column provides the date and time in form:

[mm:dd:yyyy hh:mm:ss]

for each of the 24h cycling missions. The second column
contains the relative time [s] from the start of the entire cy-
cling process for each battery pack. The third column provides
information about the mode, where the digits -1, 0, 1 repre-
sent discharge, rest and charge in respective order. Column 4
provides the continuous battery pack voltage [V] measured on
the charger board. Column 5 provides the battery pack tem-
perature reading [�C] throughout the entire process. Columns
6 and 7 contain the voltage [V] and current [A] readings mea-
sured on the load board during discharge, and columns 8 and
9 provide the temperature readings from the MOSFETs [�C]
and current sense resistor [�C] on the load board. Column
10 contains the mission type information, which is defined
as either 1 for a regular discharge mission or 0 if a reference
discharge is performed.
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