
A Generic Software Architecture for Prognostics (GSAP)
Christopher Teubert1, Matthew J. Daigle2, Shankar Sankararaman3, Kai Goebel4, Jason Watkins5

1,2,4 NASA Ames Research Center, CA, 94035, USA
christopher.a.teubert@nasa.gov

matthew.j.daigle@nasa.gov
kai.goebel@nasa.gov

3 SGT, Inc, NASA Ames Research Center, CA, 94035, USA
shankar.sankararaman@nasa.gov

5 University of California, Irvine, CA, 92697, USA
watkins1@uci.edu

ABSTRACT

Prognostics is a systems engineering discipline focused on
predicting end-of-life of components and systems. As a rela-
tively new and emerging technology, there are few fielded im-
plementations of prognostics, due in part to practitioners per-
ceiving a large hurdle in developing the models, algorithms,
architecture, and integration pieces. Similarly, no open soft-
ware frameworks for applying prognostics currently exist. This
paper introduces the Generic Software Architecture for Prog-
nostics (GSAP), an open-source, cross-platform, object-oriented
software framework and support library for creating prognos-
tics applications. GSAP was designed to make prognostics
more accessible and enable faster adoption and implemen-
tation by industry, by reducing the effort and investment re-
quired to develop, test, and deploy prognostics. This paper
describes the requirements, design, and testing of GSAP. Ad-
ditionally, a detailed case study involving battery prognostics
demonstrates its use.

1. INTRODUCTION

Prognostics is a systems engineering discipline focused on
predicting end-of-life (EOL) of components and systems. EOL
predictions can be used to inform actions to maintain the
safety and efficiency of that system, either through mainte-
nance and repair or online control reconfiguration. Although
a significant amount of research in prognostics technologies
has been performed in recent years, there are few fielded im-
plementations of prognostics. This is due, in part, to practi-
tioners perceiving a large hurdle in developing both the mod-

Christopher Teubert et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

els and algorithms, as well as the architecture and integration
pieces.

In fact, there are at this time no known existing open software
frameworks for applying prognostics. That said, there are
some open prognostics tools, past prognostics research, and
work in similar fields that form the foundational algorithms
and tools for such a framework. One example is the open-
source MATLAB Prognostics Model Library (Daigle, 2016b)
and Prognostics Algorithm Library (Daigle, 2016a), which
provide some core model and algorithm implementations, but
no architecture or integration pieces. There are also some
general frameworks or operating systems that can be adapted
for similar functions, such as General Electric’s Predix plat-
form (General Electric, 2017), an industrial Internet-of-things
platform; the Robot Operating System (ROS) (Robot Operat-
ing System, 2017), an open collection of software frameworks
for robot software development; and NASA’s Core Flight Sys-
tem (cFS) (NASA, 2017), a reusable software framework for
NASA flight projects and embedded software systems.

This paper introduces the Generic Software Architecture for
Prognostics (GSAP), a general, object-oriented, cross-platform
software framework and support library for prognostics tech-
nologies. GSAP implements many of the functions and al-
gorithms used in prognostics as part of a prognostics support
library. The GSAP framework implements and enforces the
prognostic process. A standard interface is supplied for in-
tegrating new models and algorithms, and for integrating the
system into data sources (sensors) and sinks (displays, de-
cision support tools, etc.). Users are then able to create a
prognostic application by integrating their algorithms, mod-
els, and interfaces to their systems into the GSAP framework,
with possible integration onboard or offboard a vehicle or
other asset.

International Journal of Prognostics and Health Management, ISSN2153-2648, 2017 013 1

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

This paper describes the design, testing, and use of GSAP.
First, Section 2 provides a general description of the prog-
nostics problem. Section 3 describes the current solutions
available for performing prognostics. Section 4 outlines the
requirements for the GSAP system, and Section 5 outlines the
design chosen to meet these requirements. The testing, ver-
ification, and validation of GSAP is described in Section 6.
Section 7 describes a case study where GSAP was used. The
final section, Section 8 summarizes the design and benefits of
GSAP and provides a summary of future work.

2. PROBLEM DESCRIPTION

In general, the problem of prognostics is to predict the future
evolution of a given system, and, in particular, to predict the
time of some (typically undesirable) event. In mathematical
terms, we are interested in how the state of the system, x,
will evolve in time, whether some subset of the state space,
X , will be reached in some finite time, and, if so, when it
will be achieved (Goebel et al., 2017). For example, X may
represent failure states, and the earliest time at which a failure
state is reached is the EOL. A threshold function defines the
boundary between failure and nonfailure states.

In the general case, there are many different subsets of the
state space of interest representing different conditions, such
as failure/nonfailure, safe/unsafe, etc. For a state x ∈ Rnx ,
we define a set of eventsE that apply to the state space where
for each e ∈ E we define a threshold function, Te, as

oe(k) = Te(k,x(k),u(k)), (1)

where k ∈ N is the discrete time variable, u(k) ∈ Rnu is the
input vector, and oe(k) ∈ B is a Boolean variable indicating
whether the event e has occurred or not. Typically, oe is de-
fined only as a function of the state, but in general, it may also
be time-dependent and input-dependent.

For prediction, we want to determine when the current state of
the system will evolve into some other state where e occurs.
The state evolves according to a state equation:

x(k + 1) = f(x(k),u(k),v(k)), (2)

where v(k) ∈ Rnv is the process noise vector, and f is the
state update function.

The inputs to the prediction problem are the following
(Sankararaman, Daigle, & Goebel, 2014):1

1. a time horizon of prediction, [ko, kh];

2. the initial state probability distribution, p(xo(ko));

3. the future input trajectory distribution, p(Uko,kh
), where

Uko,kh
= [u(ko),u(ko + 1), . . . ,u(kh)]; and

4. the future process noise trajectory distribution, p(Vko,kh
),

1Here, for a vector a, we denote a trajectory of this vector over the time
interval [k, k + 1, . . . , kn] as Ak,k+n.

where Vko,kh
= [v(ko), v(ko + 1), . . . , v(kh)].

Note that, in general, these inputs are dependent on the time
of prediction, ko. Further, p(.) denotes the probability density
function, and these probabaility density functions need to rep-
resent the uncertainty in the underlying quantities. The GSAP
framework hence has systematic capabilities for uncertainty
representation, as discussed later in this paper.

The prognostics problem, as solved by GSAP, is to predict
the future states of the system within a time interval and de-
termine the occurrence of a set of events:

Problem 1. Given a time interval [ko, kh], an initial state
p(x(ko)), process noise p(Vko,kh

), and future inputs p(Uko,kh
),

determine p(Xko,kh
), and for each event e ∈ E, compute

p(Oko,kh
) and p(ke).

Here, ke is the time when oe(k) first evaluates to true , i.e.,

ke(k) = min{k′ : k′ ≥ k and oe(k) = true}. (3)

Further, additional variables, z(k), that can be expressed as
functions of the state may also be predicted:

z(k) = g(x(k),u(k)), (4)

where g is an output function. Thus, p(Zko,kh
) may also be

predicted. Note that the predictions are also probability den-
sity functions (Sankararaman, 2015), and hence, the afore-
mentioned uncertainty representation tools will also be im-
portant, from this perspective.

There are different methodologies to solve the Prediction Prob-
lem (Problem 1), and GSAP does not enforce one over an-
other. These are typically categorized into model-based, data-
driven, and hybrid (combined model-based/data-driven) ap-
proaches.

2.1. Model-Based Prognostics

In the model-based prognostics paradigm, prognosis is per-
formed using a combination of a state estimation algorithm
(often a Bayesian filter) and a prediction algorithm, both of
which rely on a model of the monitored system (Orchard &
Vachtsevanos, 2009; Daigle & Goebel, 2013; Saha & Goebel,
2009). In this case, the model must include the state equation
(2), and an output equation:

y(k) = h(k,x(k),u(k),n(k)), (5)

where y(k) ∈ Rny is the output vector, n(k) ∈ Rnn is the
measurement noise vector, and h is the output equation.

The state estimation algorithm will estimate the state x(k)
based on the model and the measured outputs y(k). The
prediction algorithm will predict the evolution of the state to
compute its future values, the occurrence of events, and addi-
tional variables of interest, z(k).

2

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

2.2. Data-Driven Prognostics

In the data-driven prognostics paradigm (Schwabacher, 2005;
Schwabacher & Goebel, 2007), the mapping from u(k) and
y(k) to ke is learned offline, given historical data. The learned
model is then used online to compute ke given measured sys-
tem inputs and outputs.

2.3. Hybrid Approaches

Hybrid approaches to prognostics combine model-based and
data-driven techniques (Chen & Pecht, 2012). For example, a
particle filter could be used to estimate the system state, and
then ke predicted using a learned neural network model.

3. EXISTING ARCHITECTURES

In this section, we describe existing prognostics software and
architectures (Section 3.1), and software frameworks that share
similar characteristics to GSAP (Section 3.3).

3.1. Prognostics Tools

Owing to it being a relatively recent technology, there are no
known existing open frameworks for applying prognostics.
That said, there are some open prognostics tools, past prog-
nostics research, and work in similar fields that is relevant.
These related works are highlighted in this section.

In late 2016, the Prognostics Model Library (Daigle, 2016b)
and Prognostics Algorithm Library (Daigle, 2016a) were re-
leased as open-source software. The Prognostics Model Li-
brary is a MATLAB-based modeling framework, with a par-
ticular focus on defining and building models of engineering
systems for prognostics. It includes a library of prognostics
models for select components developed within this frame-
work, which is amenable for use within prognostics applica-
tions for these components in relevant systems. The Prog-
nostics Algorithm Library is a MATLAB-based suite of algo-
rithms commonly used within the model-based prognostics
paradigm. As such, it includes algorithms for state estima-
tion and prediction, including uncertainty propagation. The
algorithms rely on component models developed within the
Prognostics Model Library as inputs and perform estimation
and prediction functions. The library allows the rapid devel-
opment of prognostics solutions for given models of compo-
nents and systems. Further, since the models and algorithms
are implemented as objects, it facilitates comparative studies
and evaluations of various algorithms to select the best algo-
rithm for the application at hand. These libraries both support
the design, creation, and testing of prognostics algorithms
and models, however, they do not address the problems of
prognostic system design, architecture, and interfaces. They
have formed the basis for the some of the models and algo-
rithms that were implemented in C++ for GSAP, along with
the model-based prognoser.

3.2. Generic Architectures

Several standards organizations have addressed the topic of
system health management in general and prognostics in par-
ticular. For example, the Operations and Maintenance In-
formation Open Systems Alliance (MIMOSA) has brought
forward a specification in which a standard architecture “for
moving information in a condition-based maintenance sys-
tem” (MIMOSA, 2006). This work was motivated by the
Navy’s need to control increasing costs resulting from man-
power and part of developing and handling proprietary soft-
ware and hardware for maintenance purposes. The idea was
that standardization of information exchange specifications
within the community of Condition Based Maintainance (CBM)
users would ideally drive the CBM supplier base to produce
interchangeable hardware and software components. Simi-
larly, the Society of Automotive Engineers (SAE) has a ded-
icated Integrated Health Management Committee that is con-
cerned with disseminating information about Integrated Ve-
hicle Health Management (IVHM) and to provide guidelines
for use and implementation of this technology. To that end,
several publications address the topic of architecture in gen-
eral even though that information does not provide the de-
tailed hands-on information for ready use. The International
Organization for Standardization (ISO) has a working group
on Prognostics that seeks to illuminate the underpinnings of
prognostics (ISO/TC 108/SC 5 Condition monitoring and di-
agnostics of machine systems, 2015). Similarly, the IEEE has
a working group on Prognostics for Electronics that will issue
prognostics guidelines for this particular sub-field. Currently,
a draft (IEEE RS/SC Reliability, 2016) is available that seeks
to ”’classify and define the concepts involved in prognostics
and health management of electronic systems, and to provide
a standard framework that assists practitioners in the devel-
opment of business cases, and the selection of approaches,
methodologies, algorithms, condition monitoring equipment,
and strategies for implementing prognostics for electronic sys-
tems”’. Earlier, the IEEE developed standard AI-ESTATE
with the purpose ”’to standardize interfaces for functional el-
ements of an intelligent diagnostic reasoner and representa-
tions of diagnostic knowledge and data for use by such diag-
nostic reasoners”’ (IEEE, 2015). Within the aerospace com-
munity, the safety-critical working group RTCA SC-167 pub-
lished DO-178B (RTCA, 1992). This document is a guide-
line dealing with the safety of safety-critical software used
in certain airborne systems. Although technically a guideline
for software assurance using a set of tasks to meet objectives
and levels of rigor, it has been a de facto standard for devel-
oping avionics software systems which had to be considered
when developing health management solutions for aerospace.

In 2001, researchers at Boeing presented a high-level refer-
ence architecture for intelligent vehicle health management
(IVHM) (Keller et al., 2001). This architecture included a
description of the required functions for IVHM in a layered

3

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

form. The authors recognized the importance of support or
logistics functions, such as those represented in the signal
processing and presentation layers of their architecture. This
architecture is thorough but still only conceptual, stopping
short of the detail required for implementation. The literature
also includes other examples (Deal, Ryan and Kessler, Seth,
2011) where the requirements for an architecture are delin-
eated. Common to all these efforts is the recognized need for
a standardized mechanism to deal with systems health man-
agement. What has been lacking is an open-sourced architec-
ture that can be readily deployed for a variety of applications.

3.3. Software Frameworks

The Robot Operating System (ROS) is a set of open-source
libraries and tools to build robot applications (Robot Operat-
ing System, 2017). It includes algorithms common to robotic
applications, drivers, and development tools. ROS uses pack-
ages, nodes, and services to provide functionality to robotic
systems. The ROS framework is completely open, allowing
users to contribute packages, nodes, or services. This is sim-
ilar to the GSAP model, in which the framework is designed
to be open so users can add technologies.

Core Flight Software (cFS) is an open-source platform and
software framework for flight missions (NASA, 2017). It
was originally designed by NASA for use with space mis-
sions but has since been adapted for use on aircraft. It allows
users to contribute components that integrate into cFS using
a standard interface. Common tools for flight missions are
implemented and incorporated into the software, and there
have been some efforts to extend cFS for specific applica-
tions. One such example is the Autonomy Operating System
(AOS), a NASA effort to extend cFS to support autonomy
aircraft operations.

Predix is a general closed-source Industrial Internet of Things
(IIoT) platform developed by General Electric (GE) (General
Electric, 2017). It provides data management and data sci-
ence tools to industry and includes a marketplace of con-
tributed applications that provide additional capabilities. It
is modular and has a standard interface for developers to add
technologies.

ROS, cFS, and Predix are each platform to support a wide
number of capabilities in their target environment. GSAP is
a platform that instead supports a particular capability, i.e.,
prognostics, in a wide variety of target environments. By tar-
geting a very specific application, GSAP can provide many
advanced features for prognostics. Further, GSAP, like each
of these platforms, is modular and supports the development
of new tools or modules. A GSAP application could poten-
tially integrate as an application into any of these platforms
by adopting the necessary interfaces.

1:	Error	Handling	
2:	Uncertainty	
Representa7on	
3:	Parallelize	

	
	

Performance Cost Schedule

4: Implement
Common Elements
5: Common Interface
6: Flexible to Support
Different Schemas
7: Minimize Effort to
Extend

Figure 1. Goals and Top-Level Requirement Correlation

4. REQUIREMENTS

The development of requirements for prognostics systems con-
tinues to be an important and popular topic of research (Goebel
et al., 2017; Saxena et al., 2010, 2012; Leao, Yoneyama,
Rocha, & Fitzgibbon, 2008; Usynin, Hines, & Urmanov, 2007).
Defining clear and complete requirements for prognostics ap-
plications is important. All top-level requirements for a sys-
tem can be thought as deriving from performance, cost, or
schedule goal (Saxena et al., 2012; SAE Aerospace, 2017).

Similarly, for GSAP, the purpose is to provide a tool to be
used in prognostics applications, improving the performance,
cost, and schedule of those applications. In this context, the
goals of GSAP are:

Goal 1. Improve the performance of prognostics applications.

Goal 2. Reduce the cost of creating prognostics applications.

Goal 3. Improve the schedule for creating prognostics appli-
cations.

These goals translate into GSAP’s top-level requirements. A
list of the top-level requirement topics is included below. The
flow down from goals can be found in Fig. 1.

Error Handling Provide basic error handling and reporting
for improved program resilience and debugging

Uncertainty Representation Provide a manner of represent-
ing uncertainty

Parallelize Parallelize operations whenever possible for in-
creased performance and reduced dependencies between
the performance of separate program elements.

Implement Common Elements Implement the common al-
gorithms and functions of prognostics applications

Common Interface Provide a common interface for inte-
grating new technology

Flexiblity to Support Different Schemas Support different
forms and methods of performing prognostics

Minimize Effort to Extend Reduce the effort required to
extend GSAP with new prognostics technologies

4

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Figure 2. Using GSAP

A list of non-functional requirement topics can be found be-
low:

Compliance with NASA and industry standards and prac-
tices (National Aeronautics and Space Administration,
2017, 2014; CMMI Product Team, 2010).

Documentation in an accurate, and efficient manner to sup-
port ease of use.

Open-Source GSAP to provide the greatest impact.

Extendable to support new prognostics targets, types of prog-
nosis, and integration into new systems.

Scalable to support large applications where many systems
are being monitored in parallel.

See Appendix B for complete GSAP requirements.

5. DESIGN

This section describes the overall design of GSAP. At the
highest level, GSAP consists of two parts: The Prognostics
Framework and the Prognostics Support Library. These are
compiled with any user layer contributions to build a prog-
nostics application, as shown in Figure 2.

In the remainder of the section, we describe the design in
detail. Section 5.1 describes the design patterns utilized in
GSAP. Section 5.2 and 5.3 describe the prognostics frame-
work and support library, respectively. Section 5.4 describes
the user layer. The ModelBasedPrognoser is described in
Section 5.5.

5.1. Design Patterns

GSAP leverages many well-established design patterns. Un-
derstanding these patterns is essential for understanding the
design of GSAP. This section provides a brief description of
some of the design patterns found in GSAP.

5.1.1. Singleton

Singletons are classes of which only a single instance exists,
which is shared by all program elements that need to use the
class. GSAP uses singletons in situations where a static class
might be appropriate, but there is significant code that can

be shared between classes, making inheritance useful. By
creating a singleton, we achieve the benefits of shared code
via inheritance while allowing all elements using the class to
share state by using a single instance.

Examples of singleton classes in GSAP include the various
Factory classes, the ThreadSafeLog, and the CommManager
class. Singletons in GSAP inherit from the singleton abstract
base class (ABC).

5.1.2. Facade

A facade class simplifies access to a larger body of code.
GSAP uses a facade to wrap the complexities of cross-platform
networking code into the TCPSocket and UDPSocket classes.
These classes expose all of the network communication func-
tionality that GSAP requires in a simple cross-platform class
for each protocol where the users need only concern them-
selves with the Send and Receive methods of the socket
classes.

5.1.3. Abstract Base Class

Although not strictly a design pattern, abstract base classes
(ABCs) are a design strategy used extensively by GSAP. Ab-
stract base classes define an interface and shared core func-
tionality of an object while leaving the concrete implemen-
tation of the functionality represented by the ABC to be im-
plemented in virtual methods overridden in inheriting classes.
This concept is used in conjunction with the factory pattern
described in Section 5.1.4. Factories need only be aware of
the ABC; it does not need to know anything about implement-
ing classes.

There are several ABCs in GSAP. These classes include Com-
monCommunicator, CommonPrognoser, Model, Observer, and
Predictor. This is the main mechanism by which a user can
extend GSAP Each of these classes defines an interface that
users can implement their inheriting classes to extend GSAP
with custom technologies.

5.1.4. Factory

Factory classes provide a method for instantiating objects in-
directly. GSAP uses factories extensively for classes in the
framework which are likely to be implemented in practice by
the end user extending an abstract base class provided by the
framework or support library. By allowing the end user to ex-
tend a base class and then register the extended class with the
factory, the framework can use user-supplied classes speci-
fied in configuration files without being directly aware of their
concrete existence.

A large part of the flexibility of GSAP is derived from the ex-
tensive run-time configuration options provided by the frame-
work. As such, factories are used to instantiate a large number
of the framework and support library classes.

5

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Started

Enabled

Paused

Start

Pause Resume / Start
Stop

Stop

Stop

Figure 3. GSAP Prognoser Control States

5.2. Prognostics Framework

The framework contains the core functionality for running
GSAP, including the logic to initiate and run prognostics. The
primary class is the ProgManager. Initialization and control
of GSAP applications is achieved through this class, as de-
scribed in Section 5.4.2. The ProgManager reads the main
configuration file, starts the CommManager class, and creates
the prognosers, each on a dedicated thread. The ProgManager
also handles the receipt of control commands, such as start,
stop, pause, and resume. Figure 3 shows the different opera-
tional states of a GSAP application. Prognostic steps are only
executed when the application is in the Started state.

On creation, the CommManager initializes the communica-
tors specified in the main configuration file, configured ac-
cording to their particular configuration file (see Section 5.4.1).
It then handles the following: 1) update and receipt of sensor
data by the communicators, 2) requests for sensor data by
the prognosers, 3) update of prognostics results by the prog-
nosers, and 4) requests of prognostics results by the commu-
nicators. Upon receipt of the stop command from the Prog-
Manager, the CommManager will stop and clean up all the
communicators.

Perhaps most importantly, the framework includes all the in-
terfaces for each of the modules in the user layer. These come
in the form of Abstract Base Classes (ABC), as described in
Section 5.1.3. Each ABC defines the interface with which
the higher-level framework communicates with the concrete
inheriting classes. For example, a concrete prognoser could
be created to inherit from its ABC, CommonPrognoser. The
concrete prognoser would then be required to implement the
virtual methods defined in the ABC. They would also have
the option to implement the optional virtual methods which
would provide additional advanced features. Implemented
optional methods override the implementation present in the
ABC.

5.2.1. Prognosers

This is the core of the GSAP system. Inside the prognosers
is the core logic for performing prognostics. A new prog-
noser is created to support a new method for performing prog-

CommonPrognoser

+results: ProgData
+comm

+step()
+checkInputValidity()
+bool isEnoughData()
+checkResultValidity()

ConcretePrognoser

Figure 4. Prognoser Design

Table 1. Common Prognoser Configuration Parameters

Key Description
type The type of prognoser (ex: model-

BasedPrognoser)

name The name of the component being
prognosed (ex: battery1)

id A unique identifier for the piece of
hardware being prognosed (ex: Serial
Number)

histPath (Optional) A path for the history files

inTags (Optional) A list of tags expected from commu-
nicators

resetHist (Optional) A flag to reset the recorded history for
the component. Will archive the cur-
rent history file and start a new one

nostics. Many prognostics systems follow a standard model-
based structure. Those systems do not require the creation of
a new prognoser, only the creation of a new model that will
be used by the ModelBasedPrognoser.

All prognosers must inherit from the base CommonPrognoser
class (see Figure 4). Prognosers must have a constructor and
a step function, but they can optionally also implement the
other virtual member functions checkInputValidity(),
isEnoughData(), and checkResultValidity(). In
the constructor, the prognoser is configured from a map of the
configuration parameters from that prognoser’s configuration
file. This configuration map is received as a constructor argu-
ment.

Each prognoser has a configuration file, which defines the
configuration of that prognoser. Individual prognosers can
have custom configuration parameters, which are documented
with the prognoser. A list of the configuration parameters
common to all prognosers can be seen in Table 1.

When the prognoser is started, it is initialized with the last
state for that component (with the same id), if prognostics
has been run before on that component. This is done us-
ing prognostic history files, saved in the path identified as
histPath in the Prognoser Configuration File. Each specific
component has a history file, identified by the component’s
unique id (the id field in the Prognoser Configuration File).

6

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

ProgData

+internals

+ProgData(prognoserName, componentName, uniqueID)

DataPoint
ProgEvent

+timeOfEvent
+eventProb
+probMatrix
+occurrenceMatrix

+sysTrajectories +events

Figure 5. Prognostic Data Structure

The state is saved to this file periodically while the prognoser
is running and on termination of GSAP. If the user would like
to reset the history file, the resetHist flag can be used. This
is done if maintenance or a change of configuration has oc-
curred, causing the configuration file to no longer accurately
reflect the state of the system.

The step function is called once every timestep. Inside the
step function, the prognosor can access sensor data, perform
calculations, and populate a ProgData (see Section 5.2.2) struc-
ture with the results. For an example of an empty prognoser,
with explanations of each member function, see Section A.1.

The optional functions checkInputValidity and checkResultValidity
are called once a timestep. These functions can be filled with
basic sanity checks, to see if the input or results make sense.
The most basic form of these is a check to make sure that the
sensor values fall in a certain range. These checks can spot
sensor problems that might lead to an incorrect prognosis. If
they are not included with the prognoser, no check will be
done.

The also optional isEnoughData function is used to deter-
mine if there is enough new, valid data for prognosis. This
function returns a bool. If false is returned, prognostics will
not be run that timestep.

GSAP is currently distributed with one prognoser, the Mod-
elBasedPrognoser. This prognoser defines the model-based
prognostics paradigm. Using this prognoser requires users to
supply a model of the system. The exact workings of this
prognoser are defined in Section 5.5.

5.2.2. Prognostic Data Structure (ProgData)

The Prognostics Data Structure, ProgData, is a class for stor-
ing and accessing the results of prognostics in a standard way.
Each prognoser has a ProgData structure, which it fills with
the results. Communicators can then access the progData
structures for publishing results. The structure of ProgData
can be seen in Figure 5.

At the highest level, each prognoser has a prognoser name,

Table 2. Prognostic Events

Field Description
timeOfEvent The time the event will occur with un-

certainty (UData type).

eventProb The scalar probability of event occuring
within the prediction horizon.

probMatrix The probability that the event will oc-
cur at each time stamp. A one degree
vector where probMatrix[x] is the
probability that the event will occur at
time[x].

occurrenceMatrix A 2-dimensional matrix storing if an
event has occured for each sample. Is a
time x unweighted samples matrix, so
that occurrenceMatrix[0][7]
represents if the event has occured for
sample 7 at time 0.

component name, and unique identifier. The prognoser name
is the type of prognoser used, while the component name is a
name for the particular component targeted. The unique iden-
tifier is an identification string or number unique to that phys-
ical component (e.g. serial number). The unique identifier
should change if the component is replaced. For example, if
a battery is being prognosed it might have the prognoser name
“Battery”, the component name “Batt5” (referring to the spe-
cific battery location), and a unique id “1394snvsdoe2” for
that specific battery. These values can be set in the constructor
or using the set*()methods (e.g. setPrognoserName()).

The ProgData structure contains a structure of system trajec-
tories. These correspond to the predicted outputs z(k) and its
corresponding trajectory Zko,kh

. These system trajectories
are typically used to store information about system variables
that measure the degradation or fault severity. Common ex-
amples of these are State of Health (SOH) or State of Charge
(SOC) for batteries. Potentially, these could also include op-
erating efficiency or any other derived quantity that represents
performance. System trajectories are accessed by name, e.g.,
pData.systemTrajectory["SOH"]. The value of the
system trajectory is stored with uncertainty as a UData object
(see Section 5.3.1).

The ProgData structure also contains a structure of prognos-
tic events that can occur, i.e., E as defined in Section 2. Each
prognostics event has a name (e.g. EOL) and time unit (e.g.
cycles). Events are accessed by name, for example pData.events["EOL"].
The information for each event is listed in Table 2. Each event
must populate the timeOfEvent field. The other fields are
optional, each field providing additional information about
event probability with uncertainty. For example, the event
occurrence trajectories Oko,kh

(see Section 2).

The internals field is used to store any information internal to
the prognoser that is not to be published. Everything in the

7

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

CommonCommunicator

+poll()
+DataStore read()
+write(AllData)
+setRead()

ConcreteCommunicator

Figure 6. Communicator Design

internals field is still saved to the history file for reinitializa-
tion. Users have an option to save internal parameters that
are not important for reinitialization as member variables, but
note that these will not be saved between runs.

5.2.3. Communicators

Communicators are used to communicate data with the out-
side world. These function as interfaces with various data
sources and sinks. Some examples could be a playback agent
that reads from a file, a GUI for displaying prognostic results,
an automated report generator, or a client that connects to a
network messaging system (e.g., SCADA, CAN). These sys-
tems can receive data which will be used by prognosers or
communicate the results with operators.

All communicators must inherit from the base CommonCom-
municator class (See Figure 6). Communicators must have a
constructor, a poll, a read, and a write function. In the con-
structor, the communicator is configured from a map of the
configuration parameters from that communicator’ configura-
tion file. This configuration map is received as a constructor
argument.

The poll() function is called periodically to check if there
is more data to read. If there is data to read, the commu-
nicator will call the setRead() function to indicate that,
and the read function will be called. In the read() func-
tion the communicator will fill a DataStore structure with
any received data. The DataStore structure will then be
returned. The write() function is used to communicate
prognostic results to data sinks. For an example of an empty
communicator, with explanations of each member function,
see Section A.2.

Each communicator has a configuration file, which defines
the configuration of that communicator. Individual commu-
nicators can have custom configuration parameters, which are
documented with the communicators. Only one configuration
parameter is common to all communicators, the type. Like
for prognosers, this is used to specify the specific communi-
cator to be created (e.g. type:playback).

GSAP is currently distributed with three simple communi-
cators: Playback, Recorder, and Random. These are basic
functions that are often performed in many prognostics ap-
plications. Additionally, many tools such as cross-platform

TCP/UDP socket classes, which aid in the development of
other common communicators, are supplied in the Prognos-
tics Support Library. The included communicators are de-
scribed below.

Playback This communicator is used to read sensor data
from a delimited file. The file must include a header row
with the names of each value.

Recorder This communicator is used to record sensor data
and prognostics results to a delimited file. The file in-
cludes a header row with the names of each value.

Random This communicator is used for testing. It sets the
value of every sensor to a random number in a range
specified in the configuration file.

5.3. Prognostics Support Library

The support library is a collection of tools to support prog-
nosers, communicators, and the framework. Each of these
classes provides functionality to GSAP that can be used as
part of a GSAP application, or externally with other prog-
nostics products. These classes are all thoroughly tested and
designed to be light, cross-platform, and easy to use. The sup-
port classes included and a description of their use are given
in Table 3.

5.3.1. Uncertainty Representation

The GSAP support library includes tools for the representa-
tion of variable uncertainty, through the “UData” class. A sin-
gle random variable can be expressed using either a paramet-
ric distribution type or a non-parametric distribution type. To
describe a parametric distribution, it is necessary to know the
distribution type (Gaussian, log-normal, etc.) and the distri-
bution parameters (for example, mean and standard deviation
in the case of a Gaussian distribution). A non-parametric dis-
tribution can be expressed regarding unweighted (i.e., equally-
weighted) samples, weighted samples, percentiles and per-
centile values. A vector of random variables can be statisti-
cally dependent and follow varied distribution types; presently,
the generic architecture supports only the inclusion of a vec-
tor of random variables when each variable is individually
Gaussian, in which case, the statistical dependence can be
completely expressed using the covariance/correlation ma-
trix.

Below is an example using a parametric type:
1. UData u(MEANSD);
2. u.dist(GAUSSIAN);
3. u[MEAN] = 10;
4. u[SD] = 0.5;
5. printf("u(%f,%f) was last updated %f\n",

u[MEAN], u[SD], u.updated());

In this example, a parametric UData object of uncertainty
type mean with standard deviation. On line 2 the distribu-
tion type is set to gaussian. The mean is set to 10 and the

8

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Table 3. General Support Classes

Function Description
Logger A singleton logger with multiple message ver-

bosity levels designed for a multi-threaded en-
vironment. Logging messages is similar to use
of printf

Configuration
Map

A map data structure for loading, accessing,
and parsing configuration from a key:value1,...
style file

TCP Socket
& Server

A class for connecting, sending, and receiving
TCP stream data over a network

UDP Socket A class for connecting, sending, and receiving
UDP datagram data over a network

Singleton A superclass for singleton classes. Enforces the
interface for the singleton design pattern

Factory A superclass for factory classes. Enforces the
factory design pattern for creating new objects

UData Uncertain Data Structure Classes - Classes
used for storing, distributing, and manipulation
data with uncertainty

Thread A superclass for classes with a dedicated
thread. Enforces finite state machine status’s
and standard control interface

Statistical
Tools

A set of statistical tools

Matrix A class for storage and manipulation of an ar-
bitrary 2-D MxN matrix of doubles

Exceptions Custom exceptions for GSAP applications

Benchmark A prognoser for benchmarking GSAP applica-
tions

standard deviation is set to 0.5 (lines 3-4). The value of u and
the time it was last updated are printed on line 5.

Below is an example using a non-parametric type:

1. u.uncertainty(SAMPLES);
2. u.npoints(100);
3. u.set(sampleVec);
4. u[22] = 3;
5. for (auto & sample : u) {
6. // Some action
7. }

On line 1 and 2, the uncertainty type is set to samples (un-
weighted) with a size of 100 samples. The samples are set
to the contents of a vector, and the 22nd sample is overwrit-
ten with the value 3. In lines 5-7 the samples are iterated
through. Line 6 can be replaced with any action acting on the
single sample.

Main Config File

Prognoser Config File Communicator Config File

Figure 7. Configuration File Heirarchy

5.3.2. Algorithm and Model Libraries

The Prognostics Support Library also includes a selection
of common algorithms used with Prognostics, including ob-
servers, predictors, and system models. These algorithms and
models are described in Section 5.5.

5.4. User Layer

The user layer consists of the variable sections, or ”hot spots”
of GSAP (Srinivasan, 1999). Users create new modules in
this layer to configure GSAP to their specific application.

Users must have a Prognostics Application Driver (PAD) (see
Section 5.4.2), to start GSAP and configure it. Users can also
configure their prognostics application through the creation of
custom prognosers and communicators, described in the fol-
lowing sections. The prognosers and communicators use the
facade design pattern, supplying a parent class with a prede-
fined interface. Users create classes, which derive from these
parent classes and implement the required functions.

5.4.1. Configuring

GSAP uses a two-layer hierarchical structure of configuration
files to configure all the components to a specific application,
as seen in Figure 7. These configuration files include a list of
key:value pairs. Comments can be included by starting a line
with a ’#’ character.

The top-level configuration file contains all the parameters for
configuring the ProgManager. The most important of these
parameters is the identification of the configuration files for
the prognosers and communicators, the second layer of con-
figuration files from Figure 7. For each configuration file
specified the ProgManager would create a new prognoser or
communicator and configure it to the parameters in its re-
spective configuration file. The configuration parameters cur-
rently supported at the top level are listed in Table 4.

An example top-level configuration parameter can be seen be-
low:

Example Configuration File
Prognosers:Batt1.cfg,Batt2.cfg,Motor1.cfg
Communicators:Recorder.cfg, Playback.cfg
histPath:../test/validation/hist

9

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Table 4. Top Level Configuration Parameters

Key Description
Prognosers A list of the prognoser configu-

ration files to use. A prognoser
will be made for each configu-
ration file in the list

Communicators A list of the communicator con-
figuration files to use. A com-
municator will be made for
each configuration file in the list

commmanger.step size
(Optional)

Wait time between iterations of
the commmanager in millisec-
onds

commmanger.step_size:1000

Configuration for prognosers and communicators are described
in Sections 5.2.1 and 5.2.3, respectively.

5.4.2. Prognostics Application Driver

The Prognostic Manager must be created and called by some
higher level application. This is the only custom code strictly
required to build a custom application if the user is using
the provided prognosers and communicators. In this docu-
ment, this is referred to as the Prognostics Application Driver
(PAD). The primary role of the PAD is to create and start the
Prognostics Manager, which will initiate prognostics. To do
this requires the following two lines:
ProgManager PM = ProgManager(ConfigFile);
PM.run();

Here the first line creates the ProgManager and configures it
to use the configuration file specified (here, shown as a string
variable ConfigFile). The second line starts the prognos-
tic manager.

Optionally, users can include their components to extend GSAP
capabilities. These come in the form of custom Communi-
cators, Prognosers, Models, Observers, or Predictors, as de-
scribed in the following sections. When custom components
are used, it must be registered with its respective factory.
An example for a custom prognoser is included below. In
this case, an ExamplePrognoser was registered with the name
“example”. Now, if users were to specify to use the prog-
noser “example” in the type field (i.e. type:example) of
the prognoser configuration file, an ExamplePrognoser will
be created. This is one example, but the same can be done
with the CommunicatorFactor, ModelFactory, ObserverFac-
tory, and PredictorFactory.
PrognoserFactory & progFactory =

PrognoserFactory::instance();
progFactory.Register("example",

PrognoserFactory::Create<ExamplePrognoser>);

Users can also add a search path for configuration files us-
ing the addSearchPath command, as shown below. This will

allow configuration files to be specified by filename without
their path.
ConfigMap::addSearchPath("../example/cfg/");

GSAP will automatically log the steps being taken and any
errors to a log file. The verbosity of that logging can be done
by setting the verbosity in the PAD (remember to include
"ThreadSafeLog.h"), as shown in the below example.
Logger::SetVerbosity(LEVEL)

Here LEV EL can be replaced with the level of log to print,
ranging from LOG TRACE (most verbose) to LOG OFF
(no log kept). It is suggested that you keep the log atLOG INFO,
unless you are actively debugging a problem. Note, that the
log file size can grow quickly if kept at a high verbosity.

An example of an empty PAD can be found in Appendix A.6.

5.4.3. Extending

New prognosers and communicators can be added to extend
the capabilities of GSAP. This is done using the interfaces
described in Sections 5.2.1 and 5.2.3, respectively. A new
Prognoser can be developed to perform prognostics using a
method not already supported by the included ModelBased-
Prognoser. This allows the framework to be agnostic to the
specific method chosen for performing prognostics. Addi-
tionally, new communicators can be created to integrate with
new data sources and sinks, allowing the framework to be ap-
plication agnostic.

5.5. Model-based Prognoser

A common approach to prognostics is the model-based prog-
nostics paradigm (Orchard & Vachtsevanos, 2009; Daigle &
Goebel, 2013; Saha & Goebel, 2009), where prognosis is per-
formed using a combination of a state estimation algorithm
(often a Bayesian filter) and a prediction algorithm, both of
which rely on a model of the monitored system. Because this
is such a common approach, a ModelBasedPrognoser
class, implementing the Prognoser interface, is provided
by GSAP.

A model-based prognoser contains three main objects: a PrognosticsModel,
an Observer, and a Predictor. These all define inter-
faces, and the user provides specific instantiations of each
of these, e.g., a battery model, an unscented Kalman filter
(UKF), and a Monte Carlo-based predictor. Its configuration
parameters are given in Table 5.

The step function of the prognoser performs the same ac-
tions, regardless of the specific components that comprise the
prognoser. Thus, a user needs only to appropriately configure
the prognoser and does not need to write any new code. The
step function performs the following actions:

1. Retrieve the system inputs and outputs from the given

10

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Table 5. ModelBasedPrognoser Configuration Parameters

Key Description
model Name of Model
observer Name of Observer
predictor Name of Predictor
Model.event Name of system event to predict
Predictor.numSamples Number of samples for predic-

tion
Predictor.horizon Time horizon of prediction
Model.predictedOutputsNames of system predicted out-

puts
inputs Names of system inputs from

sensors
outputs Names of system outputs from

sensors

Model

#numStates
#numInputs
#numOutputs

+initialize(states, inputs, outputs)
+stateEqn(time, states, inputs, noise, step time)
+outputEqn(time, states, inputs, noise, output)
+transform(inputs, outputs) ConcreteModel

Figure 8. Model Design

data.

2. Run a step of the observer, given the inputs and outputs.

3. Retrieve the updated state estimate from the observer.

4. Run a step of the predictor, using the updated state esti-
mate as the initial condition.

The details of the components are described in depth in the
following sections.

5.5.1. Model

The Model class is essentially a wrapper around a discrete-
time dynamic system model. It defines the system states,
outputs, inputs, and specifies the interfaces for state update
equation and the output equation. A system model can be cre-
ated by deriving from this abstract class and implementing the
state and output equations, i.e., Eq. 2 and Eq. 5, respectively.

For an example of an empty model, see Section A.3.

5.5.2. PrognosticsModel

THe PrognosticsModel class extends the Model class
with the threshold equation (Eq. 1), the predicted output equa-
tion (Eq. 4), and an input equation:

u(k) = i(k,θu(k)), (6)

where i is the input function, and θu(k) is a set of “input pa-
rameters” that specify how to determine the inputs at a given
time t. This is the method in which the future input trajec-

Model

#numStates
#numInputs
#numOutputs

+initialize(states, inputs, outputs)
+stateEqn(time, states, inputs, noise, step time)
+outputEqn(time, states, inputs, noise, output)
+transform(inputs, outputs)

PrognosticsModel

+thresholdEqn(time, states, inputs): bool
+inputEqn(time, inputParameters, inputs)
+outputEqn(time, states, inputs, outputs)

ConcretePrognosticsModel

Figure 9. Prognostics Model Design

tory and its distribution are specified, following the approach
in (Daigle & Sankararaman, 2013), in which the input param-
eters are a form of surrogate variables. To specify a distribu-
tion of future input trajectories, we specify the distributions of
the input parameters and sample from these in order to sam-
ple a future input trajectory distribution, as computed by the
input equation.

Included in GSAP is an electrochemistry-based prognostics
model for a battery, based on the model developed in (Daigle
& Kulkarni, 2013). The states, outputs, and dynamical equa-
tions are implemented as described in (Daigle & Kulkarni,
2013). The sole predicted output is the battery state of charge
(SOC), and the predicted output equation computes SOC from
the battery state. The event being predicted is the end of dis-
charge (EOD), and the threshold equation compares the volt-
age to a lower limit to determine if EOD is reached. The fu-
ture input trajectory is specified as a sequence of magnitude
and duration values: the required battery power is linearly
interpolated between consecutive magnitude values and each
segment lasts for the corresponding duration value. So, for
example, the set of input parameters 5, 60, 10, 30, 8 specifies
a ramping of the power from 5 to 10 W lasting 60 s, followed
by a ramp down to 8 W lasting 30 s, and then being held at
8 W until EOD. A user specifies distributions for these values,
and a Predictor would sample from those distributions to get
a single input trajectory as computed by the input equation
with those parameters.

5.5.3. Observer

The Observer class implements an interface for state esti-
mation algorithms. It encapsulates a Model and the current
state estimate, and implements a step function, which up-
dates the current state estimate with new measured system
inputs and outputs.

The step function, shown below, takes the current time, sys-
tem inputs, and system outputs as arguments. Running the
function updates the internal state estimate, which is a UData

11

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Observer

#pModel: Model *
#log: Log

+step(double t, double u, double z)
+initialize(double t, double x, double u)
+setModel(Model *)
+getStateMean(): vector<double>
+getStateEstimate(): vector<UData>
+getOutputMean(): vector<double>

ConcreteObserver

Figure 10. Observers Design

Predictor

#horizon: double
#pModel: PrognosticsModel *

+Predict(time, states, ProgData &)
+setModel(PrognosticsModel)

ConcretePredictor

Figure 11. Predictor Design

object that can be retrieved with the getStateEstimate
function.

void step(const double newT,
const std::vector<double> & u,
const std::vector<double> & z);

For an example of an empty observer, see Section A.4.

Currently included in GSAP are two different observers, the
unscented Kalman filter (UKF) (Julier & Uhlmann, 2004)
and the particle filter (PF) (Arulampalam, Maskell, Gordon,
& Clapp, 2002; Doucet, Godsill, & Andrieu, 2000). Both
are recursive Bayesian filtering algorithms for nonlinear sys-
tems. The UKF represents the state estimate using a set of
deterministically selected samples using the unscented trans-
form, whereas the particle filter represents the state estimate
using a set of stochastically generated samples. In the future,
other commonly used state estimation algorithms will also be
added (Daigle, Saha, & Goebel, 2012; Daigle, 2016a).

5.5.4. Predictor

The Predictor class implements an interface for predic-
tion algorithms. It encapsulates a PrognosticsModel
and predicted data (e.g., EOL, predicted outputs trajectories),
and implements a predict function, which takes a state es-
timate and updates the predicted data.

The predict function, shown below, takes the current time
of prediction, the state estimate (from an Observer, for exam-
ple), and a ProgData object as input arguments. The prognos-
tics results are written to the ProgData object, which passed
in by the ModelBasedPrognoser.

void predict(const double tP,
const std::vector<UData> & state,
ProgData & data);

Currently, GSAP provides a MonteCarloPredictor, which
randomly samples the state estimate, the process noise, and

the input parameters, and simulates a specified number of
samples for a fixed time horizon (Daigle & Sankararaman,
2016). The uncertainty related to the process noise and in-
put parameters are specified through the configuration file,
whereas the uncertainty related to the state comes from the
used Observer. This predictor samples from each of these
distributions a specified number of times, and for each set of
samples, simulates ahead using the specified PrognosticsModel
to determine when and if any of the specified events occur and
to compute the predicted outputs.

For an example of an empty predictor, see Section A.5.

6. TESTING

In this section, we describe the methodology and processes
used to test GSAP and its functions.

6.1. Framework

The first consideration for testing is the selection of a test
framework. Some languages make this selection straightfor-
ward, either because tools are included in the language’s core
library (e.g. Python), or because there is a strong consensus
within the language’s community (e.g. Java/JUnit). No such
straightforward path is evident for projects written in C++.
Ultimately we chose to write a simple testing framework that
meets our needs in a single short (less than 1000 lines) header
file.

There were several important considerations that led to the
decision to develop our testing framework, such as the abil-
ity to control the features and structure of the test framework.
Many unit testing products make extensive use of macros to
“simplify” test suites. One of the principle goals of GSAP
is to write the entire project in standards-compliant cross-
platform C++. By implementing a test framework, we both
ensure that the framework itself adheres to our code quality
goals, but we can format the tests themselves to use ordinary
C++ without obfuscating macros.

6.2. Unit Testing

Various unit tests were written alongside the classes that make
up GSAP from the beginning. Once a useful testing frame-
work was added to the project, existing tests were adapted to
use the test framework. Each class is accompanied by a set
of unit tests, where each unit test function thoroughly tests a
single piece of functionality in the class.

Functionality is tested in three basic ways. First, simple ini-
tialization subroutines such as constructors are tested with
several sample inputs, and the public properties of the class
are compared to expected values to ensure that classes are ini-
tialized correctly. Because initialization code is usually very
simple, no great effort is made in these tests to ensure exhaus-
tive coverage of all possible inputs. Second, all functions are

12

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

tested using inputs for which the outputs are hand-calculated
or otherwise known. This provides a minimum level of con-
fidence that each function operates correctly when given cor-
rect inputs, or fails predictably when given inputs that are
known to be invalid. Finally, for functionality that has been
optimized for performance, a large number of random inputs
are tested to ensure that the optimized code produces identical
results to the slower, well-tested algorithm it replaces.

6.3. Code Reviews

Unit tests are excellent for verifying that code does what is
expected. However unit tests do not catch algorithmic errors,
where code performs as expected, but the programmer’s ex-
pectations are incorrect. To catch this type of error, GSAP is
subjected to periodic code reviews as part of each develop-
ment cycle. During code reviews, developers outside of the
GSAP project are given a section of the code and asked to
comment on any part of the code that is either unclear or pos-
sibly incorrect. These comments are then discussed by the
core GSAP developers along with the reviewers, and changes
are developed to address the issues raised by reviewers. This
process both corrects errors not found by unit tests and also
identifies confusing sections of code that can be rewritten to
improve clarity.

6.4. Verification Testing

Each iteration of the development of GSAP began with the
development, review, and stakeholder approval of require-
ments, and concluded with verification tests. In these tests,
GSAP is stressed in various ways to verify that each require-
ment is met. The results of these tests were documented and
confirmed before continuing to the next design-build-test it-
eration.

6.5. Validation Demos

Each iteration would also conclude with a validation demo.
Here the functionality of GSAP was demonstrated for stake-
holder representatives who provided feedback. This is done
to confirm that the product completed meets stakeholder ex-
pectations. Any comments or concerns of stakeholders were
noted to be addressed in the next iteration.

6.6. Continuous Integration

The extensive work described above made it straightforward
to add a continuous integration component to the GSAP de-
velopment environment. This was accomplished using Atlas-
sian’s Bamboo tool to provide continuous test feedback to the
project’s developers. A simple modification to the test suite
to produce output in a JUnit compatible format made it pos-
sible to run tests and see results within Bamboo. These test
results were also easy to integrate into Atlassian’s Jira issue
tracker, which the development team was already using for

issue tracking.

7. APPLICATION: BATTERY PROGNOSTICS

To demonstrate the application of GSAP in a real-world ex-
ample, we consider end-of-discharge (EOD) prognostics for
batteries. The prognoser in this scenario is an instance of
the ModelBasedPrognoser class, configured to use (i) a
PrognosticsModel implementing the electrochemistry-
based battery model described in (Daigle & Kulkarni, 2013),
(ii) the unscented Kalman filter for state estimation, and (iii)
the Monte Carlo-based predictor for EOD prediction. The
important configuration parameters for the prognoser in this
scenario can be seen below.

General configuration
type:modelBasedPrognoser
name:battery1
id:1234abcd
inTags: voltage:voltage, power:power,

temperature:temperature

Prognoser configuration
model:Battery
inputs:power
outputs:temperature,voltage

Model Configuration
Model.event:EOD
Model.predictedOutputs:SOC
Model.processNoise: 1e-5, 1e-5, 1e-5, ...

Observer configuration
observer:UKF
Observer.Q: 1e-10, 0, 0, 0, ...
Observer.R: 1e-2, 0, 0, 1e-2

Predictor configuration
predictor:MC
Predictor.numSamples: 100
Predictor.horizon: 10000
Predictor.inputUncertainty: 8, 0.1

The model-based prognoser is specified, along with the named
data inputs from the system. The prognoser is next spec-
ified and relates model inputs and outputs to the incoming
data. The model configuration specified the event to be pre-
dicted (EOD) and predicted variables (SOC), along with pro-
cess noise variances (8 total, one for each state). The observer
is set as the unscented Kalman filter, and the process and sen-
sor noise covariance matrices are specified (not all values are
shown). The predictor is set as the Monte Carlo predictor,
with the number of samples and prognostic horizon specified,
along with the uncertainty (mean and standard deviation) as-
sociated with the future input (power) to the battery.

The prognostics application created for this application in-
cluded a model-based prognoser, and three communicators:
playback, recorder, and LVC. These communicators will be
described with their relevant configuration in the following
sections. Two configurations were used for this setup: a test

13

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Prognos'c	Applica'on	

Playback	
Communicator	

Sensor	
Data	

Prognos'cs	
Results	

Recorder	
Communicator	

Playback	
File	

Recorder	
File	

Model	Based	Prognoser	

Ba>ery	Model	

Unscented	Kalman	
Filter	(UKF)	Observer	

Monte	Carlo	Predictor	

Figure 12. Prognostics Application - Test Configuration

configuration and a deployed configuration. The configura-
tion of the prognoser was identical for each of these. These
two configurations are described in detail in the following
sections.

7.1. Test Configuration

A test configuration of this prognostics application was cre-
ated to test the application separate from the physical system
on which it will be deployed. It is important to have an envi-
ronment for testing algorithms before they are deployed. The
setup of this configuration can be seen in Figure 12. The con-
figuration in the primary configuration file is included below.

Test Main Configuration File
prognosers: Battery1.cfg
communicators: BattPlayback.cfg, Recorder.cfg

In this configuration, the PlaybackCommunicator was
used to read sensor data from a file at a configurable rate, and
the RecorderCommunicator recorded the results. The
PlaybackCommunicator was configured (in BattPlay-
back.cfg) to playback from a specific file. Recorded data from
real battery discharges were used for these tests. This config-
uration was used to test the basic setup of a basic prognostics
application using GSAP.

7.2. Deployed Configuration

The next step was to apply this to a NASA application. For
this, we integrated the Prognostics Virtual Lab (Kulkarni et
al., 2017b). The Prognostics Virtual Lab uses the Live Virtual
Connected (LVC) Gateway (Murphy, Jovic, & Otto, 2015;
NASA, 2015) to pass data between several live and geograph-
ically separated systems. In this case, it was used to pass data
from the Edge Iron Bird (Kulkarni et al., 2017a), which ap-
plies an electrical load to the battery corresponding to recorded
flight data. The setup of the deployed configuration can be
seen in Figure 13, and the contents of the main configuration
file is included below.

Deployed Main Configuration File
prognosers: Battery1.cfg
communicators: LVC.cfg

The sensor data from the Edge Iron Bird is communicated

Prognos'c	Applica'on	

LVC	
Communicator	

Model	Based	Prognoser	

Ba9ery	Model	

Unscented	Kalman	
Filter	(UKF)	Observer	

Monte	Carlo	Predictor	

Live	Sensor	
Data	

Prognos'cs	
Results	

Prognos'cs	
Virtual	Lab	

	
Live	Aircra5	
or	“Iron	
Bird”	

Figure 13. Prognostics Application - Deployed Configuration

0 200 400 600 800

Time (s)

0

100

200

300

400

500

600

700

800

900

1000

R
e
m

a
in

in
g
 U

s
e
fu

l
L
if
e
 (

s
)

RUL Uncertainty (3σ)

Mean RUL

Ground Truth

Figure 14. Remaining Useful Life Estimations

live using the Prognostics Virtual Laboratory. A LVC Com-
municator is used to subscribe to the live sensor information
and communicate the prognostics results. The Edge Iron Bird
will be replaced with a live Edge540 small unmanned aerial
system (sUAS) in future tests.

7.3. Results

This section includes the results of running the test config-
uration with data from a real flight on an Edge 540T small
unmanned aerial system (sUAS). The data was from a short
flight where the aircraft conducted a climb, flew to a series of
waypoints, and then landed. The end of life voltage was con-
figured so EOL would be reached during the flight, providing
a ground truth. The remaining useful life (RUL) estimation
for this flight can be seen in Figure 14.

Here the mean estimated RUL is signified by a solid line, the
three standard deviation uncertainty bound by the tan section,
and the ground truth by the dashed line. Note that the ground
truth stayed within the 3σ uncertainty bounds. The spikes
in RUL uncertainty bounds would likely smooth with addi-
tional tuning. This example demonstrates GSAP being used
for sUAS operations.

14

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

8. CONCLUSION

This paper introduces the Generic Software Architecture for
Prognostics, a generic, object-oriented, open-source software
framework and support library for deploying prognostics tech-
nologies. It is the only open framework that the authors are
aware of that is specifically designed to target prognostics ap-
plications. This architecture was designed to make prognos-
tics more accessible by reducing the effort and investment
required to develop, test, and deploy prognostics.

GSAP was thoroughly tested and has been applied to multiple
ongoing NASA projects. The requirements, design, testing
and use of GSAP have been described in detail in this paper.
A C++ implementation of GSAP is currently available open-
source on GitHub (Teubert, Daigle, Sankararaman, Watkins,
& Goebel, 2016).

Future work for the GSAP framework includes the further
generalization and testing of GSAP under other paradigms
such as an As-A-Service implementation on cloud resources,
implementation on embedded processors, and implementa-
tion of GPU-accelerated algorithms. Additionally, GSAP will
further be developed to include additional support tools to aid
with the development of prognostics applications. Finally, the
team intends to convert existing prognostics models into the
GSAP framework so it can be used with future prognostics
applications.

ACKNOWLEDGMENT

The team acknowledges the significant contributions of in-
terns Marcus Postell (Bethune-Cookman University) and Micah
Ricks (Alabama Agricultural and Mechanical University). They
also acknowledge the following NASA projects for their sup-
port of this effort: System-wide Safety Assurance Technolo-
gies (SSAT) Project, Aviation Safety Program (AvSP), Aero-
nautics Research Mission Directorate (ARMD); Advanced Ground
Systems Maintenance (AGSM) Project, Ground Systems De-
velopment and Operations (GSDO) Program, Human Explo-
ration and Operations Mission Directorate (HEOMD); Au-
tonomous Cryogenic Loading Operations (ACLO) Project,
Advanced Exploration Systems (AES) Program, HEOMD.

REFERENCES

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp,
T. (2002). A tutorial on particle filters for on-
line nonlinear/non-Gaussian Bayesian tracking. IEEE
Transactions on Signal Processing, 50(2), 174–188.

Chen, C., & Pecht, M. (2012). Prognostics of lithium-ion
batteries using model-based and data-driven methods.
In Ieee conference on prognostics and system health
management.

CMMI Product Team. (2010). CMMI for development, ver-

sion 1.3. Retrieved from http://www.sei.cmu

.edu/reports/10tr033.pdf

Daigle, M. (2016a, October). Prognostics algorithm li-
brary. Retrieved from https://github.com/

nasa/PrognosticsAlgorithmLibrary

Daigle, M. (2016b, October). Prognostics model li-
brary. Retrieved from https://github.com/

nasa/PrognosticsModelLibrary

Daigle, M., & Goebel, K. (2013, May). Model-based prog-
nostics with concurrent damage progression processes.
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 43(4), 535-546.

Daigle, M., & Kulkarni, C. (2013, October).
Electrochemistry-based battery modeling for prog-
nostics. In Annual conference of the prognostics and
health management society 2013 (p. 249-261).

Daigle, M., Saha, B., & Goebel, K. (2012, March). A
comparison of filter-based approaches for model-based
prognostics. In 2012 ieee aerospace conference.

Daigle, M., & Sankararaman, S. (2013, October). Ad-
vanced methods for determining prediction uncertainty
in model-based prognostics with application to plane-
tary rovers. In (p. 262-274).

Daigle, M., & Sankararaman, S. (2016, December). Predict-
ing remaining driving time and distance of a planetary
rover under uncertainty. ASCE-ASME Journal of Risk
and Uncertainty in Engineering Systems, Part B: Me-
chanical Engineering, 2(4).

Deal, Ryan and Kessler, Seth. (2011). Architecture (S. John-
son et al., Eds.). Wiley.

Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential
Monte Carlo sampling methods for Bayesian filtering.
Statistics and Computing, 10, 197–208.

General Electric. (2017). Predix platform. Retrieved from
http://predix.io

Goebel, K., Daigle, M. J., Saxena, A., Sankararaman, S.,
Roychoudhury, I., & Celaya, J. (2017). Prognostics:
The Science of Making Predictions. CreateSpace Inde-
pendent Publishing Platform.

IEEE. (2015, June). Standard for artificial intelligence ex-
change and service tie to all test environments (stan-
dard No. 1232-2010).

IEEE RS/SC Reliability. (2016, June). Draft standard frame-
work for prognostics and health management of elec-
tronic systems (standard No. P 1856).

15

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

ISO/TC 108/SC 5 Condition monitoring and diagnostics of
machine systems. (2015, September). Condition mon-
itoring and diagnostics of machines prognostics part
1 (standard No. 13381-1:2015).

Julier, S. J., & Uhlmann, J. K. (2004, March). Unscented
filtering and nonlinear estimation. Proceedings of the
IEEE, 92(3), 401–422.

Keller, K., Wiegand, D., Swearingen, K., Reisig, C., Black,
S., Gillis, A., & Vandernoot, M. (2001). An archi-
tecture to implement integrated vehicle health manage-
ment systems. In Autotestcon proceedings, 2001. ieee
systems readiness technology conference (pp. 2–15).

Kulkarni, C. S., Teubert, C., Gorospe, G., Quach, C. C.,
Hogge, E., & Darafsheh, K. (2017a). Application of
prognostics methodology to virtual laboratory for fu-
ture aviation and airspace research. In Aiaa aviation
conference.

Kulkarni, C. S., Teubert, C., Gorospe, G., Quach, C. C.,
Hogge, E., & Darafsheh, K. (2017b). A virtual lab-
oratory for aviation and airspace prognostics research.
In Aiaa modeling and simulation technologies confer-
ence (p. 1767).

Leao, B. P., Yoneyama, T., Rocha, G. C., & Fitzgibbon, K. T.
(2008). Prognostics performance metrics and their re-
lation to requirements, design, verification and cost-
benefit. In International conference on prognostics and
health management.

MIMOSA. (2006). Open system architecture for condition-
based maintenance (standard No. 1232-2010).

Murphy, J., Jovic, S., & Otto, N. (2015). Message la-
tency characterization of a distributed live, virtual, con-
structive simulation environment. In Aiaa infotech at
aerospace conference.

NASA. (2015). Live virtual constructive distributed environ-
ment (lvc) lvc gateway, gateway toolbox.

NASA. (2017). Core flight software. Retrieved from
http://cfs.gsfc.nasa.gov

National Aeronautics and Space Administration. (2014).
Nasa software engineering requirements. Re-
trieved from http://specs4.ihserc.com/

Document/Document/ViewDoc?docid=

JUYNJFAAAAAAAAAA

National Aeronautics and Space Administration. (2017).
Nasa software engineering handbook. Retrieved from
https://swehb.nasa.gov/display/7150/

Book+A.+Introduction

Orchard, M., & Vachtsevanos, G. (2009, June). A particle fil-
tering approach for on-line fault diagnosis and failure
prognosis. Transactions of the Institute of Measure-
ment and Control, 31(3-4), 221-246.

Robot operating system. (2017). Retrieved from http://

www.ros.org

RTCA. (1992). Software considerations in airborne systems
and equipment certification (standard No. DO-178B).

SAE Aerospace. (2017, February). Guidelines for writing
ivhm requirements for aerospace systems-draft (ARP
No. 6883).

Saha, B., & Goebel, K. (2009, September). Modeling Li-ion
battery capacity depletion in a particle filtering frame-
work. In Proceedings of the annual conference of the
prognostics and health management society 2009.

Sankararaman, S. (2015). Significance, interpretation, and
quantification of uncertainty in prognostics and re-
maining useful life prediction. Mechanical Systems
and Signal Processing, 52, 228–247.

Sankararaman, S., Daigle, M., & Goebel, K. (2014, June).
Uncertainty quantification in remaining useful life pre-
diction using first-order reliability methods. IEEE
Transactions on Reliability, 63(2), 603-619.

Saxena, A., Roychoudhury, I., Celaya, J., Saha, S., Saha,
B., & Goebel, K. (2010). Requirements specification
for prognostics performance-an overview. In Aiaa in-
fotech@ aerospace 2010.

Saxena, A., Roychoudhury, I., Celaya, J. R., Saha, B., Saha,
S., & Goebel, K. (2012, June). Requirements flowdown
for prognostics and health management. The Ameri-
can institute of Aeronautics and Astronautics (AIAA)
Infotech 2012 Conference.

Schwabacher, M. (2005). A survey of data-driven prognos-
tics. In Proceedings of the aiaa infotech@aerospace
conference.

Schwabacher, M., & Goebel, K. (2007). A survey of artificial
intelligence for prognostics. In Proceedings of aaai fall
symposium.

Srinivasan, S. (1999). Design patterns in object-oriented
frameworks. Computer, 32(2), 24–32.

Teubert, C., Daigle, M., Sankararaman, S., Watkins, J., &
Goebel, K. (2016, December). Generic software
architecture for prognostics (gsap). Retrieved from
https://github.com/nasa/GSAP

16

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Usynin, A., Hines, J. W., & Urmanov, A. (2007). Formulation
of prognostics requirements. In Aerospace conference,
2007 ieee.

BIOGRAPHIES

Christopher Teubert is a software engineer
and deputy group lead of the Diagnostics
and Prognostics group at NASA Ames Re-
search Center. He is also the principal in-
vestigator for the Generic Software Archi-
tecture for Prognostics (GSAP). Christopher
received his B.S. in Aerospace Engineering
from Iowa State University in 2012 and is

currently working on his M.S. in Computer Science and En-
gineering at Santa Clara University. Chris worked as a re-
search engineer with Stinger Ghafarrian Technologies (SGT)
at NASA Ames Research Center from 2012-2016. Since
2016, Chris has been a computer engineer and deputy group
lead with the Diagnostics and Prognostics group at NASA
since 2016, where he designs, develops, and tests software
for performing prognostics for aircraft and spacecraft.

Matthew Daigle received the B.S. degree
in computer science and computer and sys-
tems engineering from Rensselaer Polytech-
nic Institute, Troy, NY, in 2004, and the
M.S. and Ph.D. degrees in computer sci-
ence from Vanderbilt University, Nashville,
TN, in 2006 and 2008, respectively. From
September 2004 to May 2008, he was a

Graduate Research Assistant with the Institute for Software
Integrated Systems and Department of Electrical Engineer-
ing and Computer Science, Vanderbilt University, Nashville,
TN. From June 2008 to December 2011, he was an Asso-
ciate Scientist with the University of California, Santa Cruz,
at NASA Ames Research Center. Since January 2012, he has
been with NASA Ames Research Center as a Research Com-
puter Scientist, and has been the lead of the Diagnostics &
Prognostics Group since 2016. He has published over 100
peer-reviewed papers in the area of systems health manage-
ment. His current research interests include physics-based
modeling, model-based diagnosis and prognosis, simulation,
and autonomy.

Shankar Sankararaman received his Bach-
elors degree in Civil Engineering from the
Indian Institute of Technology, Madras in
India in 2007 and later, obtained his Ph.D. in
Civil Engineering from Vanderbilt Univer-
sity, Nashville, Tennessee, U.S.A. in 2012.
His research focuses on the various as-
pects of uncertainty quantification, integra-

tion, and management in different types of aerospace, me-
chanical, and civil engineering systems. His research inter-
ests include probabilistic methods, risk and reliability anal-
ysis, Bayesian networks, system health monitoring, diagno-
sis and prognosis, decision-making under uncertainty, and
multidisciplinary analysis. He is a member of the Non-
Deterministic Approaches (NDA) technical committee at the
American Institute of Aeronautics, the Probabilistic Methods
Technical Committee (PMC) at the American Society of Civil
Engineers (ASCE), and the Prognostics and Health Manage-
ment (PHM) Society. Currently, Shankar is a researcher at
NASA Ames Research Center, Moffett Field, CA, where he
develops algorithms for system health monitoring, prognos-
tics, decision-making, and uncertainty management.

Kai Goebel is the Area Lead for Discovery
and Systems Health at NASA Ames where
he was director of the Prognostics Center
of Excellence during the time this research
was conducted. After receiving the Ph.D.
from the University of California at Berke-
ley in 1996, Dr. Goebel worked at Gen-
eral Electric’s Corporate Research Center in

Niskayuna, NY from 1997 to 2006 as a senior research scien-
tist before joining NASA. He has carried out applied research
in the areas of artificial intelligence, soft computing, and in-
formation fusion and his interest lies in advancing these tech-
niques for real time monitoring, diagnostics, and prognostics.
He holds 18 patents and has published more than 300 papers
in the area of systems health management.

Jason Watkins is an undergraduate student
studying Computer Science and Engineer-
ing at University of California, Irvine. Ja-
son has completed several undergraduate in-
ternships working for NASA and Broad-
com. These internships include 3 intern-
ships working as a member of the Diagnos-
tics and Prognostics Group at NASA Ames

Research Center. As part of those internships, Jason has
worked on several NASA software projects, including the
open source projects X-Plane Connect and Generic Software
Architecture for Prognostics (GSAP).

17

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

A. EMPTY INTERFACES

A.1. Prognoser

/** Empty Prognoser - Header (v0.1.0)
* The purpose of this class is to serve as a
* template for creating future prognosers
*
* Requires: Prognostic Configuration File and
* Prognoster Configuration Files
*
* Contact: Chris Teubert
* (christopher.a.teubert@nasa.gov)
* Created: November 11, 2015
*
* Copyright (c) 2013-2017 United States
* Government as represented by the Administrator
* of the National Aeronautics and Space
* Administration All Rights Reserved
*/

#ifndef PCOE_EMPTYPROGNOSER_H
#define PCOE_EMPTYPROGNOSER_H

#include "CommonPrognoser.h"

namespace PCOE {
class EmptyPrognoser : public CommonPrognoser {
/** @brief Example Prognoser Constructor
* @param config Map of config parameters from
* the prognoser config file
*/
EmptyPrognoser(GSAPConfigMap & config);

/** @brief Prognostic Monitor Step:
* perform model updates. This is done every
* step where there is enough data. This is a
* required method in any component prognoser
*/
void step();

//*------------------------------------*
//| Optional Methods- Uncomment to use |
//*------------------------------------*

/** @brief check the validity of any input/sensor
* data. This could be bound checks or a
* complicated analysis. By default this is
* not done- making this step optional in the
* component prognoser implementation
*/
// void checkInputValidity() {}

/** @brief check if there is enough new data to
* perform prognosis. Check if the data exists
* and is new enough to be used for prognosis.
* If false is returned prognostics steps will
* be skipped. By default this returns true-
* making this step optional in the component
* prognoser implementation.
* @return if there is enough data
*/
// bool isEnoughData() {return true;}

/** @brief check the validity of any prognostics
* results. This could be bound checks or a
* complicated analysis. By default this a
* simple bounds test on timeToEvent - making
* this step optional in the component
* prognoser implementation. Default
* implementation is in CommonPrognoser
*/
// void checkResultValidity();

};
}
#endif // PCOE_EMPTYPROGNOSER_H

/** Empty Prognoser - Body (v0.1.0)
* Copyright (c) 2013-2017 United States
* Government as represented by the Administrator
* of the National Aeronautics and Space
* Administration All Rights Reserved
*/

#include "EmptyPrognoser.h"

namespace PCOE {
EmptyPrognoser::EmptyPrognoser(GSAPConfigMap & c) :
CommonPrognoser(c) {
// DEFINE EVENTS FOR THIS SPECIFIC PROGNOSER
// Ex: info.events.push_back(param("EOL", "s"));

// Handle Configuration
log.WriteLine(LOG_DEBUG, moduleName,
"Configuring");

// std::string a = c.at("ExampleParam");
}

void EmptyPrognoser::step() {
log.WriteLine(LOG_TRACE, moduleName,
"Running Monitor Step");

// Update States
// Ex: currentProgData.state["S1"].set(1.1);
// Ex: currentProgData.state["S2"].set(0.9);

// Update safety Metrics
// Ex: currentProgData.
// safetyMetric[MEAN].set(1.2);

log.WriteLine(LOG_TRACE, moduleName,
"Running Prediction Step");

// Update Time To Events
// Ex: currentProgData.
// timeToEvent[MEAN].set(1.5);

// Update Future Safety Metrics
}

// *------------------------------------*
// | Optional Methods- Uncomment to use |
// *------------------------------------*
// void EmptyPrognoser::checkInputValidity() { }
//
// bool EmptyPrognoser::isEnoughData() {
// return true;
// }
//
// void EmptyPrognoser::checkResultValidity() { }

18

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

A.2. Communicator

/** Empty Communicator - Header
* @class EmptyCommunicator EmptyCommunicator.h
* @brief Communicator Template
*
* Contact: Chris Teubert
* (Christopher.a.teubert@nasa.gov)
* Created: March 25, 2016
*
* Copyright (c) 2013-2017 United States
* Government as represented by the Administrator
* of the National Aeronautics and Space
* Administration All Rights Reserved
*/

#ifndef PCOE_EMPTYCOMMUNICATOR_H
#define PCOE_EMPTYCOMMUNICATOR_H

#include "CommonCommunicator.h" ///< Parent Class

namespace PCOE {
class EmptyCommunicator :
public CommonCommunicator {
public:
/** @brief Constructor for EmptyCommunicator -
* Called by the CommunicatorFactory
* @param config Reference to configuration
* map for the communicator
* @see CommunicatorFactory
**/
EmptyCommunicator(const ConfigMap & config);

/** @brief Poll function- see if there is
** data to read from this communicator
**/
inline void poll() override;

/** @brief Publisher callback function- to
* consume data from the prognostic framework
* @param data Reference to DataStore
* containing all the input data
* @param progData Output from each prognoser
**/
void write(AllData data) override;

/** @brief Subscriber callback function- to
* introduce data into the prognostic framework
* @param data Reference to DataStore
* containing all the data
* @return Updated Datastore with new data
**/
DataStore read() override;

/// @brief Optional destructor
//˜EmptyCommunicator();

};
}
#endif // PCOE_EMPTYCOMMUNICATOR_H

/** Empty Communicator - Body (v0.1.0)
* Copyright (c) 2013-2017 United States
* Government as represented by the Administrator
* of the National Aeronautics and Space
* Administration All Rights Reserved
*/

#include <string>
#include "EmptyCommunicator.h"

namespace PCOE {
const std::string MOD_NAME = "EMPTYCOMM";

EmptyCommunicator::EmptyCommunicator
(const ConfigMap & configMap) {
log.WriteLine(LOG_DEBUG, MOD_NAME, "Configuring");
///------------------------------------
/// HERE IS WHERE YOU CONFIGURE THE Communicator.
/// Read the configuration map
/// Example: std::string SomeParam =
/// configMap.at("SomeParam")[0];
/// Example2: std::vector<std::string>
/// paramList = configMap.at("otherParam");
///
/// ADD COMMUNICATOR CONFIGURATION CODE BELOW:
///------------------------------------

}

inline void EmptyCommunicator::poll() {
// setRead(); //Call this if there is data to be
// read. Not calling setRead() in this function
// will mean that the read() function will not
// be called

}

void EmptyCommunicator::write(AllData data) {
DataStore & ds = data.doubleDatastore;
DataStoreString & dsString = data.stringDataStore;
ProgDataMap & pData = data.progData;
///------------------------------------
/// HERE IS WHERE YOU SEND DATA
///
/// The DataStore ds contains the latest received
/// sensor data. Access it by key, for example:
/// double value = ds["SomeKey"];
/// ms_rep t = ds["SomeKey"].getTime();
/// The DataStoreString dsString contains the
/// latest received sensor strings. Access it by
/// key, for example:
/// std::string value = ds["SomeKey"];
/// ms_rep t = ds["SomeKey"].getTime();
///
/// The ProgDataMap pData contains the results of
/// all prognosers. Access it by prognoser name,
/// for example:
/// ProgData & pdBatt = pData["Battery1"];
/// ADD COMMUNICATOR PUBLISHER CODE BELOW:
///------------------------------------

}

DataStore EmptyCommunicator::read() {
DataStore ds;
///------------------------------------
/// HERE IS WHERE YOU RECEIVE DATA
/// Receive data and fill in the DataStore ’ds’
/// Example: ds["someParam"] = 1.0;
///
/// ADD COMMUNICATOR SUBSCRIBER CODE BELOW:
///------------------------------------

///------------------------------------
return ds;

}
}

19

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

A.3. Model

/** EmptyModel - Header
* Contact: Matthew Daigle
* (matthew.j.daigle@nasa.gov)
* Created: January 10, 2017
*
* Copyright (c) 2013-2017 United States
* Government as represented by the Administrator
* of the National Aeronautics and Space
* Administration All Rights Reserved
**/

#ifndef EmptyModel_H
#define EmptyModel_H

#include <cmath>
#include <vector>
#include "Model.h"
#include "ConfigMap.h"
#include "ModelFactory.h"

class EmptyModel final :
public PCOE::Model {
public:
// Constructor
EmptyModel();

// Constructor based on configMap
EmptyModel(const PCOE::ConfigMap & paramMap);

/** @brief Execute state equation. This version of
* the function uses a given sampling time.
* @param t Time
* @param x Current state vector. This gets
* updated to the state at the new time.
* @param u Input vector
* @param n Process noise vector
* @param dt Sampling time
**/
void stateEqn(const double t,

std::vector<double> & x,
const std::vector<double> & u,
const std::vector<double> & n, const double dt);

/** @brief Execute output equation
* @param t Time
* @param x State vector
* @param u Input vector
* @param n Sensor noise vector
* @param z Output vector. This gets updated to
* the new output at the given time.
**/
void outputEqn(const double t,

const std::vector<double> & x,
const std::vector<double> & u,
const std::vector<double> & n,
std::vector<double> & z);

/** @brief Initialize state vector given initial
* inputs and outputs.
* @param x Current state vector. Update this.
* @param u Input vector
* @param z Output vector
**/
void initialize(std::vector<double> & x,

const std::vector<double> & u,
const std::vector<double> & z);

};
#endif

/** EmptyModel - Body
* Copyright (c) 2013-2017 United States
* Government as represented by the Administrator
* of the National Aeronautics and Space
* Administration All Rights Reserved
**/

#include "EmptyModel.h"
#include "ConfigMap.h"

using namespace PCOE;

EmptyModel::EmptyModel() {
// Default constructor

}

// Constructor based on configMap
EmptyModel::EmptyModel(const ConfigMap & configMap)
: EmptyModel::EmptyModel() {
// Setup model based on configuration parameters

}

// EmptyModel State Equation
void EmptyModel::stateEqn(const double,

std::vector<double> & x,
const std::vector<double> & u,
const std::vector<double> & n, const double dt) {
// Extract states
// double a = x[0];
// double b = x[1]; ...

// Extract inputs
// double c = u[0]; ...

// State equations
// double adot = a + b; ...

// Update state
// x[0] = a + adot*dt; ...

// Add process noise
// x[0] += dt*n[0]; ...

}

// EmptyModel Output Equation
void EmptyModel::outputEqn(const double,

const std::vector<double> & x,
const std::vector<double> &,
const std::vector<double> & n,
std::vector<double> & z) {

// Extract states
// double a = x[0]; ...

// Extract inputs
// double c = u[0];

// Output equations
// double d = a + b + c; ...

// Set outputs
// z[0] = d; ...

// Add noise
// z[0] += n[0]; ...

}

// Initialize state, given initial inputs and outputs
void EmptyModel::initialize(std::vector<double> & x,
const std::vector<double> & u,
const std::vector<double> & z) {
// Determine x from u and z (model-dependent)
// or as fixed values
// x[0] = u[0] + z[0]; ...

}

20

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

A.4. Observer

/** EmptyObserver - Header (v0.1.0)
*
* Contact: Matthew Daigle
* (matthew.j.daigle@nasa.gov)
* Created: January 10, 2017
*
* Copyright (c) 2013-2017 United States
* Government as represented by the Administrator
* of the National Aeronautics and Space
* Administration All Rights Reserved
*/

#ifndef PCOE_EmptyObserver_H
#define PCOE_EmptyObserver_H

#include <vector>
#include <cmath>
#include "Observer.h"

namespace PCOE {
class EmptyObserver final : public Observer {
public:
/** @brief Set model pointer
* @param model given model pointer
**/
void setModel(Model *model);

/** @brief Initialize UKF
* @param t0 Initial time
* @param x0 Initial state vector
* @param u0 Initial input vector
**/
void initialize(const double t0,

const std::vector<double> & x0,
const std::vector<double> & u0);

/** @brief Estimation step. Updates xEstimated,
* zEsitmated, P, and sigmaX.
* @param newT Time value at new step
* @param u Input vector at current time
* @param z Output vector at current time
**/
void step(const double newT,

const std::vector<double> & u,
const std::vector<double> & z);

// Accessors
const std::vector<double> & getStateMean() const;
const std::vector<double> & getOutputMean() const;
std::vector<UData> getStateEstimate() const;

};
}
#endif // PCOE_EmptyObserver_H

/** EmptyObserver - Body (v0.1.0)
*
* Copyright (c) 2013-2017 United States
* Government as represented by the Administrator
* of the National Aeronautics and Space
* Administration All Rights Reserved
*/

#include "EmptyObserver.h"

21

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

A.5. Predictor

/** EmptyPredictor - Header (v0.1.0)
*
* Contact: Matthew Daigle
* (matthew.j.daigle@nasa.gov)
* Created: January 10, 2017
*
* Copyright (c) 2013-2017 United States
* Government as represented by the Administrator
* of the National Aeronautics and Space
* Administration All Rights Reserved
*/
#ifndef PCOE_EmptyPredictor_H
#define PCOE_EmptyPredictor_H

#include <vector>
#include <string>
#include "Model.h"
#include "Predictor.h"
#include "GSAPConfigMap.h"

namespace PCOE {
class EmptyPredictor final : public Predictor {

public:
/** @brief Constructor for a EmptyPredictor
* based on a configMap
* @param configMap Configuration map
* specifying predictor parameters
**/
explicit EmptyPredictor
(GSAPConfigMap & configMap);

/** @brief Set model pointer
* @param model given model pointer
**/
void setModel(PrognosticsModel * model);

/** @brief Predict function for a Predictor
* @param tP Time of prediction
* @param state state of system at time of
* prediction
* @param data ProgData object, in which
* prediction results are stored
**/
void predict(const double tP,
const std::vector<UData> & state,
ProgData & data);

};
}
#endif // PCOE_EmptyPredictor_H

/** EmptyPredictor - Body
* Copyright (c) 2013-2017 United States
* Government as represented by the Administrator
* of the National Aeronautics and Space
* Administration All Rights Reserved
*/

#include <random>
#include <string>
#include <vector>
#include "Exceptions.h"
#include "EmptyPredictor.h"
#include "Matrix.h"

namespace PCOE {
// ConfigMap-based Constructor
EmptyPredictor::EmptyPredictor
(GSAPConfigMap & configMap) : Predictor() {
// Setup based on configuration parameters ...

log.WriteLine(LOG_INFO, MODULE_NAME,
"EmptyPredictor created");

}

// Set model
void EmptyPredictor::setModel
(PrognosticsModel * model) {
pModel = model;

// Perform some checks on the model ...
}

// Predict function
void EmptyPredictor::predict(const double tP,
const std::vector<UData> & state,
ProgData & data) {
// Check that model has been set
if (pModel == NULL) {
log.WriteLine(LOG_ERROR, MODULE_NAME,

"EmptyPredictor does not have a model!");
throw ConfigurationError

("EmptyPredictor does not have a model!");
}

// Run prediction, and fill in the prog data ...
}

}

22

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

A.6. Prognostics Application Driver
#include "ProgManager.h"
#include "ConfigMap.h"

// Factories- these register custom components
// (Prognosers, etc.). They are not necessary if
// you are only using the included components.
// If you are adding your own components, you
// must register them with the appropriate factory.
#include "PrognoserFactory.h"
#include "CommunicatorFactory.h"
#include "ModelFactory.h"
#include "PrognosticsModelFactory.h"
#include "ObserverFactory.h"
#include "PredictorFactory.h"

using namespace PCOE;

int main() {
// Specify config file directories (optional)
ConfigMap::addSearchPath("../example/cfg/");

// Specify Prognosers - If using custom
// prognosers, otherwise this is not necessary
PrognoserFactory & prognoserFactory =

PrognoserFactory::instance();
prognoserFactory.Register("prognoser name",

PrognoserFactory::Create<PrognoserName>);

// Specify Communicators - If using custom
// communicators, otherwise this is not
// necessary
CommunicatorFactory & commFactory =

CommunicatorFactory::instance();
commFactory.Register("communicator name",

CommunicatorFactory::Create<CommName>);

// Register model - If using custom models,
// otherwise this is not necessary
ModelFactory & pModelFactory =

ModelFactory::instance();
PrognosticsModelFactory & pProgModelFactory =

PrognosticsModelFactory::instance();
pModelFactory.Register("model name",

ModelFactory::Create<ModelName>);
pProgModelFactory.Register("model name",

PrognosticsModelFactory::Create<ModelName>);

// Register observers - If using custom
// observers, otherwise this is not necessary
ObserverFactory & pObserverFactory =

ObserverFactory::instance();
pObserverFactory.Register("observer name",

ObserverFactory::Create<ObserverName>);

// Register predictors
PredictorFactory & pPredictorFactory =

PredictorFactory::instance();
pPredictorFactory.Register("predictor name",

PredictorFactory::Create<PredictorName>);

ProgManager PM =
ProgManager("topLevelConfigFileName.cfg");

PM.run(); // Starts the GSAP Application
return 0;

}

23

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

B. GSAP REQUIREMENTS

Table 6. GSAP Requirements

Name Text
GSAP-1 Cross-Platform Compatability GSAP shall fulfill all the below requirements on Mac, Windows, Linux OS

versions documented in the User Guide
GSAP-2 Coding Standards GSAP shall meet the project coding standards as defined in the Project Soft-

ware Standards document
GSAP-3 Communicator Usability The required code for a Communicator to interface to GSAP shall be less

than 250 lines of code
GSAP-4 Prognoser Usability The required code for a Prognoser to interface to GSAP shall be less than

250 lines of code
GSAP-5 Modes of Operation GSAP shall support the modes of operation for each prognoser as defined in

the control flow diagram
GSAP-6 Clean Termination GSAP shall release all resources (e.g., Threads and allocated memory) upon

termination
GSAP-7 Multi-Threaded GSAP shall start each prognoser and each communicator on its own inde-

pendent thread
GSAP-8 Prognoser Interface GSAP shall implement the interface defined in CommonPrognoser.h for con-

necting prognosers
GSAP-9 Multiple Prognosers GSAP shall simultaneously connect one or more prognosers
GSAP-10 Periodic History Recording GSAP shall store state time of event, and systemTrajectories as defined in

ProgData (excluding predictions) for each Prognoser at a configurable inter-
val

GSAP-11 Shutdown History Recording GSAP shall store state information as defined in the ProgData Class upon
receipt of a stop command

GSAP-12 Import History At startup, GSAP shall communicate previously stored state information as
defined in the ProgData Class to the Prognoser with the same component-id,
if they exist

GSAP-13 Reset History GSAP shall provide the ability to reset the prognostic history at startup
GSAP-14 Schedule Future Input GSAP shall make any received schedule of future input from any of the

following available to the component to which it corresponds: 1) communi-
cators (“live data”), 2)from the Prognoser configuration file

GSAP-15 Output Check GSAP shall perform a bound check on the output of each prognoser to con-
firm that the output is possible

GSAP-16 Communicator Interface GSAP shall implement the interface found in CommonCommunicator.h for
connecting to different communicators (examples: file, UDP, etc.)

GSAP-17 Multiple Communicators The GSAP framework shall simultaneously connect one or more communi-
cators

GSAP-18 Receiving Data The GSAP framework shall make data received from a communicator avail-
able to the prognosers at request

GSAP-19 Sending Results The GSAP framework shall make PHM results from the prognosers available
to the communicators at request

GSAP-20 Sharing Prognoser Data The GSAP framework shall provide an interface for any Prognoser to read
the prognostics results of any other Prognoser

GSAP-21 Data Timestamp GSAP shall timestamp the data when received
GSAP-22 Result Timestamp GSAP shall timestamp the PHM results when received
GSAP-23 Prognoser Specification At startup, the GSAP framework shall create and initialize prognosers spec-

ified by the user(s)
GSAP-24 Communicator Specification At startup, the GSAP framework shall create and initialize communicators

specified by the user(s)
GSAP-25 Prognoser Configuration GSAP shall support unique configuration parameters for each Prognoser
GSAP-26 Prognoser Configuration Commu-

nication
At startup, GSAP shall send the Prognoser-specific configuration parameters
to the Prognoser to which it applies

GSAP-27 Data Storage ProgData shall provide a method for storing the following: 1. Time of Event,
2. System Trajectories at multiple timesteps with corresponding timestamps,
and 3. Internal Parameters

GSAP-28 Uncertain Data ProgData shall provide at least one way of representing uncertainty for the
following: 1. time of event and 2. System Trajectories

GSAP-29 Data Validity ProgData shall provide a method for storing the validity of each data point
for 1. Time of Event, 2. System Trajectories, and 3. Internal Parameters

24

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Name Text
GSAP-30 Observers The GSAP Support Library shall include the following observers for Prog-

nosers: Unscented Kalman Filter, Particle Filter
GSAP-31 Predictors The GSAP Support Library shall include the following predictors for Prog-

nosers: Monte Carlo, Latin Hypercube
GSAP-32 Control The GSAP Framework shall provide an interface for remote control and cus-

tom GUIs
GSAP-33 Non-Parametric Uncertainty Rep-

resentation
The UData Type shall be capable of representing the following non-
parametric uni-variate uncertainty types: Weighted Samples, Unweighted
Samples, and Percentiles

GSAP-34 Parametric Uncertainty Represen-
tation

The UData Type shall be capable of representing the following parametric
uni-variate uncertainty types: Gaussian, Log-Normal, Exponential

GSAP-35 Multi-variate Uncertainty Repre-
sentation

The UData Type shall be capable of representing multi-variate Gaussian un-
certainty type (with covar)

GSAP-36 Uncertainty Conversion GSAP shall support the following conversions between UData Types: 1)
non-parametric data type from any parametric data type, 2) weighted sam-
ples to unweighted samples, 3) unweighted samples to percentiles, 4) per-
centiles to unweighted samples, Where each conversion generates a new
UData of the second type

GSAP-37 Playback The Playback Communicator shall provide to the generic architecture soft-
ware voltage and current measurements from a playback file at a config-
urable rate

GSAP-38 Playback Generality The Playback Communicator shall associate the data in the playback file
with a key specified in the playback file

GSAP-39 Recording The Recorder Communicator shall record all data from the prognosers into
a file at a configurable rate

GSAP-40 Recording Timestep The Recorder Communicator shall with each data point include a timestamp
at which the data was received

GSAP-41 Playback Records The Recorder Communicator shall record the data in a format readable by
the Playback Communicator

Table 7. GSAP Requirements Flowdown

1: Quality 2: Uncertain-
ty Represen-
tation

3: Parallelized 4: Implement
Common
Elements

5: Common
Interface

6: Flexible 7: Minimum
Effort to
Extend

GSAP-2 GSAP-28 GSAP-7 GSAP-20 GSAP-8 GSAP-1 GSAP-3
GSAP-6 GSAP-33 GSAP-21 GSAP-9 GSAP-5 GSAP-4

GSAP-34 GSAP-22 GSAP-16 GSAP-10
GSAP-35 GSAP-27 GSAP-17 GSAP-11
GSAP-36 GSAP-28 GSAP-18 GSAP-12

GSAP-30 GSAP-19 GSAP-13
GSAP-31 GSAP-23 GSAP-14
GSAP-37 GSAP-24 GSAP-15
GSAP-38 GSAP-25
GSAP-39 GSAP-26
GSAP-40 GSAP-32
GSAP-41

25

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

C
.C

L
A

SS
D

IA
G

R
A

M

Fr
am

ew
or

k

Pr
og

no
se

r L
ib

ra
ry

C
om

m
un

ic
at

or
 L

ib
ra

ry

Su
pp

or
t L

ib
ra

ry

M
od

el
 L

ib
ra

ry

A
lg

or
ith

m
 L

ib
ra

ry

+
s
y
s
T

ra
je

c
to

ri
e

s

0
..

*

+
e

v
e

n
ts

1
..

*

C
om

m
on
C
om

m
un
ic
at
or

(f
ro

m
 M

o
d

e
l1

)

+
p

o
ll
()

+
D

a
ta

S
to

re
 r

e
a

d
()

+
w

ri
te

(A
ll
D

a
ta

)

+
s
e

tR
e

a
d

()

C
on

fig
M

ap
(f

ro
m

 S
u

p
p

o
rt

 L
ib

ra
ry

)

Lo
gg

er
(f

ro
m

 S
u

p
p

o
rt

 L
ib

ra
ry

)

TC
PS

oc
ke

t
(f

ro
m

 S
u

p
p

o
rt

 L
ib

ra
ry

)

U
D

PS
oc

ke
t

(f
ro

m
 S

u
p

p
o

rt
 L

ib
ra

ry
)

Pr
og

D
at

a
(f

ro
m

 S
u

p
p

o
rt

 L
ib

ra
ry

)

+
in

te
rn

a
ls

+
p

ro
g

n
o

s
e

rN
a

m
e

:
s
tr

in
g

+
c
o

m
p

o
n

e
n

tN
a

m
e

:
s
tr

in
g

+
u

n
iq

u
e

Id
:

s
tr

in
g

+
P

ro
g

D
a

ta
(p

ro
g

n
o

s
e

rN
a

m
e

,
c
o

m
p

o
n

e
n

tN
a

m
e

,
u

n
iq

u
e

ID
)

D
at

aP
oi

nt
(f

ro
m

 S
u

p
p

o
rt

 L
ib

ra
ry

)

Pr
og

Ev
en

t
(f

ro
m

 S
u

p
p

o
rt

 L
ib

ra
ry

)

+
ti
m

e
O

fE
v
e

n
t

+
e

v
e

n
tP

ro
b

+
p

ro
b

M
a

tr
ix

+
o

c
c
u

rr
e

n
c
e

M
a

tr
ix

Pa
rt

ic
le

 F
ilt

er
(f

ro
m

 A
lg

o
ri
th

m
 L

ib
ra

ry
)

U
ns

ce
nt

ed
 K

al
m

an
 F

ilt
er

(f
ro

m
 A

lg
o

ri
th

m
 L

ib
ra

ry
)

O
bs
er
ve
r

(f
ro

m
 A

lg
o

ri
th

m
 L

ib
ra

ry
)

#
p

M
o

d
e

l:
 M

o
d

e
l
*

#
lo

g
:

L
o

g

+
s
te

p
(d

o
u

b
le

 t
,

d
o

u
b

le
 u

,
d

o
u

b
le

 z
)

+
in

it
ia

li
z
e

(d
o

u
b

le
 t

,
d

o
u

b
le

 x
,

d
o

u
b

le
 u

)

+
s
e

tM
o

d
e

l(
M

o
d

e
l
*
)

+
g

e
tS

ta
te

M
e

a
n

()
:

v
e

c
to

r<
d

o
u

b
le

>

+
g

e
tS

ta
te

E
s
ti
m

a
te

()
:

v
e

c
to

r<
U

D
a

ta
>

+
g

e
tO

u
tp

u
tM

e
a

n
()

:
v
e

c
to

r<
d

o
u

b
le

>

Pr
ed
ic
to
r

(f
ro

m
 A

lg
o

ri
th

m
 L

ib
ra

ry
)

#
h

o
ri
z
o

n
:

d
o

u
b

le

#
p

M
o

d
e

l:
 P

ro
g

n
o

s
ti
c
s
M

o
d

e
l
*

+
P

re
d

ic
t(

ti
m

e
,

s
ta

te
s
,

P
ro

g
D

a
ta

 &
)

+
s
e

tM
o

d
e

l(
P

ro
g

n
o

s
ti
c
s
M

o
d

e
l)

M
on

te
 C

ar
lo

(f
ro

m
 A

lg
o

ri
th

m
 L

ib
ra

ry
)

M
od
el

(f
ro

m
 A

lg
o

ri
th

m
 L

ib
ra

ry
)

#
n

u
m

S
ta

te
s

#
n

u
m

In
p

u
ts

#
n

u
m

O
u

tp
u

ts

+
in

it
ia

li
z
e

(s
ta

te
s
,

in
p

u
ts

,
o

u
tp

u
ts

)

+
s
ta

te
E

q
n

(t
im

e
,

s
ta

te
s
,

in
p

u
ts

,
n

o
is

e
,

s
te

p
 t

im
e

)

+
o

u
tp

u
tE

q
n

(t
im

e
,

s
ta

te
s
,

in
p

u
ts

,
n

o
is

e
,

o
u

tp
u

t)

+
tr

a
n

s
fo

rm
(i
n

p
u

ts
,

o
u

tp
u

ts
)

B
at

te
ry

C
om

m
on
Pr
og
no
se
r

(f
ro

m
 F

ra
m

e
w

o
rk

)

+
re

s
u

lt
s
:

P
ro

g
D

a
ta

+
c
o

m
m

+
s
te

p
()

+
c
h

e
c
k
In

p
u

tV
a

li
d

it
y
()

+
b

o
o

l
is

E
n

o
u

g
h

D
a

ta
()

+
c
h

e
c
k
R

e
s
u

lt
V

a
li
d

it
y
()

Pr
og

M
an

ag
er

C
om

m
M

an
ag

er

M
od

el
B

as
ed

Pr
og

no
se

r

Pl
ay

ba
ck

Pr
og

no
se

rF
ac

to
ry

C
om

m
un

ic
at

or
Fa

ct
or

y

U
D

at
a

U
D

at
aI

nt
er

fa
ce

s

Fa
ct

or
y

+
re

g
is

te
r(

)

+
c
re

a
te

()

O
bs

er
ve

rF
ac

to
ry

Pr
ed

ic
to

rF
ac

to
ry

Si
ng

le
to

n

R
ec

or
de

r

R
an

do
m

M
od

el
Fa

ct
or

y

B
en

ch
m

ar
k

TC
PS

er
ve

r

1
1

1

Th
re

ad

+
s
ta

rt
()

+
s
to

p
()

+
p

a
u

s
e

()

+
re

s
u

m
e

()

B
en

ch
m

ar
kP

ro
gn

os
er

Fi
gu

re
15

.C
la

ss
D

ia
gr

am

26

