Integration of Condition Information in UAV Swarm Management to increase System Availability in dynamic Environments

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 27, 2024
Lorenz Dingeldein

Abstract

The approach of prognostics and health management (PHM) focuses on the real-time health assessment of a system under its actual operating condition and even extending this by the prediction of the future state based on up-to-date system information. This pursues the aim to derive more advanced maintenance or asset deployment strategies in order to keep the operation of the system safe and reliable. In this context, the outcome of a PHM system is often used as a decision support. For a high fidelity system where the actual state is considered at every timestep and a decision is executed immediately based up on this  information, Reinforcement Learning (RL) becomes a tool to find an optimized solution. Therefore the paper presents a methodology that integrates health and operational data into a RL approach in order to derive immediate operational strategies for lower degradation and higher safety and reliability. The approach is  evaluated on the basis of a swarm of unmanned aerial vehicles (UAVs) that performs a complete-area path-coverage (CAPC) mission. It can be shown that the integration of health information as well as environmental data describing dynamic operating conditions lead to lower degradation and result in more reliable operations of the swarm while achieving a more flexible mission performance compared to pre-divided swarm-missions. Varying states are also taken into account, which emphasises this approach to be a highly dynamic PHM system application.

How to Cite

Dingeldein, L. (2024). Integration of Condition Information in UAV Swarm Management to increase System Availability in dynamic Environments. PHM Society European Conference, 8(1), 11. https://doi.org/10.36001/phme.2024.v8i1.4094
Abstract 135 | PDF Downloads 106

##plugins.themes.bootstrap3.article.details##

Keywords

reinforcement learning, reliability, swarm, cooperation, distributed systems, machine learning, artificial intelligence

References
Alighanbari, M. (2004). Task assignment algorithms for teams of uavs in dynamic environments (Unpublished doctoral dissertation). Massachusetts Institute of Technology.

Andersson, K., Bang, M., Marcus, C., Persson, B., Sturesson, P., Jensen, E., & Hult, G. (2015). Military utility: A proposed concept to support decision-making. Technology in society, 43, 23–32.

Bougacha, O., & Varnier, C. (2020). Enhancing decisions in prognostics and health management framework. International Journal of prognostics and health management, 11(1).

Cho, S.-W., Park, J.-H., Park, H.-J., & Kim, S. (2021). Multiuav coverage path planning based on hexagonal grid decomposition in maritime search and rescue. Mathematics, 10(1), 83.

Darrah, T., Qui˜nones-Grueiro, M., Biswas, G., & Kulkarni, C. S. (2021). Prognostics based decision making for safe and optimal uav operations. In Aiaa scitech 2021 forum (p. 0394).

Hare, J. (2019). Dealing with sparse rewards in reinforcement learning. arXiv preprint arXiv:1910.09281.

Heier, H., Mehringsk¨otter, S., & Preusche, C. (2018). The use of phm for a dynamic reliability assessment. In 2018 ieee aerospace conference (pp. 1–10).

Kim, N.-H., An, D., & Choi, J.-H. (2017). Prognostics and health management of engineering systems. Switzerland: Springer International Publishing.

Kouzehgar, M., Meghjani, M., & Bouffanais, R. (2020).

Multi-agent reinforcement learning for dynamic ocean monitoring by a swarm of buoys. In Global oceans 2020: Singapore–us gulf coast (pp. 1–8).

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., . . . Stoica, I. (2018). Rllib: Abstractions for distributed reinforcement learning. In International conference on machine learning (pp. 3053–3062). Mahmoud Zadeh, S., Yazdani, A., Elmi, A., Abbasi, A., & Ghanooni, P. (2022). Exploiting a fleet of uavs for monitoring and data acquisition of a distributed sensor network. Neural Computing and Applications, 1–14. Marques, H., & Giacotto, A. (2019). Prescriptive maintenance: Building alternative plans for smart operations. In The 10th aerospace technology congress. Puente-Castro, A., Rivero, D., Pazos, A., & FernandezBlanco, E. (2022). Uav swarm path planning with reinforcement learning for field prospecting. Applied Intelligence, 52(12), 14101–14118.

Radzki, G., Bocewicz, G., Goli´nska-Dawson, P., JasiulewiczKaczmarek, M., Witczak, M., & Banaszak, Z. (2021). Periodic planning of uavs’ fleet mission with the uncertainty of travel parameters. In 2021 ieee international conference on fuzzy systems (fuzz-ieee) (pp. 1–8).
Section
Technical Papers