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ABSTRACT 

This paper proposes a method for obtaining several health 

condition indicators for wind turbines based on vibration data 

driven from two similar experimental turbines (damaged and 

healthy). These indicators are able to capture the bearing and 

gear condition of the gearbox in the wind turbines. Signal 

processing and feature extraction were carried out –on both 

the time and frequency domains– from raw data in order to 

generate datasets for each shaft of power of the wind turbines. 

Based on good health condition data, a data mining approach 

was used to build two reference models for the indicators, one 

using Self-Organizing Maps (SOM) and another one using 

Gaussian Mixture Models (GMM). These reference patterns 

for the indicators were tested with a dataset coming from a 

damaged wind turbine and the results obtained confirmed the 

adequacy of these indicators to detect anomalies in the health 

condition of a wind turbine. 

1. INTRODUCTION 

Maintenance costs are an important point to take into account 

in renewable energies in general, and in wind electrical 

generation in particular (IRENA, 2012). Current wind 

turbines are designed to work around 120 000 hours a year, 

over a 20-year lifetime. On average, associated costs with 

maintenance imply a proportion of the total investment of 

approximately 3%. 

Although both failure type and nature range widely, 

mechanical wind turbine damage has greater incidence 

during downtime periods than any other fault type (Spinato, 

2009). The basic requirements for wind turbine supervision 

have been usually formulated (DNVGL, 2016) based on their 

rolling elements condition (drivetrain, gears and bearings). In 

fact, these are considered to be representative enough of the 

wind turbine health condition. In the area of vibration 

monitoring, the present wind industry is focused on 

predictive vibration-based maintenance, whose usefulness 

has been experimentally proven and has turned into standard 

turbine equipment. 

Currently, the state-of-art of vibration signal characterization 

covers a wide number of techniques, on both time domain 

(statistical parameters, synchronous averaging) and 

frequency domain (Fourier Transforms, order analysis, 

envelope analysis, cepstrum, etc), which both turn out to be 

particularly useful when predicting bearing and gear damage 

(Kalista 2015, Hussain 2013, Sasmal 2015). Their application 

to wind turbines is very extended.  On the other hand, some 

advanced techniques related to predictive maintenance, 

among other, are based on machine learning algorithms, 

whose application allows for the prediction of potential 

faults. These can be summarized into two types: supervised 

(decision trees, K-Nearest Neighbors, Support Vector 

Machine, etc) and non-supervised (k-means, GMM, SOM, 

etc), all of which have been broadly used in wind turbine 

condition monitoring and prognostics (Coronado 2015, 

Tchakoua 2014). This paper serves as a contribution in this 

field proposing a methodology for the estimation of two 

health condition indicators of a wind turbine gearbox based 

on its vibrational performance.  

The paper is organized as follows: Section 2 describes the 

methodology proposed. Section 3 presents the source of 

information used in the paper. Section 4 shows the procedure 

followed to transform the raw data collected in a more 

convenient data sets for further analysis. Section 5 describes 

the elaborations of normal behavior models for the case of a 

healthy gearbox and the two indicators elaborated based on 

the models. Section 6 tests the indicators with data sets from 

a damaged wind turbine. Finally, section 7 presents the more 

relevant conclusions reached. 

2. METHODOLOGY PROPOSED  

This section describes the method proposed in this paper for 

monitoring the health condition of the gearbox of a wind 

turbine based on its vibration measurements at key points of 

its components where different accelerometers were 

installed. This objective has been studied by several authors 

in different papers of scientific literature as for example Nie 
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and Wang (2013) or Xie et al. (2015). However, this paper is 

an additional contribution in the field considering different 

perspectives on the use of algorithms from the knowledge 

discovering area. These algorithms will supply indicators 

about the health condition of the wind turbine gearbox. Their 

application will be discussed in both healthy and damaged 

cases of similar wind turbine gearboxes.  

Figure 1 presents a scheme of the method proposed. First, the 

vibration raw data set from the components of a healthy wind 

turbine gearbox was processed extracting several features. 

This was followed by a principal component analysis able to 

present the most significant features to take into account and 

the configuration of a training set. Using the training data set, 

two algorithms were applied to obtain indicators of the 

gearbox health condition: Self-Organized Maps (SOM) 

(Kohonen, 2001) and Gaussian Mixture Models (GMM) 

(Bishop, 2006).  

 

Figure 1. Scheme of the method proposed. 

 

Once the characterization of the normal healthy  behavior was 

done, the same process was followed with data coming from  

components of a damaged wind turbine gearbox and a 

comparison of results was carried out in order to demonstrate 

the ability of the indicators to monitor the health condition of 

the gearbox. Monitoring these indicators is useful to reduce 

the time of fault discovering, re-schedule the planned 

maintenance planning or to suggest a deeper investigation 

with advanced diagnosis tools.  

3. CHARACTERISTICS OF THE CASE STUDIED 

The method proposed in the paper was developed using as an 

application a data collection provided by the National 

Renewable Energy Laboratory (NREL) (Sheng, 2013).  This 

data set includes vibrations coming from two 750 kW three-

bladed identical wind turbines composed of a main low speed 

shaft, gearbox, high speed shaft and the electrical generator. 

The data set is coming from different accelerometers located 

at several points of the gearboxes, whose internal 

configuration is divided into four shafts: Planet Carrier 

(PLC), Low-Speed Shaft (LS), Intermediate-Speed Shaft 

(IMS) and High-Speed Shaft (HS) and three stages: low, 

intermediate and high speed stage. Figure 2 shows the four 

shafts in horizontal alignment and the three stages in vertical 

groups of boxes that correspond to the same stage. 

Also Figure 2 shows the location of 8 accelerometers named 

ANX (X: 1 to 8) where vibration data are collected in both 

wind turbines. There are two similar 10 minute tests, one 

coming from the healthy wind turbine and the other from the 

damaged one. A detailed description of all the gearbox 

components (gears, bearings), accelerometers, test conditions 

and turbine faults can be found in Sheng (2013). According 

to the information about the physical characteristics of the 

gearbox, the expected characteristic frequencies were 

estimated obtaining: 

 4 values corresponding to the frequencies of each of the 

four shafts (SF, Shaft Frequency)) 

 3 values corresponding to the frequencies of each stage 

in the gearbox (GMF, Gear Mesh Frequency) 

 13x4 values corresponding to 13 bearings of the 

gearbox and their following 4 characteristic 

frequencies: Outer Race Frequency (BPO), Inner Race 

Frequency (BPI), Ball Spin Frequency (BS) and 

Fundamental Train Frequency (FT). The 13 bearings are 

represented in Figure 2 by triangles. 

 

 

Figure 2. Scheme of the gearbox studied and location of the 

vibration sensors. 

4. PRE-PROCESSING AND FEATURE EXTRACTION 

The goal of the first step of the methodology proposed is to 

prepare the data collected from different accelerometers 

located in key points of the wind turbine gearbox in order to 

be useful as inputs for feeding algorithms in charge of 

estimating the health condition of the gearbox. This first step 

of the methodology includes two sequential tasks: pre-

processing of the raw data and extraction of relevant features 

for the diagnosis of the gearbox components. Both will be 

described in the next sub-sections. 

4.1. Pre-processing of the raw vibration data 

The raw data collected by the 8 accelerometers during the test 

period was filtered and pre-processed in order to reduce the 

background noise of the data collected and also to obtain a 

set of relevant characteristics to be thoroughly analyzed in a 
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later step. The first task was the elaboration of signal periods 

of equal lengths on each one of the available signals. After 

that the use of Time Synchronous Averaging (TSA) was 

initially studied as a first option for data analysis. However, 

several issues were encountered such as the short time length 

of the test, odd gear ratios and a lack of tachometer from some 

tests. Thus, according to MacFadden (2000) the TSA is 

equivalent to applying a Comb type filter in the frequency 

domain and for this reason Comb Filters were finally used to 

filter out the SF and GMF (Gear Mesh Frequency) harmonics 

from the data set. Additionally, an envelope analysis was 

carried out oriented to the bearing diagnosis by means of a 

spectral kurtosis filtering. A kurtogram implementation 

(Antoni, 2007 and Wang, 2013) was useful to determine 

those frequency bands which were most likely to have BPI, 

BPO and BS impulses coming from the bearings.  

Figure 3 presents the scheme followed for processing each 

signal coming from the accelerometers. As a result of the pre-

processing procedure, three sub-signals were obtained xGMF, 

dGMF (GMF filtered and residual) and its harmonics, and eBF 

which is the filtered envelope at an optimum band given by a 

kurtogram. Figure 3 shows the way to obtain all of these sub-

signals. 

Figure 3. Raw signal processing. 

4.2. Feature extraction 

After pre-processing the raw data coming from the 8 

accelerometers mentioned in section 3, several features were 

extracted in order to characterize the information collected 

and already filtered relative to the behavior of the gearbox 

components.  Scientific literature suggests a wide variety of 

possible features to be extracted (Qiao, 2015, Xie, 2015 and 

Wang,  2017) from vibrational data of a wind turbine 

gearbox. In this analysis thirteen features were estimated and 

tested in total, seven from  the sub-signal previously obtained 

xGMF (combined with dGMF) and six from the eBF respectively. 

The list of these features is presented in Table 2.  

Features #1, 2, 3 and #8, 9, 10 are time domain statistical 

parameters, while features #5, 6, 7 are condition indicators 

widely used to detect gear mesh defects. 

Features #4,11,12,13 were based on the average FFT, 

windowed by a Hamming function with a 50% overlap.  

Equation 1 describes the procedure followed for the 

estimation of PR for the signal X. It is able to measure the 

energy spectrum frequency peaks. 

𝑃𝑅𝑋[𝑓] =
∑ 𝑋[𝑓]2

∆𝑓1

∑ 𝑅[𝑓]2
∆𝑓2

, ∆𝑓1 = 0.03𝑓, ∆𝑓2 = 𝛼∆𝑓1             (1) 

 

where 𝑋[𝑓] and  𝑅[𝑓]  represent the original signal and the 

residual signal respectively at frequency 𝑓, after removing all 

frequency magnitudes contained in ∆𝑓1. After several trials 

the parameter 𝛼 was set at 5 and the spectral resolution was 

adjusted as best possible. Finally ±4Hz was selected with 

600 signal portions. 

 

5. ESTIMATION OF INDICATORS FOR THE WIND TURBINE 

GEARBOX CONDITION 

This section describes two indicators useful to know the 

health condition of a wind turbine gearbox. They are based 

on a similar approach, but using different algorithms. The 

idea behind the indicators is to present if the current 

vibrational behavior observed corresponds or not to a normal 

condition. In order to do this the indicators are modelled 

Table 2. List of extracted features. 

 
 # Name Equation 

Gear 

diagnosis 

1 
Root mean 

square (𝑟𝑚𝑠) 
√∑ 𝑥𝐺𝑀𝐹[𝑡]2

𝑁

𝑡=1
 

2 
Kurtosis 

(𝑘𝑢𝑟𝑡) 

𝑚4(𝑥𝐺𝑀𝐹)

𝑚2(𝑥𝐺𝑀𝐹)2
 

3 
Crest Factor 

(𝐶𝐹) 

max(𝑥𝐺𝑀𝐹) − min (𝑥𝐺𝑀𝐹) 

𝑟𝑚𝑠(𝑥𝐺𝑀𝐹)
 

4 

Spectral 

Power at 

GMF 

(𝑃𝑆𝐺𝑀𝐹) 

10 log (∑ 𝑃𝑅𝐺𝑀𝐹[𝑘]

𝐾

𝑘=1

) ∀𝑘 𝐺𝑀𝐹 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 

5 𝐹𝑀0 
max(𝑥𝐺𝑀𝐹) − min (𝑥𝐺𝑀𝐹)  

∑ 𝑋𝐺𝑀𝐹[𝑘]𝐾
1

  ∀𝑘 𝐺𝑀𝐹 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 

6 𝐹𝑀4 
𝑚4(𝑑𝐺𝑀𝐹)

𝑚2(𝑑𝐺𝑀𝐹)2
 

7 
Energy Ratio 

(𝐸𝑅) 

𝑟𝑚𝑠(𝑑𝐺𝑀𝐹)

𝑟𝑚𝑠(𝑥𝐺𝑀𝐹)
 

Bearing 

diagnosis 

8 

Fisher 

Skewedness  

(𝑠𝑘) 

𝑚3(𝑒𝐵𝐹)

𝜎(𝑒𝐵𝐹)3
 

9 
Kurtosis 

(𝑘𝑢𝑟𝑡) 

𝑚4(𝑒𝐵𝐹)

𝑚2(𝑒𝐵𝐹)2
 

10 
Crest Factor 

(𝐶𝐹) 

max(𝑒𝐵𝐹) − min (𝑒𝐵𝐹)  

𝑟𝑚𝑠(𝑒𝐵𝐹)
 

11 

Spectral 

Power at BPI 

(𝑃𝑆𝐵𝑃𝐼 ) 

10 log (∑ 𝑃𝑅𝐵𝑃𝐼 [𝑘]

𝐾

𝑘=1

) ∀𝑘 𝐵𝑃𝐼 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 

12 

Spectral 

Power at 

BPO (𝑃𝑆𝐵𝑃𝑂) 

10 log (∑ 𝑃𝑅𝐵𝑃𝑂[𝑘]

𝐾

𝑘=1

) ∀𝑘 𝐵𝑃𝑂 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 

13 

Spectral 

Power at BS 

(𝑃𝑆𝐵𝑆) 

10 log (∑ 𝑃𝑅𝐵𝑆[𝑘]

𝐾

𝑘=1

)  ∀𝑘 𝐵𝑆 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 

𝑚𝑖(𝑥) =
1

𝑁
∑ (𝑥[𝑡] − �̅�)𝑖𝑁

𝑡=1  is i-th central moment, 𝜎(𝑥) = √
𝑁

𝑁−1
𝑚2(𝑥)  the standard 

deviation;  𝑆𝐹, 𝐺𝑀𝐹, 𝐵𝑃𝐼, 𝐵𝑃𝑂, 𝐵𝑆 represent shaft, gear mesh, inner defect, outer defect 

and rolling element frequency respectively; 𝑋[𝑘]  is the  FFT amplitude of 𝑥[𝑡]  at 

frequency 𝑘. 𝑃𝑅 is described below. 
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previously with data sets where no anomalies are present. 

After that they can be used for observing new information 

previously not seen. In the next sub-sections the process to 

select the more relevant features is described in order to 

configure the training sets and after that two different 

algorithms are applied in order to model the indicators. The 

details of this process follow. 

5.1. Feature selection  

After the pre-processing and feature extraction described in 

section 4, the information available consists of  eight feature 

datasets, one per sensor, each one composed of 600 

observations and 13 variables (features extracted), for each 

case (healthy and  damaged wind turbine gearbox). All data 

were normalized by means of z-scores, since they had 

different scales. 

The relevance of the 13 features extracted could be different 

and even null in some cases, and for this reason, a selection 

of the best features explaining the dynamics of the data was 

carried out based on a Principal Component Analysis (PCA) 

(Bishop 2006). The eight data sets were grouped according to 

the four shafts in the gearbox named PLC, LS, IMS and HS 

as indicated in Figure 2. Table 3 shows in the column named 

sensors the data sets collected from the  accelerometers in 

Figure 2 that are considered to monitor each shaft. Also each 

data set was divided in two, one containing the variables or 

features 1 to 7 that correspond to the gears monitoring and 8 

to 13 that correspond to the bearings monitoring. The labels 

of these two sets are identified in the column label in Table 

3. 

Each dataset was filtered in order to eliminate highly 

correlated features and finally a PCA was carried out in order 

to reduce the number of features that are actually relevant in 

each data set. The reduction obtained is  summarized in Table 

3. The column ID corresponds to the Initial Dimension, the 

column FD corresponds to the Final Dimension and the 

rightmost column includes the variance explained by the 

features finally selected in each data set. For example the data 

set D11 had initially 21 variables (7 features x 3 sensors) and 

after the PCA analysis only 9 were necessary, therefore  

explaining more than 80 % of the variance. 

 

5.2. SOM-based model 

A self-organizing map (SOM) was trained for each dataset of 

the healthy gearbox (Kohonen 2014). A SOM is a type of 

artificial neural network trained using unsupervised learning 

to produce a low-dimensional discretized representation of 

the input space of the training samples, called a map. The map 

is represented by neurons which weights are patterns 

discovered in the learning process that represent certain areas 

of the input domain. The number of neurons (K) required in 

the maps was estimated by running a k-means algorithm 

testing a range from 2 to 100 clusters, obtaining the total sum 

of squared errors with respect to each centroid (SSE) in each 

trial. The number of neurons finally selected for each map 

was based on the elbow rule method. The results are listed in 

Table 4. 

 

A  health condition indicator was proposed using the BMU 

(Best Matching Unit) distance computed on each 

observation, divided by the maximum Euclidean distance 

among all nodes, as presented in Equation 2. 

𝐶𝐼𝑆𝑂𝑀 =
𝑑𝑖𝑠𝑡(𝑥, 𝑤𝐵𝑀𝑈)

maxij{𝑑𝑖𝑠𝑡(𝑤𝑖 , 𝑤𝑗)}
 (2) 

 

In order to detect anomalies based on the indicator estimated 

in Equation 2 (CISOM), its distributions were studied in the 

case of a healthy gearbox for each training data set and a 

Kolmogorov-Smirnov test was carried out on the distribution 

of the variable log(CISOM), checking out a normality tendency 

with the signification of α=0.05. Finally, a threshold was 

defined at 95% of fitted distribution, so that each observation 

outside this limit was considered potentially anomalous or 

corresponding to a symptom of non-healthy condition.  

 

 

Figure 4. Log Normal test on dataset D41. 

 

Figure 4 presents as an example of  the application of this 

procedure to the data set D41 for the healthy gearbox. In this 

figure, the distribution of CISOM values and its fitting by a log-

normal function are presented. Also, the values for deciding 

Table 3. Final training data sets configured. 

 

Shaft Sensors 

Variables  

per sensor 

(#) 

Label ID FD 

 

Explained 

Variance (%) 

PLC  

AN3, 

AN4, 

AN10 

1-7 D11 21 9 80.32 

8-13 D12 18 9 84.18 

LS AN5 
1-7 D21 7 3 82.92 

8-13 D22 6 5 92.23 

IMS AN6 
1-7 D31 7 3 88.47 

8-13 D32 6 4 87.26 

HS 

AN7, 

AN8, 

AN9 

1-7 D41 21 9 83.13 

8-13 D42 18 10 80.65 

 

 

Table 4. SOM dimensions for each data set. 

 
Dataset D11 D12 D21 D22 D31 D32 D41 D42 

K 12 15 25 17 16 15 11 12 

SOM Dimensions 4x3 4x4 5x5 4x4 4x4 4x4 4x3 4x3 
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the threshold and the corresponding p-value are presented. 

Table 5 summarizes the p-values and thresholds obtained for 

each training set.  

 

 

5.3. GMM-based model 

The SOM model obtained previously reaches the goal of a 

good characterization of the gearbox condition that can be 

used as a reference for the detection of anomalies in the 

gearbox components. However in order to robust this result 

even more, another model was developed using the same data 

sets but with a different algorithm. In particular, a Gaussian 

Mixture Model (GMM) was built for each dataset 

corresponding to healthy condition of the gearbox (Shalev-

Shwartz, 2014). A GMM is a probabilistic model that 

assumes all the samples are generated from a mixture of a 

finite number of Gaussian distributions with unknown 

parameters. The goal of these models was to measure how 

likely new observations belong or not to a previously defined 

pattern of probability. The GMM models were fitted using  an 

expectation–maximization (EM) algorithm. In order to 

decide the number of Gaussian distributions to include in 

each GMM model, three criteria were tested. They were the 

BIC (Bayesian Information Criterion), the AIC (Akaike 

Information Criterion) and the K-fold cross validation 

criterions with a 12.5% data fraction to avoid overfitting.  A 

GMM model was created for each data set testing from 1 to 

20 Gaussian components for the three criteria before 

mentioned.  

 

Figure 5. GMM test performance using 1 and 20 Gaussian 

components using the dataset D21. 

 

Figure 5 shows an example for the case of the data set D21. 

Finally the BIC criterion was selected because it penalizes 

more the excess of parameters. Once this selection was done, 

a final version of the GMM models was obtained using 10% 

of data fraction. They were validated by computing the ratio 

of observations included within 95% of the density region 

(R95%).Table 6 shows the parameters of the GMM models for 

each data set. 

 

According to the models developed a new health indicator 

CIGMM was estimated based on the density function obtained 

p(x), according to Equation 3. This indicator takes into 

account that distant data points from the optimum behavior 

will have low values of p(x), so CIGMM will increase 

𝐶𝐼𝐺𝑀𝑀 = − log (
𝑝(𝑥)

𝑚𝑎𝑥𝑥{𝑝(𝑥)}
) (3) 

 

6. USE OF THE HEALTH CONDITION INDICATORS FOR 

DETECTION OF ANOMALIES 

The health condition indicators proposed CISOM and CIGMM 

were estimated for the datasets of the damaged wind turbine 

gearbox using the SOM and GMM models obtained from the 

datasets of the healthy wind turbine gearbox.  Thus, for each 

shaft, the condition of gears and bearings was evaluated 

throughout the entire 10-minute test. 

Figure 6 shows their temporal evolution corresponding to the 

PLC and HS shafts used as examples. The sub-figures a and 

c correspond to the gears and the sub-figures b and d to the 

bearings in the shafts PLC and HS respectively. The first 

result from this figure is that both indicators have similar 

behaviors and both are able to detect abnormal behavior. 

Also, it can be observed in Figure 6 that the cases a, c and d 

present  abnormal behavior detected by the indicators in the 

data sets of the damaged gearbox because they are 

overpassing the corresponding thresholds of normal behavior 

expected (discontinue lines). However, in case b the 

indicators are closer to the thresholds of normal behavior and 

it is more difficult to decide if an anomaly is present. In order 

to confirm the results shown in Figure 6, a different graphical 

representation was used facing the indicators corresponding 

to the gears (horizontal axis) against the indicators 

corresponding to the bearings (vertical axis) for the four 

shafts. Only the results for the indicator CIGMM are presented 

in Figure 7 where in discontinued lines the respective 

thresholds of normal behavior are indicated, in red dots the 

data corresponding to the damaged gearbox and in green dots 

those belonging to the healthy gearbox. 

From Figure 7 it is possible to conclude the presence of 

constant and major faults on gears in the PLC and HS shafts, 

and also faults in the bearing of the IMS and HS shafts. These 

Table 5. Resulting p-values and thresholds from log 

normal test. 

 

Dataset D11 D12 D21 D22 D31 D32 D41 D42 

p-val 0.124 0.810 0.112 0.809 0.059 0.119 0.614 0.556 

p95 1.142 0.326 0.322 0.697 0.137 0.252 0.814 0.467 

 

 

Table 6. GMM parameters for each dataset. 

 
Dataset D11 D12 D21 D22 D31 D32 D41 D42 

K 1 3 3 1 4 2 2 3 

𝑻𝒆𝒔𝒕 𝐥𝐨𝐠 �̂� 926.081 879.444 328.653 449.869 362.916 352.528 902.851 908.157 

𝑹𝟗𝟓% 0.927 0.935 0.958 0.950 0.965 0.942 0.945 0.931 
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conclusions are coherent with the results expected validating 

the role of the indicators proposed and the methodology 

exposed in this paper. 

  

 

 

 
(a)             

                (c) 

 

 
(b)             

                                   (d) 

Figure 6. Evolution of the health indicators obtained from the datasets D11(a), D12(b) (PLC shaft), D41(c), D42(d) (HS 

shaft). 

 

 
(a)                                                                             (b)               

 
(c)                                                                            (d)               

 

Figure 7. Scatter plots with CIGMM values from each pair of datasets of  PLC (a), LS (b), IMS (c) and HS (d). 
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7. CONCLUSION 

This paper has presented a methodology to estimate two 

indicators able to detect anomalies in a wind turbine gearbox 

based on vibrations collected from key points of its 

components. The methodology described covers several 

steps from the pre-processing of the raw vibrational data until 

the estimation of normal behavior models and the indicators 

based on them able to detect anomalies. The two estimated 

indicators have a similar objective but based on different 

algorithms, SOM and GMM respectively. The use of them in 

parallel makes the detection of abnormal behavior more 

robust. 

The models and indicators developed used two different data 

sets of vibrations collected by accelerometers in two similar 

gearboxes of a wind turbine, one of then healthy and another 

one damaged. 

The models and indicators obtained demonstrated their 

ability to detect anomalies in the data sets corresponding to 

the damaged gearbox suggesting their possible use in the 

future. However, the proposed method exhibits some 

limitations such as the best that the available datasets 

corresponded to a simple point of operation of the gearboxes 

(1200 rpm in the High Speed shaft) and the collection of data 

was for a short time period. Also, the combined effect of 

several failure modes in the damaged data set has to be taken 

into account. Future studies will try to overpass these 

limitations. In any case, the usefulness of the proposed 

method has been proven by different tests as was described 

in the paper. 
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