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ABSTRACT

Electrically powered autonomous aircraft are being increas-
ingly considered for intra-city short-haul air-taxi services to
fly human passengers between different locations. As a re-
sult, it is critical to incorporate safety under autonomous op-
erations into system operations by enabling such autonomous
aircraft to make accurate estimates of its current health state
and take the right decisions to complete its mission success-
fully. The first step to assess health state of the entire air-
craft is for the aircraft to be able to assess the health of its
individual critical systems, (e.g electrical powertrain) for it
to be able to fly and reach its destination in a safe man-
ner. The fundamental components of a powertrain in an elec-
trically powered aircraft include key electrical components
such as batteries, motors, and power electronics (e.g., elec-
tronic speed controllers). A model-based diagnosis approach
of complex critical systems enables their safe and efficient
operation. Typically, such model-based schemes are central-
ized approaches that suffer from inherent disadvantages such
as computational complexity, single point of failure, and scal-
ability issues. Distributing the diagnosis task addresses these
issues. To this end, this paper presents the results of imple-
menting a distributed diagnostics approach to a representa-
tive electric aircraft powertrain. In particular, we focus on
the implementation of a distributed diagnosis framework to a
quadrotor vehicle. The simulation experiments demonstrate
how the distributed diagnosis algorithm correctly and effi-
ciently diagnose faults in the rotorcraft’s electric powertrain,
such as motor winding faults and electronic speed controller
switching faults.

1. INTRODUCTION

With improvement in battery technology, progress in devel-
oping a practical electric passenger aircraft to be used for
intra-city short-haul air-taxi services has steadily accelerated.
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The trend is inclined more towards using vertical-takeoff-
and-landing multirotor aircraft (VTOL) or very-short-takeoff-
and-landing (VSTOL) aircraft operated in a fully- or semi-
autonomous mode. This inclusion of autonomy raises the
critical need for incorporating safety under autonomous op-
erations into system operations. An autonomous electric ve-
hicle should be able to make accurate estimates of its current
health state and take the right decisions to complete its mis-
sion successfully. This requires assessing the health state of
its critical systems, such as its electrical propulsion system,
for it to be able to reach its destination in a safe and success-
ful manner.

Electric propulsion systems for aircraft require reliability, re-
silience, and high power density. These systems must also
manage weight, complexity, and operational costs. As more
aircraft transition to electric propulsion systems, the manage-
ment of faults and component degradation becomes increas-
ingly important. Model-based diagnosis of complex criti-
cal systems enables their safe and efficient operation. Typ-
ically, such model-based schemes are centralized approaches
that suffer from inherent disadvantages such as computa-
tional complexity, single point of failure, and scalability is-
sues. Distributing the diagnosis task within the overall sys-
tem framework addresses these issues. To this end, this pa-
per presents the results of applying an online fault diagnosis
framework for an electric unmanned aerial systems (e-UAS).
In this work we demonstrate the efficacy of the distributed
diagnosis framework in detecting and isolating single, persis-
tent, and abrupt faults in electric aircraft powertrain, such as
motor winding faults and electronic speed controller switch-
ing faults.

In earlier work, an approach for performing system-level
prognostics on electrical powertrains (G. Gorospe, Kulkarni,
& Hogge, 2017; G. E. Gorospe & Kulkarni, 2017) is being
presented. However, in order to perform system-level prog-
nostics on these electric powertrains, the first step is to iden-
tify which individual subsytem has failed. As mentioned ear-
lier, in this paper, we implement a distributed diagnosis ap-
proach to detect and diagnose the powertrain that has failed.
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The result of the fault diagnosis approach forms the foun-
dation for implementing the system-level prognostics frame-
work developed in (Roychoudhury, Biswas, & Koutsoukos,
2010). In this paper, we focus on the distributed diagnosis of
a quadrotor aircraft as the current trend in the industry implies
multirotor aircraft with VTOL capabilities will be the prime
candidates to serve as air-taxis. The modern rotor-crafts usu-
ally have four, six, or eight propellers and each has its own
powertrain. The distributed fault diagnostic approach pre-
sented in this paper can isolate the exact subsystem of one of
the multiple powertrains in an computationally efficient man-
ner.

The rest of the paper is organized as follows. Section 2 out-
lines motivation and background for this work. In Section 3
details of electric powertrain of a quadcopter is discussed.
Details of the components developed in the simulation are
discussed. Section 4 describes the distributed diagnosis ap-
proach implemented in this work. This is followed by Sec-
tion 5 which covers the experimental setup and results. Con-
clusions and future work are discussed in Section 6.

2. MOTIVATION AND BACKGROUND

The fundamental components of a powertrain in an electri-
cally powered rotorcraft is essentially the same as that of a
fixed-wind aircraft. These include key electrical components
such as batteries, motors, and power electronics such as elec-
tronic speed controllers (ESCs). The motivation for this work
evolved from flight operations with the all-electric Edge 540T
UAV (Hogge et al., 2018), where during test flights abnor-
mally high current draw was observed from one of the bat-
teries. This caused a critical temperature increase in the mo-
tor windings. The developed prognostics algorithm was able
to estimate changes in the current drawn by the batteries but
this led to investigation into other systems of the power train
to identify faults. Investigation of the flight data and trou-
bleshooting with batteries and other hardware confirmed that
one of the ESCs on the UAV had degraded since the vehi-
cle was commissioned, and on delving deeper, we identified
two switching faults in the ESCs that could occur during op-
eration leading to degradation of the UAS performance. In
addition, motor winding faults were also identified to affect
UAS performance.

The research presented in (Kulkarni, Celaya, Biswas, &
Goebel, 2012; Daigle, Sankararaman, & Kulkarni, 2015) fo-
cused on isolated components where component-level prog-
nostics methodologies were implemented. This has paved the
way to the determination of the effects of component-level
degradation on the system as a whole (G. Gorospe et al.,
2017; G. E. Gorospe & Kulkarni, 2017). The development
of new models and integration with previous models enables
the simulation of an rotorcraft electric UAV propulsion sys-
tem similar to that used in the Edge 540 electric UAV.

In Hogge et. al (Hogge et al., 2018), implementation of prog-
nostic framework to batteries in electric powertrains was stud-
ied. In this work a distributed fault detection and isolation
(FDI) framework is presented at the vehicle-level where dif-
ferent sub-systems like motors and ESCs interact with each
other. In case of an UAS there could be four of such systems
which need to be monitored for fault diagnosis at run time.
We present implementation of the diagnostic framework to
a generic quadcopter. It is assumed the four motors of the
quadcopter are controlled by their respective ESCs and pow-
ered via a single LiPo battery pack. The diagnostic algorithm
perform under the single-fault assumption, i.e., only one fault
can be present in the system. We also assume faults to be
abrupt and persistent faults.

Among the electric motor technologies available for propul-
sion systems, the permanent-magnet brushless direct-current
(PDC) motors have seen increased use in fields beyond hobby
aircraft communities where they are ubiquitous due to their
availability and low cost (Gabriel, Meyer, & du Plessis,
2011). PDC motors do not use commutation and thus are
more efficient, offer higher torque-to-weight ratio, and usu-
ally run quieter than brushed DC motors. An aircraft propul-
sion system typically consists of an energy storage device
such as a lithium polymer battery (LiPo), electronic speed
controllers (ESCs) to provide electric communication and fre-
quency modulation based on control input, and the PDC mo-
tor which converts electrical energy to kinetic energy.

PDC machines are essentially synchronous machines with
trapezoidal shaped induced emf. The ESC is responsible
for monitoring the positions or modes and switching the
current accordingly. Reduced performance of an ESC due
to degradation can have negative consequences on both the
battery and the motor leading to loss of thrust in the vehi-
cle (Krishnan, 2009).

Previous work on fault diagnosis and health management for
electric propulsion systems utilizing PDC motors has focused
on open circuit winding faults and faults from malfunction-
ing transistor elements in power switching devices. Within
transistor elements, both open-switch faults and low transis-
tor base drive can lead to faulty conditions. To perform diag-
nostics on motor drive systems, in (Park, Kim, Ryu, & Hyun,
2006), the authors used a voltage sensor across the lower legs
of the inverter to detect switch open-circuit faults, and fuses
and switches to detect and mitigate switch short-circuit faults.
Later, in (Park et al., 2011), the authors developed a diagnos-
tic method by which the absolute value of the developed cur-
rent on each leg of the inverter was monitored and summed,
this sum was then compared with a threshold value. Below
the threshold value, the likelihood of fault conditions was
high. Awadallah et. al (Awadallah & Morcos, 2006) used
a trained adaptive neuro-fuzzy inference system to not only
detect the open switch fault but identify the faulty switch.
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Other strategies for fault diagnosis and management
have included the addition of supplementary phases
(Gopalarathnam, Toliyat, & Moreira, 2000), fault man-
agement techniques, such as increasing current in healthy
phases or extending conduction periods of healthy phases
to make up for imbalances (Speed & Wallace, 1990), and
methods for computing parameter changes expected during
fault status (Moseler & Isermann, 2000).

Model-based diagnosis approaches can be broadly classified
into centralized, decentralized, and distributed schemes, such
as, (Gertler, 2017; Davis & Hamscher, 1988; Zhang, Polycar-
pou, & Parisini, 2002; Venkatasubramanian, Rengaswamy,
Yin, & Kavuri, 2003). Centralized schemes, such as (Gertler,
2017), construct a single diagnoser from a global system
model. Decentralized schemes, such as (Debouk, Lafortune,
& Teneketzis, 2000), use a global system model but distribute
the diagnosis computations among several local diagnosers.
The local diagnosis decisions based on a subset of observa-
tions are communicated to other diagnosers, or to a central
coordinator, which use the global model to generate globally
consistent solutions.

Distributed diagnosis approaches use subsystem models and
assume the global model is unknown (Kurien, Koutsoukos, &
Zhao, 2002; Su & Wonham, 2005; Fabre, Benveniste, Haar,
& Jard, 2005). Local diagnosers for each subsystem com-
municate their diagnosis results to each other to arrive at the
global solution. Most decentralized and distributed diagnosis
algorithms have been developed in the discrete-event frame-
work (Kurien et al., 2002; Su & Wonham, 2005; Fabre et
al., 2005; Baroni, Lamperti, Pogliano, & Zanella, 1999; Pen-
colé & Cordier, 2005). In (Debouk et al., 2000), the au-
thors discuss three coordinated decentralized protocols for
diagnosis that extend the centralized diagnosis method de-
veloped in (Sampath, Sengupta, Lafortune, Sinnamohideen,
& Teneketzis, 1995). Each local diagnoser is built from the
global system model and uses only a subset of observable
events. Coordination is necessary in the first and second pro-
tocols to generate the correct diagnosis result, but the third
protocol generates correct results without a coordinator. All
three protocols, under certain assumptions, produce the same
results as a centralized diagnoser. The approaches presented
in (Baroni et al., 1999; Pencolé & Cordier, 2005) avoid coor-
dination between local diagnosers by representing the system
as a network of communicating finite state machines. First,
the observable events for each subsystem are used to gener-
ate the individual subsystem diagnoses. Then, the subsystem
diagnoses are merged to generate the global diagnosis result.

The offline approach presented in (Baroni et al., 1999) as-
sumes all observable events are received in the same order
that they were transmitted. The online approach described
in (Pencolé & Cordier, 2005) achieves efficiency by avoiding
merge operations for independent subsystems. Its incremen-

tal algorithm does not assume the ordering of observations is
preserved. In (Kurien et al., 2002), the authors describe an
approach where each local diagnoser generates a set of local
diagnosis results, and then communicates with its neighbors
to reduce the number of hypotheses. The graph of constraints
between the fault hypotheses and the observations is parti-
tioned to minimize communication between local diagnosers.
A similar approach is presented in (Su & Wonham, 2005),
where the partitioning is based on physical connections.

Our approach, designed for diagnosing faults in large con-
tinuous systems, differs from (Debouk et al., 2000; Kurien
et al., 2002; Su & Wonham, 2005; Fabre et al., 2005; Ba-
roni et al., 1999; Pencolé & Cordier, 2005). Abrupt para-
metric faults, i.e., a step change in a plant parameter value,
produce transients in the system dynamics. Capturing these
fault generated transient behaviors in a discrete-event model
by quantizing the measurement or state-space can result in
state explosion (Lunze, 2000). We adopt a different approach,
where we use the continuous model to derive fault effects as
qualitative magnitude and higher-order effects on individual
measurements. This produces a compact model for online di-
agnosis. We use the global system model to design local diag-
nosers offline. At runtime, the local diagnosers operate inde-
pendently to generate local diagnosis results that are globally
correct. Our approach does not require a coordinator, and
there is minimal or no exchange of information among the
diagnosers. This is similar to the third protocol in (Debouk
et al., 2000), and a failure in a local diagnoser does not affect
the diagnosis capability of the other diagnosers. Therefore,
our approach operates like other online distributed diagnosis
schemes, such as, (Pencolé & Cordier, 2005).

The simulation experiments demonstrate how the distributed
diagnosis algorithm correctly and efficiently diagnose faults
in the rotorcraft’s electric powertrain. In this work faults are
injected in the motor and the ESCs of the rotorcraft. Devel-
oped fault detection and isolation frameworks identifies the
respective faults in the subsystem based on observed sensor
data.

3. SIMULATION CASE STUDY: ELECTRICAL PROPUL-
SION SYSTEM

This paper is focused on detecting and isolating faults due to
degradation observed in ESCs or motors in either of the fours
arms of the quadcopter under study. The supply voltage is set
to 20 V DC which is sourced through a LiPo battery pack.
The simulation model is build where in each of subsystems
of the respective four arms are identical. The modeled elec-
tric propulsion system as seen in the Fig. 1 shows key compo-
nents in a single arm which include a lithium-polymer battery
as power source; an ESC consisting of a power conditioning
circuit and gate driving circuit and a 3-phase power inverting
circuit; and a PDC motor.
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Figure 1. Schematic of an Electric UAV Propulsion System
(Single Arm)

In the next sub-section, we discuss models developed for the
ESC and PDC motor system respectively. Prognostics imple-
mentation on the battery system has been published in our
earlier work (Hogge et al., 2018; Bole, Kulkarni, & Daigle,
2014; Bole et al., 2013). The battery model is not discussed
in this work. The developed system models are then con-
nected to form the entire electrical propulsion system for sim-
ulation in MATLAB. MATLAB Simulink 2017 is used for
simulating the entire system as well as injecting faults. The
simulation system is built on our earliest electric propulsion
testbed (G. E. Gorospe & Kulkarni, 2017) for a fixed wing
Edge 540 T mentioned earlier.

3.1. Electronic Speed Control Circuits Model

For the purposes of this research the ESC is modeled as an
ideal power inverter employing sinusoidal pulse width mod-
ulation (SPWM) and half bridge drivers for each of three
phases within a control block. Additionally, power switch-
ing devices are also modeled as ideal within the switching
function block which represents the commutation functions
of the ESC. This enables the study of switching faults, includ-
ing open-circuit faults and short-circuit faults, and switching
frequency faults such as shoot-through faults. This modeling
scheme is representative of general ESC operation for PDC
motors which involves battery input, pulse width modula-
tion (PWM) input to control frequency, bridge drivers, and
a semiconductor commutation circuit made up of switching
transistors. Details of model development are discussed in
(G. Gorospe et al., 2017).

Within the switching function block, F1, F2 and F3 are the
PWM signals from the control block and are multiplied by
the input voltage V (G. Gorospe et al., 2017). This amplifies
the PWM signal that drives the 3 phase inverter. The output
of the function is a 3-phase voltage, Va, Vb, and Vc, that is
then connected to a wye motor function block in MATLAB
given by Equation 1. F1, F2 and F3 are the outputs from the
controlled block while vab, vbc, vca are the winding voltages
between respective phases.

 1 −1 0
0 1 −1
−1 0 1

V
F1
F2
F3

 =

vabvbc
vca

 (1)

The developed model is used to both simulate nominal as well
as fault injected scenario operation of ESC. The data gener-
ated by this model in simulation can be directly compared
with empirical data from laboratory testing.

3.2. Motor Dynamic Model

The dynamic model of the motor describes a three-phase
brushless DC motor, with wye-connected stator windings and
a permanent magnet as the rotor. This dynamic model only
describes the mechanical device, and assumes that the elec-
tronic speed controller provides a given input to the three-
phase terminals. Details of the developed model are discussed
in (G. Gorospe et al., 2017).

If the three phase input voltage and back-emf trapezoids are
given, then Equations 2, 3, and 4 can be used as the dy-
namic equations of the brushless DC motor (G. Gorospe et
al., 2017).

dωm

dt
=

1

J
(−Bωm + (Te(e, i)− Tl)), (2)

where J is the inertia, B is the frictional coefficient, and Tl is
the load torque on the rotor. Additionally, the rotor position,
θm is

dθm
dt

=
p

2
ωm, (3)

where p is the number of poles, and

d

dt

[
ia
ib

]
= − Rs

LM

[
ia
ib

]
+

1

LM

[
2 1
1 1

] [
vab
vbc

]

− 1

LM

[
2 −1 −1
1 0 −1

]eaeb
ec

 . (4)

4. THE DISTRIBUTED DIAGNOSTIC APPROACH

Model based diagnosis of complex systems enables their
safe and efficient operation. Most model-based diagnosis
schemes are centralized approaches that suffer from inher-
ent disadvantages such as computational complexity, single
point of failure, and scalability issues. Distributing the di-
agnosis task addresses these issues. This work is an appli-
cation paper that discusses the implementation of our dis-
tributed health monitoring approach developed as part of ear-
lier work (Roychoudhury, Biswas, & Koutsoukos, 2009).

Our distributed diagnosis scheme does not use a centralized
coordinator, and each local diagnoser generates globally cor-
rect diagnosis results through local analysis, by only commu-
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Figure 2. The distributed diagnosis architecture.

nicating a minimal number of measurements with other lo-
cal diagnosers. The diagnoser design is based on the second
algorithm presented in (Roychoudhury et al., 2009) that cre-
ates a partition structure and local diagnosers simultaneously.
For each local diagnoser, separate particle filter (PF) based
inference algorithms for fault detection, isolation, and identi-
fication are implemented. The quantitative diagnosis scheme
is employed in combination with a qualitative fault isolation
scheme to improve diagnosis efficiency. The schematic of our
distributed diagnosis approach is shown in Fig. 2. Each local
diagnoser performs three primary tasks: (i) fault detection,
(ii) qualitative fault isolation (Qual-FI), and (iii) quantitative
fault hypothesis refinement and identification (Quant-FHRI).

The fault hypothesis refinement and identification (FHRI)
scheme is invoked when either the fault hypotheses set is re-
fined to a pre-defined size, k, a design parameter, or a pre-
specified s simulation time-steps have elapsed. For each fault
hypothesis that remains when FHRI is initiated, a faulty sys-
tem model is generated by extending the nominal model used
by the local diagnoser to include the fault parameter as a
stochastic variable. Again, a PF scheme for each fault model
tracks the faulty observed behavior, taking as input the mea-
surements from time td −∆max, where ∆max ≥ td − tf is
the maximum delay possible between the time of fault occur-
rence, tf , and the time of fault detection, td. For each PF, a
Z-test is used to determine if the deviation of a measurement
estimated by the PF from the corresponding actual observa-
tion is statistically significant.

As more observations are obtained, ideally the PF using the
correct fault model will eventually converge to the observed
measurements, while the observations estimated using the in-
correct fault models would gradually deviate from the ob-
served measurements. We assume that the particles for the
true fault model will converge to the observed measurements
within sd time steps of its invocation. Since the fault magni-
tude is included as a stochastic variable in every fault model,
the magnitude of the true fault (i.e., the % bias) is considered
to be that estimated by the PF for the true fault model.

5. EXPERIMENTS

The experiment is setup as a simulation for a quadcopter. De-
veloped models are integrated in to form a single powertrain
of the quadcopter powered by a single battery. Before dis-
cussing the experiment details we look into the different faults
that could be occur in a electric power-train system. These
have been listed based on the earlier work being done on re-
spective systems (Daigle & Kulkarni, 2013; G. Gorospe et
al., 2017). In this specific experiment we have integrated all
the sub-systems together to form a single operational unit as
would be the case on an electric UAV.

5.1. System Faults

As discussed the power-train system consists of three distinct
subsystems that are susceptible to different faults modes and
system degradation rates. Investigation into each of the sys-
tems leads to some of the prominent faults modes observed in
the respective systems as discussed below.

• LiPo Batteries: Lithium corrosion, plating, electrolyte
layer formation, and contact losses are examples of faults
that batteries are susceptible to (Daigle & Kulkarni,
2013). These faults lead to an increase in internal re-
sistance and impedance, as well as a decrease in charge
capacity. Battery related faults are not discussed in this
work.

• Permanent Magnet Brushless DC Motors: DC mo-
tors are susceptible to mechanical faults in the form
of general motor or bearing wear, and electrical faults
in the form of poor contacts and insulation deterio-
ration (Abramov, Nikitin, Abramov, Sosnovichellasos-
novich, & Bozek, 2014; Awadallah & Morcos, 2002).
Typically, changes in the vibration characteristics are
caused by mechanical faults, and changes in the cur-
rent draw characteristics are caused by electrical faults,
but can also be caused by mechanical degradation. For
example, bearing wear can result in increased friction,
which would result in higher current draw to maintain
the same output due to the increase in mechanical resis-
tance. In addition due to high load usage the winding
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Figure 3. Insulation resistance change fault injected in Motor M1 at 250 s and detected at 250.03 s. Fault isolated at 255.03 s.
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Figure 4. PWM frequency change fault injected in ESC2 at 370 s and fault detected and isolated at 370.02 s.
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Figure 5. MOSFET struck open Fault injected in ESC4 at 325 s and fault detected and isolated at 325.03 s.

degrade over the period of time leading to change in in-
sulation resistance. Winding faults can lead a short or
open circuit condition. In this work we inject a winding

fault in one of the motor windings to observe change in
the motor operation.

• Electronics Speed Controllers: ESCs are half bridge
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rectifiers and most of the faults observed in them are
due to switching circuits. Any faults in the condition-
ing circuit are not considered here. Faults are observed
when the MOSFETs are not synchronized while oper-
ating, or when the switching circuit is malfunctioning
(G. Gorospe et al., 2017). The first one results in a vari-
able PWM control waveform, and the second one results
in a non-operational voltage phase switching pair. Gener-
ally, a degraded ESC or an ESC operating under a faulty
condition will draw more/less current than a healthy ESC
when operating under similar environmental conditions
and load.

5.2. Experimental Setup

As discussed in this work we have not incorporated the bat-
tery model and hence a constant source of 20V DC is used.
For this study three faults are selected, two in the ESC sys-
tem and one for the PDC motor. The faults are selected
such that these could be replicated in a testbed environ-
ment later with updates being done to the current fixed wing
testbed (G. E. Gorospe & Kulkarni, 2017).

The two selected faults in ESC system are: (1) change in the
PWM control causes switching MOSFETs devices to oper-
ate at different frequencies and cause the output voltage and
current to be out of sync leading to efficiency loss in motor
operation and (2) MOSFET stuck open fault which may cause
the half bridge rectifier circuit in the ESC incomplete leading
to degradation in output rectified voltage.

A change in insulation resistance due to degradation is se-
lected as a third fault which occurs in the motor windings. A
increase in the motor winding insulation resistance leads to
increased current draw leading to the batteries depleting at an
increase discharge rate as well as heat being generated lead-
ing to increase in the winding temperature and hence overall
motor-casing temperature. In this work we are not correlating
the increase in current to temperature hence the sensor only
measures voltage and current in the windings.

5.2.1. Problem

The systems are divided into input voltage through the bat-
teries assumed constant and shared by all the four systems on
each of the quadcopter arms. The sub-systems on each arm
i consists of an ESC (ESCi) and a PDC motor (PDCMi).
Under nominal operation the system runs for 500 s in total
with voltage and current from each of the respective systems
observed. When operating under faulty conditions each fault
scenario in simulated individually.

ScenarioM1 injects faults in one of the motor windings,E2A,
E4B inject PWM and MOSFET stuck fault in the second and
fourth arm of the vehicle ESC system respectively. Voltages
and currents from the respective systems are measured and
compared against the nominal operation of the system. Ta-

ble 1 shown the fault signature matrix for electric powertrain.
The parameters rIi and rVi

are the residuals of current (I)
and voltage (V), respectively between nominal and faulty sce-
nario operations in the respective quadrotor sensor measure-
ments.

As shown in Fig.2 the defined distributed diagnosers D1, D2,
D3, and D4 for the each of the four arms for the vehicle sys-
tem consists of residuals rI1 , rV1

, rI2 , rV2
, rI3 , rV3

, rI4 , and
rV4 respectively. The symbol generation approach described
in (Roychoudhury et al., 2010) is used, which uses the Z-
test for statistical fault detection and symbol generation. A
window of samples is used to compute the mean, and thus
can produce a delay that increases with window size. For
the particular fault detector settings, we consider the bounded
observation delay to be ∆max = 5 s.

In the fault signature, a + indicates increase in deviation
of the residual, a − indicates decrease in deviation of the
residual on fault injection, and a 0 indicates no change. As
discussed in section 2 only abrupt faults (denoted by a step
change in the fault parameter) are injected.

Table 1. Fault Signature Matrix for Electric Powertrain.

Faults rI1 rV1
rI2 rV2

rI3 rV3
rI4 rV4

M1 + 0 0 0 0 0 0 0
E1A + + 0 0 0 0 0 0
E1B − − 0 0 0 0 0 0
M2 0 0 + 0 0 0 0 0
E2A 0 0 + + 0 0 0 0
E2B 0 0 − − 0 0 0 0
M3 0 0 0 0 + 0 0 0
E3A 0 0 0 0 + + 0 0
E3B 0 0 0 0 − − 0 0
M4 0 0 0 0 0 0 + 0
E4A 0 0 0 0 0 0 + +
E4B 0 0 0 0 0 0 − −

5.3. Experimental Results

In this section, we demonstrate the approach through three
example scenarios using theMi, EiA, EiB fault scenarios. In
all cases the system starts in the nominal state, and then faults
are injected at different time points. The complete set of fault
candidates are {M1, E1A, E1B , M2, E2A, E2B , M3, E3A,
E3B , M4, E4A, E4B} as shown in table 1.

The symbol generation approach described in (Roychoudhury
et al., 2010) is used, which uses the Z-test for statistical fault
detection and symbol generation. A window of samples is
used to compute the mean, and thus can produce a delay that
increases with window size. For the particular fault detector
settings, we consider the bounded observation delay to be
∆max = 5 s.

Example (M1 fault). In this scenario, an increase in insu-
lation resistance in the windings of motor M1 is injected at
tf = 250 s. The measured and estimated values are shown in
Fig. 3, which show that the behavior can be tracked through
the mode changes during nominal operation. The residuals
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are shown in Fig. 3. We first observe measurement I1 to in-
crease at td = 250.03 s, which can be caused by fault M1 or
E1A as can be seen from the fault signatures in Table 1. We
then observe no other measurement change for 5 s, and we
conclude the fault to be M1 at time 255.03 s.

Example (E2A fault). In this scenario, a change in PWM
frequency is injected in ESC2 at tf = 370 s. The measured
and estimated values are shown in Fig. 4, which show that
the behavior can be tracked through the mode changes during
nominal operation. The residuals are shown in Fig. 4. We s
observe I2 as well as V2 to increase at td = 370.02 s, which
can be caused only by fault E2A as can be seen from the fault
signatures in Table 1. Hence, we conclude the fault to beE2A

at time 370.02 s.

Example (E4B fault). In this scenario, an MOSFET stuck
open fault is injected at tf = 325 s in the fourth arm ESC
system of the quadcopter, i.e.,ESC4. The measured and esti-
mated values are shown in Fig. 5, which show that the behav-
ior can be tracked through the mode changes during nominal
operation. The residuals are shown in Fig. 5. We observe both
measurements I4 and V4 decrease at td = 325.03 s, which
can be caused only due to E4B as seen from fault signatures
in Table 1). Hence, we conclude the fault to be E4B at time
325.03 s.

6. CONCLUSION

The paper presented a distributed diagnosis approach for effi-
cient diagnosis of faults in electric powertrain for a quadrotor
vehicle. The implemented approach demonstrated that a dis-
tributed diagnoser can help diagnose faults without a coordi-
nator and without any exchange of diagnostic results. Also,
such distributed diagnosis scheme generates quick and effi-
cient diagnosis results locally that are globally correct and
requires very low computational cost.

This approach can be scaled to any rotorcraft with higher
number of rotors (and hence, powertrains). Once the fault is
accurately detected and isolated, one can implement a prog-
nostics framework, such as those presented in (Daigle et al.,
2015; Hogge et al., 2018) to systematically assess and esti-
mate the health of the vehicle.

In the future, we would like to extend this work by combin-
ing the diagnostic and prognostic architecture to perform in-
tegrated system-level vehicle health management for safe op-
eration. This integrated approach can also be extended to in-
clude additional system faults in the vehicle. Also, we would
like to extend this work to diagnose multiple faults which are
also discrete and incipient in nature.
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