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ABSTRACT

Advanced PHM techniques have the potential to substantially
reduce railway track maintenance costs while increasing safety
and availability. However, there is still a significant lack of
knowledge and experience in relation to suitable PHM mod-
els and algorithms within the context of railway track ge-
ometry degradation. This paper proposes a Bayesian model
class methodology for prognostics performance assessment
whereby different prognostics algorithms can be rigorously
assessed and ranked according to their relative probability to
predict the future degradation process. The proposed frame-
work is exemplified and tested for a case study about track
degradation prognostics using published data about track set-
tlement, taken from a simulated traffic loading experiment
carried out at the Nottingham Railway Test Facility.

1. INTRODUCTION

The continuous ageing and the increasing use of the railway
infrastructure calls for advanced PHM techniques to optimise
the infrastructure asset management. For ballasted tracks,
which represent the vast majority of the railway network world-
wide, geometry degradation due to traffic loadings represents
the main ageing factor requiring periodic interventions to re-
store the track to an acceptable geometry (Esveld, 2001; Selig
& Waters, 1994). These interventions represent a very signif-
icant part of the overall infrastructure maintenance costs, and
furthermore, imply temporary line closures and disruptions
which reduce the effective network capacity. As a result, rail-
way track maintenance typically needs to be planned months
in advance.
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In this context of anticipated decision-making, several au-
thors have started to look at PHM techniques for more predic-
tive condition-based track asset management (Mishra, Odelius,
Thaduri, Nissen, & Rantatalo, 2017; J. Chiachío, Chiachío,
Prescott, & Andrews, 2017). However, the literature on this
topic is still a very limited, and thus, there is a lack of con-
clusive knowledge about which of the available track degra-
dation modelling approaches is more suitable for prognos-
tics, and which prognostics algorithms and methods best suit
this challenge. To date, railway track degradation and main-
tenance modelling has a strong empirical character, mostly
grounded on data-based models with limited prospective ca-
pability. A review of these models can be found in Dahlberg
(2001) for track settlement modelling, and more recently in
Soleimanmeigouni and Ahmadi (2016) and Higgins and Liu
(2017), focusing also in maintenance modelling. However,
only few authors have adopted physics-based models to deal
with railway track geometry degradation from first geome-
chanical principles. See for example Suiker and de Borst
(2003); Indraratna, Thakur, Vinod, and Salim (2012).

This paper proposes a Bayesian methodology for the assess-
ment of the prognostics performance of two contrasting fami-
lies or model classes for railway track geometry degradation;
namely, a physics-based model class, and a phenomenologi-
cal data-based model class. The assessment is carried out us-
ing probabilities that measure the relative degree of belief of
a candidate model class in predicting the upcoming degrada-
tion process. These probabilities are sequentially obtained us-
ing Bayes’ Theorem based on the prospective evidence con-
cept, which is a re-interpretation of the classical Bayesian evi-
dence in the context of prognostics, measuring the probability
of the future degradation process to be predicted by a given
prognostics algorithm under a particular model class. As a
case study, the proposed methodology is exemplified using
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experimental data taken from Aursudkij, McDowell, and Col-
lop (2009) about permanent axial strain in a ballasted rail-
way track, carried out at the Nottingham Railway Test Facil-
ity (Brown, Brodrick, Thom, & McDowell, 2007).

The remainder of the paper is organised as follows. Section
2 presents the fundamentals of the track geometry degrada-
tion models to be tested, and provides an overview of the
methodology adopted for model-based prognostics. Section 3
presents the proposed Bayesian model class methodology for
prognostics. In Section 4, the proposed Bayesian framework
is applied to railway track settlement data to serve as a case
study. Finally, Section 5 provides concluding remarks.

2. TRACK DEGRADATION MODELLING

2.1. Candidate model classes

In this study, two representative model classes are selected
to be assessed and ranked using the proposed Bayesian as-
sessment methodology. The first model class, denoted here
byM0, corresponds to a physics-based elasto-plastic model
originally proposed by Indraratna et al. (2012) to represent
the evolution of the permanent deformation of ballast with
cyclic loadings. In essence, the model predicts the cyclic ac-
cumulation of permanent deformations in the granular sub-
structure as a function of the applied stress invariants p and
q (refer to Appendix), along with some geomechanical input
parameters, as1:

dεpv
dεps

=
9(M − ηp/pcs)

9 + 3M − 2ηMp/pcs
(1a)

dεps
dη

=
2φκ (1− p0,i/pcs,i) (p/pcs)

M2(1 + e0) (2p0/p− 1)

dεps
dεpv

η (1b)

where εpv and εps are the plastic volumetric and deviatoric
strains, respectively, η = q/p is the applied stress ratio, and
φ is a semi-empirical factor controlling the cyclic hardening
of the material, which depends on some empirical parameters
θ, i.e., φ : φ(θ) (see Eq (21)). The rest of input parameters
are defined in the Nomenclature Section and also in the Ap-
pendix.

For each loading cycle, the differential constitutive equations
in Eq (1) are numerically integrated by finite differences, lead-
ing to a set of cycle-by-cycle incremental equations, as fol-
lows (J. Chiachío et al., 2017):

εps |n = εps |n−1 + ∆εps |n (2a)
εpv|n = εpv|n−1 + ∆εpv|n (2b)

where εps |n and εpv|n are the deviatoric and volumetric plastic
strains at loading cycle n, respectively. The management vari-
able of interest in this problem is the vertical permanent strain

1The term representing the contribution of ballast breakage in the plastic
deformation of ballast proposed in Indraratna et al. (2012) is neglected here
for simplicity.

of the track after n loading cycles, εp1|n, which can be periodi-
cally measured section by section (Selig & Waters, 1994). Us-
ing basic geomechanical derivations, εp1|n can be shown to be
obtained as a function of the component plastic strains εps |n
and εpv|n, as:

εp1|n = εps |n +
1

3
εpv|n (3)

The other candidate model class to be tested, denoted asM1

in this paper, corresponds to a phenomenological logarithmic
relationship between the vertical permanent strain of the track
and the number of loading cycles, given by the expression:

εp1|n = A+B lnn (4)

where A and B are fitting parameters. This model class has
been extensively adopted by many authors for its efficiency
and simplicity. See for example Alva-Hurtado and Selig (1981);
Hettler (1984); Indraratna, Salim, Christie, et al. (2002). A
discrete-time representation of this model can be straightfor-
wardly obtained as

εp1|n =

{
A n = 1

εp1|n−1 +B/n, n > 1
(5)

2.2. Model-based prognostics methodology

Let us assume that our physical system can be represented by
a discrete-time state-space I/O model, as follows (Chiachío,
Chiachío, Sankararaman, Saxena, & Goebel, 2015):

xn = g(xn−1, θ) + vn (6a)
yn = h(xn, θ) + wn (6b)

where xn is the actual state of the system at time or load
cycle n, and yn represents a measurement about the system
state at time n. The function g(xn−1, θ) : Rnx × Rnθ →
Rnx is the state transition equation, represented by the model
classes considered above (given by Eq (2) and (5) for M0

and M1, respectively), and h(xn, θ) : Rnx × Rnθ → Rny
is the observation equation, given by Eq (3) for M0, and
by h(xn, θ) = εp1|n for M1. In Eq (6), θ ∈ Θ is a vector
of model parameters representing each model class, and vn
andwn represent the modelling error and measurement noise,
respectively. Following the Principle of Maximum Informa-
tion Entropy (Jaynes, 2003), these error terms are conserva-
tively modelled as zero mean Gaussians, i.e.:, v ∼ N (0, σv),
w ∼ N (0, σw). If the model parameters are included within
the system state as an augmented state, i.e., z = (x, θ), then
the dynamical model defined in Eq (6) in state-space form can
be probabilistically rewritten as (Chiachío et al., 2015):

p(zn|zn−1) = N (g(zn−1), σv) (7a)
p(yn|zn) = N (h(zn), σw) (7b)
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Hidden Markov model
p(zn|zn−1)
p(yn|zn)

Inputs: u
Initial state: z0

Data (on-line): y1:n

Updated state
p(z0:n|y1:n)

Predicted state
p(zn+`|y1:n)

zn+` ∈ Ū EOLn = n + `
RULn = `

Prognostics
p(RULn|y1:n)

Maintenance
modelling

YES

NO

` = ` + 1

Figure 1. Schematic overview of model-based prognostics methodology

The probabilities in Eq (7) constitute the key elements in
the model-based prognostics approach for track settlement
(J. Chiachío et al., 2017). In particular, given a sequence of
measurements up to time or cycle n, y1:n = {y1, y2, . . . , yn},
where yi denotes a track settlement measurement at the i-th
loading cycle, the goal is to estimate the updated probabil-
ity density function (PDF) of the system state at current time
n. This PDF is obtained from Eqs. (7) using Bayes’ Theorem,
as follows:

p(z0:n|y1:n) ∝ p(yn|zn)︸ ︷︷ ︸
Eq (7b)

p(zn|zn−1)︸ ︷︷ ︸
Eq (7a)

p(z0:n−1|y1:n−1) (8)

where p(z0:n−1|y1:n−1) is the system state at previous cycle
n − 1. Note that Equation (8) is analytically intractable in
the general case involving both nonlinear and non-Gaussian
state-space models. Sequential Monte Carlo methods are typ-
ically adopted to efficiently approximate the posterior PDF
in Eq (8) using a collection of K weighted samples or parti-
cles, {z(i)

n , ω
(i)
n }Ki=1,

∑K
i=1 ω

(i)
n = 1, as follows (Liu & West,

2001):

p(z0:n|y1:n) ≈
K∑
i=1

ω(i)
n δ(z0:n − z(i)

0:n) (9)

where δ is the Dirac delta. From the estimation of the updated
state of the system at current time or cycle n, a particle esti-
mation of the `-step ahead state of the system can be shown
to be obtained by Total Probability Theorem as (Chiachío et
al., 2015):

p(zn+`|y1:n) ≈
K∑
i=1

ω(i)
n δ(zn+` − z(i)

n+`) (10)

where ω(i)
n are the particle weights corresponding to the sys-

tem update at load cycle n. Having defined the boundary ∂Ū
between the safe region U of the state space and the unsafe re-
gion Ū (i.e., the region where the system performance is unac-
ceptable), a particle-filter estimation of the End of Life (EOL)
and Remaining Useful Life (RUL) can be obtained based on

Eq (10), as follows:

p(EOLn|y1:n) ≈
K∑
i=1

ω(i)
n δ(EOLn − EOL(i)

n ) (11a)

p(RULn|y1:n) ≈
K∑
i=1

ω(i)
n δ(RULn − RUL(i)

n ) (11b)

In Eqs (11a) and (11b), EOL(i)
n and RUL(i)

n are the particles
for EOLn and RULn respectively, which are obtained as

EOL(i)
n = inf

{
n+ ` ∈ N : ` > 1 ∧ I(Ū)(z

(i)
n+`) = 1

}
(12a)

RUL(i)
n = EOL(i)

n − n (12b)

with I(Ū) being an indicator function that assigns the unity if
zn+` ∈ Ū , and makes zero the rest. A graphical scheme sum-
marising the model-based prognostics methodology is pro-
vided in Figure 1. The interested reader is referred to Chiachío
et al. (2015); M. Chiachío, Chiachío, Shankararaman, Goebel,
and Andrews (2017) for further insight about model-based
prognostics.

3. BAYESIAN ASSESSMENT METHODOLOGY

3.1. Prospective evidence of candidate model class

Let suppose that measurements about system degradation are
available until current time or load cycle n, denoted by Dn ,
y1:n, and that the system is updated until time n, using Eq (8)
under model class M. Let suppose also that data about the
future performance of the system are available,2 denoted by
Dn+ . Then, one might be interested in assessing the prob-
ability of Dn+ to be predicted by a particular model-based
prognostics algorithm under model class M at current time
n. This probability can be obtained by computing the prospec-

2The availability of "future data" Dn+ could be a hard assumption for purely
online prognostics scenarios, but it may hold true for offline and pseudo-
online prognostics analyses. For online prognostics, we may assume that
Dn+ can be available through experiments run in similar conditions.
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tive evidence of model classM, as follows:

p(Dn+ |Dn,M) =

∫
Θ

p(Dn+ |θn,Dn,M)p(θn|Dn,M)dθn

(13)
where p(θn|Dn,M) is the marginal posterior of the model
parameters at load cycle n, which can be approximated using
Eq (9). Thus, a particle approximation of the multi-dimensional
integral in Eq (13) can be readily obtained as:

p(Dn+ |Dn,M) ≈
K∑
k=1

ω(k)
n p(Dn+ |θ(k)

n ,Dn,M) (14)

with p(Dn+ |Dn, θ(k)
n ,M) being the prospective likelihood

function of model classM, which measures how likely Dn+

is predicted byM parameterized by θ(k)
n . If Dn+ is given by

the sequence Dn+ = {yj , yk, . . . , ym}, where {j, k, . . . ,m}
⊂ N > n are the discrete times or load cycles where the
upcoming data are available, then the prospective likelihood
function can be obtained as:

p(Dn+ |θ(k)
n ,Dn) = p(yk|yj , θ(k)

n )︸ ︷︷ ︸
Eq (7a)

· · · p(ym|yn, θ(k)
n )︸ ︷︷ ︸

Eq (7a)

(15)

where the conditioning onM is dropped for the sake of sim-
plicity.

3.2. Prospective plausibility of candidate model class

In addition to quantifying the prognostics performance for
a particular model class or a particular algorithm, a ques-
tion of particular interest is the assessment and rank of dif-
ferent model classes M = {M1, . . . ,MnM }, according to
their updated plausibility to predict the future degradation
process. Thus, given an initial quantification of the relative
plausibility of a candidate model class, P (Mj |M), where∑nM
i=1 P (Mi|M) = 1, the prospective plausibility of such

model class can be obtained using Bayes’ Theorem, as:

P (Mj |Dn+ ,M) = P (Mj |M)
p(Dn+ |Dn,Mj ,M)

p(Dn+ |Dn,M)
(16)

where p(Dn+ |Dn,Mj ,M) is the prospective evidence ofMj

given by Eq (13), and the term p(Dn+ |Dn,M) is obtained by
Total Probability Theorem as

p(Dn+ |Dn,M) =

nM∑
i=1

p(Dn+ |Dn,Mi,M) (17)

4. CASE STUDY

The Bayesian assessment methodology for model-based prog-
nostics presented above is exemplified here using a case study
about railway track geometry degradation. To this end, pub-
lished data (Aursudkij et al., 2009) about plastic axial strain
in a ballasted railway track is considered for the assessment,

taken from an experiment carried out at the Nottingham Rail-
way Test Facility (Brown et al., 2007). The dataset is rep-
resented in Figure 2 for illustration purposes, while further
insight about the experimental setup is found in Aursudkij et
al. (2009).

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0
Loading Cycles n ×105

0. 00

0. 25

0. 50

0. 75

1. 00

1. 25

Ax
ial

 S
tra

in
 εp 1

×10 2

Figure 2. Track geometry degradation data taken from
Aursudkij et al. (2009)

The prognostics methodology summarised in Section 2.2 is
applied using the data in Figure 2 for the two model classes
considered in Section 2.1. For identification purposes, the
physics based model in Eq (1) is referred to as model class
M0, while the phenomenological model proposed in Eq (3)
is denoted asM1. A discrete-time state-space representation
of both model classes is obtained and subsequently embed-
ded within a particle-filtering algorithm using N = 5, 000
particles, following the methodology in Section 2.2. For this
analysis, both model classes are conservatively assumed to be
equally plausible a priori, i.e., P (Mj |M) = 0.5, j = 0, 1.
Then, as long as the process evolves and data is collected,
estimations of the prospective evidence in Eq (13) are se-
quentially obtained, whereby the relative prospective plau-
sibility of each model class is subsequently obtained using
Eq (16). The results for the relative prospective plausibility
of both model classes are shown in Figure 3 for the times
(cycles) where degradation data are available. In view of
these results, the prognostics algorithm using the physics-
based model class M0 is revealed as the most plausible in
predicting the future degradation of the system, and therefore
the one which is more likely to provide the best prognostics
estimates. This higher prospective plausibility is more accen-
tuated at the beginning of the process due to the initial lack
of data, since the physics-based model class needs less sup-
port from data to train the fitting parameters. As the process
evolves towards the end, both model classes have extracted
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Figure 3. Relative prospective plausibility obtained for both the physics-based model classM0 and a phenomenological model
classM1 for track geometry degradation, using the data in Figure 2.

enough information from the data to allow them to perform
similarly in terms of prognostics, and their relative plausibil-
ities tend to converge.

5. CONCLUSION

PHM science and technology has the potential to explore and
devise optimal frameworks for railway track asset manage-
ment, thus contributing to reduce maintenance cost and in-
crease safety and availability. Notwithstanding, there is a need
for more conclusive knowledge in this important area of ap-
plication of PHM. A Bayesian model class methodology has
been proposed in this paper to test and rank different prog-
nostics models and algorithms for railway track degradation
prognostics according to their relative probability to predict
the future degradation process. The methodology is general
in nature but for this paper, it has been illustrated using a case
study for railway track degradation prognostics, where the
performance of a physics-based model class for track degra-
dation is compared to that obtained using a phenomenologi-
cal data-based model class. According to the results for this
case study, the physics-based model class provides the high-
est probabilities during the whole process, which suggests
that among the two candidate model classes, the physics-
based model class is more likely to predict the future and
therefore to provide the best prognostics estimates. More re-
search effort is needed to corroborate these results with new
data and different model classes, and in general to exploit the
potential of PHM in the context of optimal railway track asset
management.
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NOMENCLATURE

dεpv plastic volumetric strain increment
dεps plastic distortional strain increment
e voids ratio
e0 Initial voids ratio
p mean stress invariant
p0 initial mean stress
q deviatoric stress invariant
qmax in-cycle maximum deviatoric stress
qmin in-cycle minimum deviatoric stress
η stress-ratio η = q/p
M critical stress-ratio
Γ critical state model parameter
λcs critical state model parameter
κ swelling/recompression constant
σ1 applied vertical stress
σ3 confining stress
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APPENDIX

For granular materials like ballast and suballast under three-
dimensional stresses, the following relationships are used to
obtain the stress invariants p and q:

p =
1

3
σkk (18a)

q =

√
3

2
sijsij (18b)

where σij is the stress tensor, and sij the stress deviator ten-
sor, defined as

sij = σij − pδij (19)

with δij the Kronecker delta function. Under the assumption
of axisymmetric stress state (σ2 = σ3), the stress invariants
simplify to

p =
1

3
(σ1 + 2σ3) (20a)

q = ‖σ1 − σ3‖ (20b)

In regards to the governing equations, the function φ in Eq (1)
is a semi-empirical factor that accounts for complex phenom-
ena observed in the yielding behaviour of granular materials
under cyclic loading conditions, such as the Bauschinger ef-
fect, the effect of the stress ratio and loading history, among
others (Mroz, Norris, & Zienkiewicz, 1978). In this research,
the expression proposed by Indraratna et al. (2012) is adopted
to account for such effects, which is given by:

φ = α

(
1− η

M

p

pcs

)( 〈p− pe〉2 + 〈q − qe〉2
(∆p)2 + (∆q)2

)1/2

Nβ

(21)
with ∆p,∆q being the in-cycle total stress increments, 〈·〉
the Macauley brackets, and α and β empirical fitting param-
eters. The elastic mean stress pe is given by the expression

pe = pmin +

(
1− 1

ln(n+ 10)

)
∆p (22)

In Eqs. (21) and (1), pcs is the value of p at the critical state,
which can be obtained as (Roscoe, Schofield, & Wroth, 1958)

pcs = exp

(
Γ− e
λcs

)
(23)

where Γ, and λcs are material parameters, which, together
with M and κ (see Nomenclature section), conform the pa-
rameters of the model (Indraratna et al., 2012). The rest of
elements are defined in the Nomenclature section.
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