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ABSTRACT 

In recent years, Lithium-Ion rechargeable batteries have 
quickly become the most popular portable power sources, 
with applications ranging from consumer electronics 
(smartphones, laptops, etc.) to electric vehicles and 
unmanned aerial/space vehicles. Indeed, Li-ion batteries are 
subject to degradation over time, in particular due to the 
irreversibility of the electro-chemical processes driving their 
functioning. The deterioration of the performances is further 
worsened by the operational and environmental boundary 
conditions in which they operate (e.g. discharge rates, usage 
and storage temperatures, etc.). The consequences of 
unexpected failures due to degradation may range from mild, 
for example in consumer electronics, to very severe, if not 
catastrophic, in particular in aerospace applications, both 
from the economical and the safety points of view. In this 
context, the prediction of future degradation performances of 
the batteries plays a fundamental role. In this work, we 
exploit a recently introduced prognostic algorithmic scheme, 
which combines the real-time prediction capabilities of 
particle filters with the flexibility and simplicity of feed-
forward neural networks, for adaptively predicting the State-
of-Life (SOL), i.e. the capacity, of Li-Ion batteries, on the 
basis of past and current capacity observations. The major 
advantage of the proposed method lies in the fact that the 
algorithm automatically adapts to different degradation 
dynamics, without the need to derive and/or calibrate any 
physics-based model. The method is demonstrated with 
reference to actual Li-Ion battery discharge data taken both 
from the prognostics data repository of the NASA Ames 
Research Center database and from literature. 

1. INTRODUCTION 

In recent years, Lithium-ion (Li-ion) batteries have gained 
large popularity as portable energy sources due to their 
significant advantages with respect to other battery types, 
such as (K.Goebel, B. Saha, 2008), (Sbarufatti, Corbetta, 
Giglio, & Cadini, 2017): i) the lower weight, due to the 
lightweight lithium and carbon-made electrodes, and, at the 
same time, the larger energy density, due to the high chemical 
reactivity of lithium; ii) the possibility of being recharged 
also if they are not completely discharged without any 
detrimental effects (no memory effect); iii) the lower self-
discharge rate, so that they better maintain their charge when 
not used; iv) the longer life cycle, since they can operate 
successfully even after hundreds of charge-discharge cycles.  

However, due to their rechargeable nature, Li-Ion batteries 
are subject to irreversible processes occurring during their 
charging and discharging cycles, such as, for example, the 
formation of a solid-electrolyte interphase (SEI) (Pinson & 
Bazant, 2012), which severely affect the batteries’ 
electrochemistry. These processes involve, in general, to a 
continuous capacity fade, which eventually lead to the battery 
failure, with consequences ranging from a quite safe need to 
replace the battery of a mobile phone, to the catastrophic 
failure of an interplanetary probe (K.Goebel, B. Saha, 2008), 
(He, Williard, Osterman, & Pecht, 2011). 

In order to overcome these issues, many efforts have been 
devoted in literature to devising proper methods for 
improving the reliability and the availability of Li-Ion 
batteries. More specifically, a major role is played by the so-
called prognostic and health management (PHM) methods, 
which, on the basis of different kinds of available, but 
indirect, information, allow to automatically, and in real-
time, track some hidden indicators of the degradation state of 
the batteries, such as, for example the state-of-health (SOH), 
the state-of-charge (SOC), the state-of-life (SOL), and at 
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predicting their remaining useful lifetime (RUL), either in 
terms of the end-of-discharge (EOD) or the end-of-life (EOL) 
times, possibly to support condition- or even prediction-
based maintenance policies. In this regard, thorough reviews 
of many advanced PHM methods can be found in (Berecibar, 
Gandiaga, Villarreal, Omar, Van Mierlo, and Van Den 
Bossche 2016), (Wu, Fu, & Guan, 2016). Traditionally, these 
methods are classified in three major families, i.e., model-
based, data-driven or hybrid methods, depending on the type 
and quality of the information used to perform diagnostics 
and/or prognostics (Guo, Li, & Pecht, 2015). Model-based 
methods focus on identifying proper relationships between 
the observable quantities and the indicators of interest by 
building physics-based models of the degradation processes 
affecting the battery life. Data-driven methods, on the other 
hand, aim at mapping the above by some approximating 
models adaptively built on the basis of available data, such 
as, for example, neural networks (NN), Gaussian process 
functional regressions, support vector regressions, fuzzy 
inference engines, etc. Hybrid methods aim at combining 
model-based and data-driven methods, when possible, in an 
attempt to overcome the limitations of the individual methods 
and, thus, improve diagnostic and prognostic accuracies by 
better exploiting all the available information. A promising 
hybrid strategy seems that of resorting to particle filtering-
based algorithms, where the required analytical models 
representing either the dynamic behavior of the system or the 
measurement equation are actually suitable data-driven 
surrogate models (Charkhgard & Farrokhi, 2010), 
(Daroogheh, Baniamerian, Meskin, & Khorasani, 2015). 
These kind of methods are based on the consideration that, 
both physics-based model and approximating, surrogate 
models require the identification of suitable model 
parameters on the basis of some available observations; 
however, surrogate models do not require any 
physics/mathematics-based derivations, which might turn out 
to be very time consuming, and are generally much 
computationally faster, especially with respect to numerical 
models, which might be a critical feature for real-time 
applications. 

One important issue which still severely limits the 
applicability of these approaches is that the surrogates models 
are trained off-line on the basis of a set of available examples 
of the input/output mapping of interest, typically collected 
under some representative, fixed operative conditions, such 
some controlled environment in laboratory tests. Actually, 
this represents a problem also of many other 
diagnostic/prognostic methods, not restricted to those relying 
on surrogate modeling. For example, many works of 
literature demonstrate their proposed methods with reference 
to Li-ion batteries voltage/capacity laboratory measurements 
acquired at constant discharge rates/currents. While this 
approach easily allows to verify the performances of the 
algorithms and, possibly, to fairly compare them, at the same 
time it does not account for real operating conditions, 

typically requiring varying mission profiles and/or boundary 
conditions (e.g., temperature, mechanical degradation, 
lithium metal plating, etc. (Vetter et al., 2005)). Some works 
of literature have already attempted to address this issue, 
which requires the capability of quickly adapting to the 
changing underlying dynamics (Wang, Yang, Zhao, & Tsui, 
2017). In (Sbarufatti et al., 2017) some of the same authors 
of the present work presented a novel hybrid prognostics 
framework for the prediction of the EOD of Li-ion batteries, 
where the parameters of the surrogate model, i.e. a radial 
basis function neural network, were identified on-line by a 
particle filter on the basis of the real-time observations of the 
degradation process, thus allowing to naturally capture 
possible changes of the degradation dynamics and to 
accordingly update the RUL estimates. 

In this context, the first purpose of this work is that of 
adapting the hybrid approach introduced in (Sbarufatti et al., 
2017), which was restricted to the EOD prediction within 
individual discharge cycles, and inspired by the work in 
(Doucet et al., 2000), to be able to perform also SOL 
estimation and predict the EOL of Li-ion batteries. First, we 
propose to resort to multi layer perceptron (MLP) neural 
networks, which have turned out to be simpler and more 
intuitive for this kind of application; then, since, in this case, 
the algorithm has to predict an individual degradation history, 
and not several successive discharge curves as in the previous 
work, a pre-training of the MLP neural network  on some 
reference trajectory is suggested (although not strictly 
required), so as to significantly restrict the search space of the 
surrogate model’s parameters and speed-up the algorithm 
convergence. Note that the actual degradation can be 
significantly different from the pre-training one, as we 
demonstrate in this work, thus still guaranteeing the 
adaptation capabilities of the prognostic tool. Moreover, to 
further increase the algorithm adaptability, the set of particles 
used by the particle filter (i.e., neural networks weights, see 
(Sbarufatti et al., 2017)) is artificially enriched by a particle 
resulting from a back-propagation-based optimization of a 
network on the basis of the capacity observations available 
up to the current time. 

The proposed method is demonstrated with reference to real 
degradation transients taken from the NASA Ames Research 
Center database (Saha & Goebel, 2007) and the CALCE 
Battery Group (Pecht, 2017). The available trajectories are 
properly modified in order to be able to test the algorithm in 
varying operating conditions. 

The paper is organized as follow. Section 2 briefly recalls the 
main features of the method proposed for sequentially train 
MLP-NN models by means of a particle filter algorithm. The 
multi layer perceptron-based particle filter (MLP-PF) 
approach here proposed is then customized in order to 
perform adaptive prognosis of the EOL of Li-Ion batteries. 
Section 4 discusses the performances of the proposed 
method, demonstrating the capability of the algorithm with 
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reference to the datasets cited above, which are typically used 
as benchmark case studies in similar works of literature. 
Section 5 draws some conclusions on the results and proposes 
future developments of the methodology. 

2. MULTI LAYER PERCEPTRON PARTICLE 
FILTER (MLP-PF) FOR SOL PROGNOSIS 

This Section first briefly summarizes the method initially 
proposed by (de Freitas, Niranjan, Gee, & Doucet, 2000) and 
further investigated and applied to PHM of Li-ion batteries in 
(Sbarufatti et al., 2017), where NN models were sequentially 
trained by means of a particle filter algorithm. The multi layer 
perceptron-based particle filter (MLP-PF) approach here 
proposed is then customized in order to predict the EOL of 
Li-Ion batteries and to diagnose their SOH. The interested 
reader is referred to (Bishop, 1995), and to (Doucet, Godsill, 
& Andrieu, 2000) and (Arulampalam, Maskell, Gordon, & 
Clapp, 2007) for thorough descriptions of the functioning of 
MLPs and particle filters, respectively, and to (de Freitas et 
al. 2000) for further details on particle filtering-based NN 
training. 

2.1. MLP neural networks basic principles 

A schematic view of the MLP network used in this work is 
shown in Figure 1, where the MLP model aims at 
approximating the capacity as a function of the number of 
charge-discharge cycles. The input node represents the 
number of cycles ( 𝑘𝑘 ) at which the terminal voltage is 
measured, whereas the capacity observation (𝑧𝑧) is associated 
to the output node. The output node collects the non-linear 
outputs from a generic number 𝑀𝑀 of hidden nodes, each one 
weighted by a factor 𝜃𝜃𝑖𝑖

(1,2), and the biases 𝑏𝑏𝑖𝑖
(1,2), 𝑖𝑖 = 1, … ,𝑀𝑀. 

The network parameters are collected in the NN weight 
vector 𝜽𝜽 ⊆ 𝜣𝜣 ∈ 𝑅𝑅𝑛𝑛𝜃𝜃𝑥𝑥1  and the NN bias vector 𝒃𝒃 ⊆  𝑩𝑩 ∈ 
𝑅𝑅𝑛𝑛𝑏𝑏×1. The activation function of the hidden neurons ℎ(∙): 
𝑅𝑅[−∞,∞] 
1 𝑥𝑥 1 →  𝑅𝑅[−1,1] 

1 𝑥𝑥 1  is a tan-sigmoid: 

 ℎ(𝛼𝛼) =  
2

1 + 𝑒𝑒−2𝛼𝛼
−  1 ( 1 ) 

where 𝛼𝛼 is the generic hidden neuron input, while the output 
activation function  𝑓𝑓(𝛽𝛽) = 𝛽𝛽(with 𝛽𝛽 being the generic node 
input) is linear. The output of the MLP network in Figure 1 
is then calculated as: 

 𝑔𝑔(𝑛𝑛,𝜃𝜃, 𝑏𝑏)

= 𝑓𝑓 ���ℎ ��𝑘𝑘𝜃𝜃𝑖𝑖
(1) + 𝑏𝑏𝑖𝑖

(1)�𝜃𝜃𝑖𝑖
(2)� + 𝑏𝑏(2)�

𝑀𝑀

𝑖𝑖=1

� (  2  ) 

As a general principle, the number of hidden nodes should be 
sized according to the complexity of the relationship that has 
to be learnt by the MLP. Intuitively, the larger the number of 
hidden neurons, the higher the capability of the algorithm in 
approximating complex relationships (Bishop, 1995). 
However, a large number of hidden neurons may give rise to 

data over-fitting issues, thus severely hampering the 
generalization capability of the NN on new data, especially 
for prediction outside the training domain, which is the case 
of this work, especially at earlier times. Furthermore, 
increasing the number of hidden neurons also implies a larger 
number of unknown parameters network weights) to be 
identified, which may significantly increase the 
computational burden of the updating process described later. 
Similarly to what was done in (Sbarufatti et al., 2017) for the 
RBF networks, in this application the number of hidden 
neurons is empirically set to three based on a trial and error 
procedure. As in (Sbarufatti et al., 2017), according to a 
qualitative sensitivity analysis performed by the authors, and 
not shown here for brevity’s sake, a slightly larger hidden 
layer (e.g., 4-7 neurons) still provides satisfactory results.  

With this choice of the MLP network structure, we can collect 
the 𝑛𝑛𝑥𝑥 = 10  network parameters in a vector 𝒙𝒙 =
[𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥10]𝑇𝑇 , where the elements 𝒙𝒙1:6  are the six 
connection weights (𝜽𝜽1:6) and the elements 𝒙𝒙7:10 are the four 
MLP biases (𝒃𝒃1:5).  

 
Figure 1: MLP neural network structure. 

2.2. MLP-PF for Li-ion batteries EOL prognosis 

According to the framework proposed in (Sbarufatti et al., 
2017), we introduce a state-space representation of the time 
evolution of the 𝑛𝑛𝑥𝑥  MLP model parameters (weights and 
biases), which are collected in the state vector 𝒙𝒙 ∈  ℝ𝑛𝑛𝑥𝑥×1, so 
that the particle filter aims at sequentially training the MLP. 
Under the common operative assumption that the process 
observations are available at discrete cycles, the state space 
representation then reads: 

 𝒙𝒙𝑘𝑘 = 𝒙𝒙𝑘𝑘−1 + 𝝎𝝎𝑘𝑘−1 

𝑧𝑧𝑘𝑘 = 𝑔𝑔(𝒙𝒙𝑘𝑘 , 𝑘𝑘) + 𝜂𝜂𝑘𝑘 
(  3  ) 

where the subscript 𝑘𝑘 is the discrete cycle and, at the same 
time, the input of the non-linear MLP mapping 𝑔𝑔(⋅) in (2), 𝑧𝑧𝑘𝑘 
is the output of 𝑔𝑔(⋅), i.e., the Li-ion battery capacity, the 
random process 𝝎𝝎𝑘𝑘 ∈ ℝ𝑛𝑛𝑥𝑥×1 is the stochastic component of 
the MLP model parameter evolution and 𝜂𝜂𝑘𝑘 ∈ ℝ  is the 
measurement noise (Doucet et al., 2000). The evolution of the 
MLP parameters during their updating process is then 
modeled as a discrete random walk driven by a process noise 
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𝝎𝝎𝑘𝑘, large enough to suitably “explore” the parameters’ space 
and to guarantee a certain degree of flexibility so as to 
possibly adapt to any, possibly unexpected, changes in the 
process dynamics. 

In this framework, the particle filter is used to recursively 
estimate the posterior probability density function (pdf) 
𝑝𝑝(𝒙𝒙𝑘𝑘|𝒛𝒛1:𝑘𝑘)  of the MLP parameters 𝒙𝒙𝑘𝑘 , given the set of 
observations 𝒛𝒛0:𝑘𝑘 up to the current 𝑘𝑘-th cycle. As extensively 
discussed in many works of literature, the nonlinearity of the 
dynamic state-space model in (3) and/or any non-Gaussianity 
of the process and/or measurement noises are such that 
analytical solutions of the optimal prediction-update 
Bayesian recursion for 𝑝𝑝(𝒙𝒙𝑘𝑘|𝒛𝒛1:𝑘𝑘)  cannot be obtained 
(Doucet et al., 2000), (Arulampalam et al., 2007). Thus, the 
estimation of a sub-optimal solution for the posterior pdf 
𝑝𝑝(𝒙𝒙𝑘𝑘|𝒛𝒛1:𝑘𝑘)  is typically achieved by means of numerical 
methods, such as direct numerical integration, Gaussian 
approximations and Monte Carlo (or particle filters) methods. 
Here, similarly to (Sbarufatti et al., 2017), we resort to the 
solution based on the sampling importance resampling (SIR) 
PF algorithm. Then, the Monte Carlo estimator of the MLP 
weights posterior pdf can be obtained as: 

 
�̂�𝑝(𝒙𝒙𝑘𝑘|𝒛𝒛1:𝑘𝑘) ≈�𝑤𝑤𝑘𝑘

(𝑖𝑖)𝛿𝛿�𝒙𝒙𝑘𝑘 − 𝒙𝒙𝑘𝑘
(𝑖𝑖)�

𝑁𝑁𝑠𝑠

𝑖𝑖=1

 (  4  ) 

where the importance samples 𝒙𝒙𝑘𝑘
(𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁𝑠𝑠  are 𝑁𝑁𝑠𝑠 

independent and identically distributed realizations of the 
system state vector, drawn from the importance pdf 
𝑝𝑝(𝒙𝒙𝑘𝑘|𝒙𝒙𝑘𝑘−1). The terms 𝑤𝑤𝑘𝑘

(𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁𝑠𝑠 are the normalized 
importance weights and 𝛿𝛿(⋅) is the Kronecker delta. 

As proven in (Arulampalam et al., 2007), the normalized 
importance weights can be recursively computed as: 

 
𝑤𝑤𝑘𝑘

(𝑖𝑖) =
𝑤𝑤�𝑘𝑘

(𝑖𝑖)

∑ 𝑤𝑤�𝑘𝑘
(𝑖𝑖)𝑁𝑁𝑠𝑠

𝑖𝑖=1

 (  5  ) 

where the non-normalized weights 𝑤𝑤�𝑘𝑘
(𝑖𝑖) are given by 

 𝑤𝑤�𝑘𝑘
(𝑖𝑖) = 𝑤𝑤𝑘𝑘−1

(𝑖𝑖) 𝑝𝑝�𝑧𝑧𝑘𝑘|𝒙𝒙𝑘𝑘
(𝑖𝑖)� (  6  ) 

The function 𝑝𝑝�𝑧𝑧𝑘𝑘|𝒙𝒙𝑘𝑘
(𝑖𝑖)� is the likelihood of the observation 

𝑧𝑧𝑘𝑘, i.e., the probability of observing 𝑧𝑧𝑘𝑘 given the underlying 
non-linear mapping 𝑔𝑔(𝒙𝒙𝑘𝑘, 𝑡𝑡𝑘𝑘)  is approximated by the 𝑖𝑖 -th 
MLP model defined by the parameters 𝒙𝒙𝑘𝑘

(𝑖𝑖). 

Finally, in order to avoid the sample impoverishment 
problem (Arulampalam et al., 2007; Doucet et al., 2000), 
which dramatically reduces the number of samples with non-
negligible weights, thus hampering the posterior pdf 
representation, a resampling scheme is implemented after the 
weight normalization (Doucet et al., 2000), (Arulampalam et 
al., 2007). 

The estimation of the posterior distribution 𝑝𝑝(𝒙𝒙𝑘𝑘|𝒛𝒛0:𝑘𝑘)  is 
carried out each time 𝑘𝑘  a new observation 𝑧𝑧𝑘𝑘  becomes 
available. The set of samples and associated weights 
�𝒙𝒙𝑘𝑘

(𝑖𝑖),𝑤𝑤𝑘𝑘
(𝑖𝑖)� defines a set of 𝑁𝑁𝑠𝑠 MLP network models, which 

can be used also to predict the future capacity behavior over 
the charge-discharge cycles and, consequently, the EOL, as it 
shall be discussed later. 

Operatively, we assume that the random walk in (3) is driven 
by uncorrelated, zero-mean Gaussian noises, i.e., 
𝝎𝝎𝑘𝑘~𝒩𝒩�0,Σ𝝎𝝎𝑘𝑘� , where the covariance matrix Σ𝝎𝝎𝑘𝑘  is 
diagonal. In general, the choice of the noise variances is not 
an easy task: too small values may hamper a proper (and 
reasonably fast) exploration of the state-space, whereas too 
large values do not guarantee a satisfactory state estimation, 
as discussed by many authors in literature. A common 
approach for achieving a satisfactory trade-off is that of 
letting the variances decrease from an initial value as the 
estimation process progresses, so as to guarantee the 
convergence of the algorithm (Schwunk, Armbruster, Straub, 
Kehl, & Vetter, 2013), (Gordon, Salmond, & Smith, 1993). 
In this work, following (Sbarufatti et al., 2017), we propose 
the following expression for the process noise covariance 
matrix as a function of the discrete cycle 𝑘𝑘: 

 
Σ𝝎𝝎𝑘𝑘 = �𝜎𝜎0 𝑒𝑒−

𝑘𝑘
𝜎𝜎1 + 𝜎𝜎2� ∙ I (  7  ) 

where the variances of all the parameters 𝒙𝒙𝑘𝑘  are taken to be 
the same and 𝐼𝐼 is the 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑥𝑥 identity matrix. By using this 
expression for the variances, we can easily and intuitively set 
their starting value (𝜎𝜎0 + 𝜎𝜎2), settling value (𝜎𝜎2) and rate of 
decrease ( 1

𝜎𝜎1
). 

We further assume that the measurement noise 𝜂𝜂𝑘𝑘  is also 
zero-mean, Gaussian with variance 𝜎𝜎𝜂𝜂2 and independent from 
𝑘𝑘, i.e., 𝜂𝜂𝑘𝑘~𝒩𝒩�0,𝜎𝜎𝜂𝜂2�. According to (Sbarufatti et al., 2017), 
in order to increase the filter robustness, we choose the 
particles weights to account for the whole sequence of 
capacity observations up to the current step k. The likelihood 
function in (6) then becomes: 

 ℒ𝑘𝑘
(𝑖𝑖) = 𝑝𝑝�𝑧𝑧1:𝑘𝑘|𝒙𝒙𝑘𝑘

(𝑖𝑖)� = 

= �(2𝜋𝜋)𝑘𝑘+1�Σ𝜂𝜂��
−0.5 exp �−

1
2
�𝑧𝑧1:𝑘𝑘

− 𝑔𝑔�𝒙𝒙𝑘𝑘
(𝑖𝑖), 1: 𝑘𝑘��

𝑇𝑇
Σ𝜂𝜂−1 �𝑧𝑧0:𝑘𝑘 − 𝑔𝑔�𝒙𝒙𝑘𝑘

(𝑖𝑖), 1: 𝑘𝑘��� 

(  8  ) 

where the term 𝑧𝑧0:𝑘𝑘  represents the sequence of terminal 
voltage observations in correspondence of the cycle sequence 
1: 𝑘𝑘  and the terms 𝑔𝑔�𝒙𝒙𝑘𝑘

(𝑖𝑖), 1: 𝑘𝑘�  are the correspondent 
predictions of the i-th MLP network with parameters 𝒙𝒙𝑘𝑘

(𝑖𝑖). 

On the basis of the results obtained in (Sbarufatti et al., 2017), 
in order to improve the efficiency of the approach, we 
propose to perform a pre-training of the MLP on the basis of 
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a properly chosen degradation curve observed in some 
reference Li-Ion battery. By doing so, in fact, the network 
weights are expected to reach a region of the parameter space 
closer to the optimal one for the observations that will be used 
during the diagnostic/prognostic task. However, Li-Ion 
batteries may show very different degradation behaviors, due 
to the operating conditions, the battery types, etc., so that a 
pre-training on data very different from those that will 
actually be used might be even misleading. For example, if 
the pre-training were performed with the CALCE dataset of 
Figure 2, and then used to perform diagnosis on one of the 
NASA datasets, then the MLPs outputs would tend to be very 
small with respect to the current capacity values at earlier 
times, and would take rather long times to adjust to the new 
degradation dynamics. In order to overcome this issue and 
improve the algorithm flexibility and robustness, the 
observations in the pre-training set are normalized so that i) 
the first capacity observation (corresponding to 𝑘𝑘 = 1) is 
equal to the first available observation of the new degradation 
dynamics and ii) the final cycle is 50% larger than the actual 
one in the training set; the value of this last scale factor, 
motivated by the fact that, indeed, the final cycle of the new 
dynamics cannot be a priori known, is chosen on the basis of 
a trial and error procedure. 

Following the approach proposed in (Cadini, Zio, & Avram, 
2009), at the current cycle 𝑘𝑘 the posterior pdf of the end of 
life time (i.e. EOL𝑘𝑘) is then estimated by projecting in the 
future the predictions of the 𝑁𝑁𝑠𝑠 MLP networks associated to 
the 𝑁𝑁𝑠𝑠  parameter samples (particles) 𝒙𝒙𝑘𝑘

(𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁𝑠𝑠 . 
Operatively, a set of discrete future charge-discharge cycles 
[𝑘𝑘 + 1, … , 𝑘𝑘 + 𝑝𝑝]  (with the number of steps ahead, 𝑝𝑝 , 
properly chosen so as to be sure that each network predicts a 
failure within this horizon time) is fed to each of the 𝑁𝑁𝑠𝑠 MLP 
networks; the corresponding outputs, i.e., the capacity 
predictions at the different cycles, are used to build the 
sample posterior pdf of the capacity at future cycles. At the 
same time, the EOL𝑘𝑘

(𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁𝑠𝑠 predicted by each MLP 
network are used to build the sample posterior pdf of the 
EOL𝑘𝑘 . The estimates of the posterior pdfs of the future 
capacities �̃�𝑧𝑘𝑘+𝑙𝑙 , 𝑙𝑙 = 1, 2, …, and of the EOL are operatively 
obtained as: 

 �̂�𝑝(�̃�𝑧𝑘𝑘+𝑙𝑙|𝒛𝒛1:𝑘𝑘)

≈�𝑤𝑤𝑘𝑘
(𝑖𝑖)𝛿𝛿 ��̃�𝑧𝑘𝑘+𝑙𝑙 − 𝑔𝑔�𝒙𝒙𝑘𝑘

(𝑖𝑖), 𝑡𝑡𝑘𝑘+𝑙𝑙  ��
𝑁𝑁𝑠𝑠

𝑖𝑖=1

 
(  9  ) 

 
�̂�𝑝(EOL𝑘𝑘|𝒛𝒛1:𝑘𝑘) ≈�𝑤𝑤𝑘𝑘

(𝑖𝑖)𝛿𝛿�EOL𝑘𝑘 − EOL𝑘𝑘
(𝑖𝑖)�

𝑁𝑁𝑠𝑠

𝑖𝑖=1

 (  10 ) 

Consequently, the remaining useful lifetime of the battery 
(RUL) at the current cycle 𝑘𝑘 is RUL𝑘𝑘 = (EOL𝑘𝑘 − 𝑘𝑘), and its 
estimated posterior pdf is the same as �̂�𝑝(EOL𝑘𝑘|𝒛𝒛1:𝑘𝑘) , but 
shifted by 𝑘𝑘. 

In order to enhance the prognostic capabilities, both in terms 
of accuracy and stability, improving the strategy suggested in 
(Sbarufatti et al., 2017), we further modify the algorithm 
introduced above by empirically enhancing the likelihood 
function in (8). Operatively, at each cycle 𝑘𝑘 , before the 
resampling stage, a small number 𝑁𝑁𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑙𝑙  of particles 𝒙𝒙𝑘𝑘

(𝑖𝑖),
𝑖𝑖 = 1, … ,𝑁𝑁𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑙𝑙  (i.e., the MLP network parameters) are 
substituted by a new particle (called hereafter “trivial”) built 
by training the same MLP network architecture with a set 
made up of the actual sequence of degradation observations 
𝒛𝒛1:𝑘𝑘 up to the current cycle 𝑘𝑘 and the observations 𝒛𝒛𝑘𝑘+1:𝑒𝑒𝑛𝑛𝑒𝑒  
of the initial pre-training set, after properly normalizing them 
according to a procedure similar to that illustrated for the first 
training of the MLP, so as to smoothly connect the two 
observation sequences. This scheme is qualitatively shown to 
significantly improve the prognostic performances with the 
parameter 𝑁𝑁𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑙𝑙  ranging between 1 and 10. In fact, a few 
particles with a good behavior up to (at least) the current 
cycle 𝑘𝑘  should contribute to maintain the whole particle 
swarm “close” to the actual degradation dynamics, especially 
when unexpected behaviors of the observations and/or 
exceedingly deviated values of the noises occur. On the other 
hand, using a too large number of identical “trivial” particles 
would tend to be equivalent to directly using the trivial MLP 
for the predictions, thus not exploiting the filtering 
capabilities of the filter. 

3. RESULTS 

In this Section we demonstrate the prognostic capabilities of 
the proposed algorithm, with reference to the SOL datasets 
by the Prognostic Center of Excellence at NASA Ames 
Research Center (Saha & Goebel, 2007)and of the CALCE 
Battery Group (Pecht, 2017), shown in Figure 2. In particular, 
the datasets labeled “NASA 1, 2 and 3” are taken from the 
NASA Ames research center database, whereas the one 
labeled “CALCE” is taken from the CALCE database. Note 
that these datasets are obtained under controlled laboratory 
conditions and at constant discharge rates (constant current). 

According to the initialization procedure illustrated in 
Section 2, for convenience, but with no loss of generality, 
NASA 2 is chosen as the pre-training dataset for the MLP 
networks, as it shows the broader range of variation of its 
capacity. The PF-MLP algorithm is run with 𝑁𝑁𝑆𝑆 = 500 
particles; a larger number of particles would excessively slow 
down the algorithm, with no benefits in terms of mean of the 
RUL posterior pdf �̂�𝑝(EOL𝑘𝑘|𝒛𝒛1:𝑘𝑘), as qualitatively verified by 
the authors. The parameters defining the process noise 
variance in (7), chosen on the basis of a trial and error 
procedure, are: 𝜎𝜎1 = 5 ∙ 10−3 , 𝜎𝜎2 = 102  and 𝜎𝜎3 = 10−4 . 
The standard deviation of the measurement noise is taken 
equal to 𝜎𝜎𝜂𝜂 = 10−1 . Note only that the factor 𝜎𝜎2  is taken 
large enough to have a process variance that decreases quite 
slowly with respect to the degradation times, so as to avoid a 
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too large reduction of the parameter space spanned by the 
particles at later times. 

In practical applications, Li-ion batteries are usually assumed 
to be failed when their capacity drops below 80% of its initial 
value. However, in the case studies shown in this work, the 
failure threshold will be suitable set in order to both 
maximize the number of available capacity observations to 
be processed by the algorithm and enhance the readability of 
the results, with no loss of generality. 

First, we test the algorithm in an ideal situation, i.e., for 
predicting the RUL of NASA 2 after the initialization of the 
MLPs of all the particles is performed using the same NASA 
2 dataset. Indeed, in this case we expect the best algorithm 
performance, since the MLP parameters already start from 
good, optimized values. The failure threshold is here set to a 
value that is 2% larger than the lowest capacity observation 
available in the dataset. Figure 3 shows that, after an initial, 
rather short, adaptation period, the actual RUL (dashed line) 
is always between the 5th and 95th percentiles of the estimated 
RUL posterior distribution (green). The initial deviation from 
the actual RUL, which was not expected since all the MLP 
particles are trained on the same NASA 2 degradation 
trajectory, is actually due to the fact that, according to the 
procedure described in Section 2, the training dataset is 
normalized in the number of cycles with respect to a cycle 
horizon that is 50% larger than the true one: hence, the first 
predictions tend to be approximately 1.5 times larger than the 
actual RUL (~160 cycles). 

Then, we apply the algorithm to the prediction of the RUL of 
NASA 1 (1850mAh initial capacity). Figure 4 shows that the 
prognostic performances are satisfactory, although the actual 
RUL is systematically slightly underestimated. This is 
motivated by the fact that the degradation curve of NASA 1 
(as also those of the other types of battery considered in this 
work, see Figure 2) shows several positive spikes due to the 
performances recovery phenomenon (Eddahech, Briat, & 
Vinassa, 2013). This behavior is actually beneficial to the 
SOL of the battery, thus leading, in general, to larger RULs. 
However, these “anomalies” cannot be predicted by the 
algorithm, which, nevertheless, is shown to be capable of 
adapting to the changed degradation dynamics and, 
consequently, to quickly update the RUL posterior pdf 
estimate. 

The batteries used in the previous tests show rather similar 
trends, even if belonging to different types (NASA 1 
1850mAh, NASA 2 2000mAh). So, according to what 
illustrated in Section 2 with regards to the pre-training 
procedure, we expect satisfactory results. However, as 
anticipated in the Introduction, the aim of this work is that of 
developing a flexible computational prognostic tool capable 
of automatically dealing with different types of Li-Ion 
batteries. In order to demonstrate this capability, we now 
present the prognostic performances of the algorithm when 
predicting the RUL of a very different type of battery, i.e. the 

1100mAh battery (CALCE) taken from the CALCE database 
(Pecht, 2017). The comparison of the training dataset (NASA 
2 from the NASA Ames database) and that used for testing 
the algorithm (CALCE from the CALCE database) in Figure 
5 shows how the two datasets differ both in terms of absolute 
capacities and lifetimes. In this case, the failure threshold is 
set to a value that is 20% less of the initial maximum battery 
capacity. Thus, the pre-training dataset normalization 
procedure illustrated in Section 2.2 plays an important role 
for guaranteeing a fast adaptation of the algorithm to the new 
degradation dynamics. In spite of the fluctuating appearance 
of the RUL estimate, Figure 6 shows that the RUL predictions 
are still quite satisfactory and that the MLP-PF behaves as 
expected. In fact, at earlier times, the capacity observations 
are still rather close to those of the normalized ones used for 
the initial MLPs training, so that all the particles (i.e., the 
MLP networks parameters) do not significantly differ from 
the training ones, and the corresponding predictions are 
coherent with the normalized training RUL trajectory (blue, 
dashed line). As soon as the algorithm starts perceiving the 
different behavior of the actual observations, at 
approximately 100 cycles, it suddenly changes the RUL 
prediction, which accordingly becomes much higher. The 
weird behavior of the 5th percentile (green line) is due to the 
presence of the “trivial” particles (see Section 2.2), which 
tend to adapt more slowly to the new degradation dynamics, 
thus also being responsible for the initial overestimation of 
the RUL after approximately cycle 100. 

 
Figure 2: Prognostic Center of Excellence at NASA Ames 
Research Center [11] and CALCE [12] Battery Group SOL 

datasets  
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Figure 3: Estimate of the RUL of NASA 2: mean (red), ± 1 

standard deviation (grey dotted) and 5th and 95th 
percentiles (green) of the RUL posterior distribution. The 

true RUL is the grey, dashed line. 

 
Figure 4: Estimate of the RUL of NASA 1: mean (red), ± 1 

standard deviation (grey dotted) and 5th and 95th 
percentiles (green) of the RUL posterior distribution. The 

true RUL is the grey, dashed line 

 

Figure 5: Comparison of the training dataset (NASA 2 from 
the NASA Ames database, red) and that used for testing the 

algorithm (CALCE from the CALCE database, blue). 

 
Figure 6: Estimate of the RUL of CALCE: mean (red), ±1 

standard deviation (grey dotted) and 5th and 95th 
percentiles (green) of the RUL posterior distribution. The 

true RUL is the grey, dashed line, whereas the blue, dashed 
line represents the RUL of the normalized NASA 2 dataset 

used for the pre-training procedure. 

4. CONCLUSIONS 

In this work we have proposed an original adaptation of an 
algorithm introduced by some of the same authors for 
performing adaptive and on-line prognosis of the EOL of Li-
Ion batteries. The methodology employs the battery capacity 
observations, as they become available, within a particle filter 
framework for adaptively estimating the parameters of the 
MLP neural network used to represent the relationship 
between the number of charge-discharge cycles and the 
battery capacity (i.e., the measurement equation). The 
particle filter framework then naturally offers the possibility 
to properly combine the projections into the future of the 
multiple degradation evolutions given by the MLPs 
associated to the filter’s particles in order to obtain an 
estimate of the RUL posterior distribution. 

The use of generic surrogate models, as the MLP neural 
networks of this work, for approximating the observation 
equation significantly increases the adaptability of the 
prognostic tool with respect to physics-based models. As 
demonstrated in this work, the advantage of this feature is 
twofold. First, the algorithm can be effectively applied to 
many different types of batteries, with very different 
degradation behaviors, with no need to derive ad hoc physics-
based models for any possible application; this capability is 
even further enhanced by the proposed MLP-PF initialization 
procedure, based on the use of a properly normalized pre-
training dataset for restricting the MLP parameters 
identification space, thus increasing the speed of convergence 
of the algorithm. Second, the algorithm is capable of re-
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configuring itself in case a change of the degradation 
dynamics occurs, thus still guaranteeing the effectiveness of 
the prognostic tasks. Note that this last property allows the 
filter to converge even if no pre-training sets are available, 
provided the degradation process is not too fast, since the 
adaptation phase generally requires longer times. 

A possible disadvantage related to the use of adaptive 
surrogate models lies, on the other hand, in the times required 
for the convergence of the algorithm, which, on average, tend 
to be larger than those required by similar methods relying on 
the use of physics-based models. Indeed, a choice must be 
made between the two types of approaches, mainly 
depending on the objectives of the application under analysis 
and the quantity of information available (observations, 
models, etc.). 

Future work on this topic will mainly involve the analysis and 
the improvement of the algorithm, in order to be able to cope 
with more realistic operating conditions, for example 
requiring varying discharge current profiles, possibly also 
with reference to different degrading power sources systems. 
Another important future activity is a systematic analysis of 
the relative importance of the different algorithm parameters 
(often qualitatively identified in this work on the basis of trial 
and error procedures) in affecting the algorithm 
performances. Indeed, this would require to resort also to 
properly defined prognostic performance measures. On the 
basis of the available scientific literature and our experience, 
most probably the process and measurement noise 
parameters would turn out to be critical for a satisfactory 
RUL estimation. 
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