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ABSTRACT

Optimizing fixed-interval maintenance periods for mobile as-
set sub-systems operating in remote locations A typical mo-
bile asset has some number of sub-systems, each with its own
maintenance interval and reliability. Our challenge is to set
appropriate maintenance intervals for each asset sub-system
to minimize the probability of an unplanned failure, without
limiting unnecessarily the availability of the asset. To do this
we generate sets of maintenance intervals using a genetic al-
gorithm and test them using a discrete event simulation (DES)
model of the operations and maintenance functions. We are
motivated by two industry examples of fleets in remote lo-
cations: long-distance freight trucks, and heavy-haulage rail
locomotives. In the truck case, the model found optimal in-
tervals similar to those used by the operator. The locomotive
case is more complex, but the model suggests improvements
are possible in interval selection, maintenance practices, and
data collection. Each model is conceptualized for its specific
context; this process identifies assumptions that need to be
considered when linking maintenance and operations models.

1. INTRODUCTION

Preventive maintenance is a common strategy used by asset
owners to reduce the likelihood of a failure in their assets.
Conducting preventive maintenance carries an inherent cost,
which we expect to be balanced by an improvement in the
asset’s reliability. Preventive maintenance is a scheduled en-
deavor, so a question asked by asset managers who are not
bound by warranty considerations imposed by the original
equipment manufacturer, is ’What is the optimal interval to
conduct preventive maintenance on my asset?’. In this pa-
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per we consider the case when mobile assets are deployed in
remote locations far removed from the nearest maintenance
facility. A failure in-transit results in significant operational
delays, additional costs, and unnecessary exposure to hazards
for technicians operating in remote and poorly-supported en-
vironments. Typical examples of this are trains, road trucks,
heavy mobile equipment, cars, and boats. In these situations
asset managers seek to reduce the likelihood of unplanned
failures of the mobile assets while they are in transit.

Mobile assets comprise a number of functional sub-systems
such as engine, drive train, electrical, hydraulic, structural,
and so on. These sub-systems are usually represented, from a
reliability perspective, as a series system in which the failure
of one sub-system causes the failure of the asset. Each sub-
system has its own failure modes, associated failure distribu-
tions, and planned maintenance (PM) activities and intervals.
Modeling of asset fleet availability needs to account for the
different maintenance intervals of individual sub-systems of
each asset and the stochastic nature of many inputs. For ex-
ample, the probability and consequence of different failure
modes and the asset’s travel times all need to be represented
by statistical distributions with associated assumptions about
uncertainty. In systems with high levels of PM, sub-system
life data is often censored so there is limited failure data for
analysis meaning that both the actual life and the potential
failure modes are at least partly unknown.

Given these uncertainties, our intention is to create a con-
figurable end-to-end optimization process at a level of detail
sufficient to deliver optimal PM interval estimates while lim-
iting unnecessary extraneous detail and assumptions. Two
case studies explore context-related model-building assump-
tions and parameter estimation decisions. Impacts of these as-
sumptions on model behaviour are explored and the relation
between model and actual system behaviour is examined.
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2. LITERATURE REVIEW

Maintenance costs can reach up to 70% of production costs,
(Alrabghi & Tiwari, 2015) so improvements in maintenance
practices can result in significant economic benefits. This
has lead to substantial research on maintenance optimization
models. In the early days, approaches focused on analyti-
cal models with numerical solvers (Dekker, 1996; Horenbeek
et al., 2010; Sharma et al., 2011). While of academic inter-
est, these models did not find wide application for many real-
world maintenance problems. Through the 2000s (Rezg et al.,
2005; Alrabghi & Tiwari, 2015) reported an increase in use
of discrete-event simulation (DES) with genetic algorithms
(GAs) being popular for optimization.

GAs are a type of evolutionary algorithm commonly used to
solve real-world problems which may be intractable or in-
volve messy, highly non-linear systems (Huband et al., 2003).
Evolutionary algorithms are easy to integrate with DES soft-
ware (Khebbache-Hadji et al., 2012), can search large solu-
tion spaces (Marseguerra & Zio, 2000) without getting stuck
at local optima (Allaoui & Artiba, 2004; Alrabghi & Tiwari,
2015), can solve multi-objective problems (Moradi et al., 2011),
and are often able to solve problems without prior knowl-
edge of the response of the system (Biethahn & Nissen, 1994;
Alrabghi & Tiwari, 2015). As a result they have a history of
being used successfully to solve challenging problems (Ng et
al., 2009; Paulo et al., 2016; Sanchez et al., 2012).

While the number of papers that simulate real case studies has
increased, many modelers limit their applications to relatively
simple systems. Examples include a single asset (Lhorente
et al., 2003), many units of the same asset-type (Bazargan &
McGrath, 2003; Berquist et al., 2002; Khebbache-Hadji et al.,
2012; Moghaddam, 2013), a single asset with several compo-
nents (Paulo et al., 2016), or several different assets (Korte-
laimen et al., 2000; Louit & Knights, 2001). Nowakowski
& Werbinka (2009) explored multi-component systems and
their interactions, noting that while this complicates the mod-
elling and optimization process, it also offers the opportu-
nity to group maintenance actions and thus limit the effects of
maintenance on system performance. In practice, real-world
systems have multiple assets with multiple subsystems, each
with different reliabilities, different deterioration profiles, and
different failure interactions. There is considerable room for
further developments in this area.

In this paper we are interested in mobile assets operating in
remote locations. Hence maintenance can only occur at a lim-
ited number of places. Failures in transit can take significant
time to rectify resulting in delays and associated penalties.
Hence, the risk of failure significantly affects the maintenance
choices. Maintenance optimization models for these systems
will need to be different those more commonly covered in the
literature for fixed assets such as in manufacturing (Allaoui
& Artiba, 2004) or plant equipment (Berquist et al., 2002).

Aircraft are one example of mobile assets where in-transit
failures have financial and possibly catastrophic consequences.
As a result, commercial aircraft maintenance strategies are
constrained by regulations. For example in the United States,
these are set by the Federal Aviation Administration and thus
maintenance intervals have limited room for optimization (Sarac
et al., 2006). Rail systems are another example of remote as-
sets. Failed locomotives can block other trains from passing
and can take significant time and effort to rectify. There has
been some research into maintenance optimization of rail sys-
tems, but none has assessed the maintenance practices on lo-
comotives specifically. Crainic (2002) surveyed optimization
models for long-haul freight cars. Ferreira (1997) highlights
the lack of research on delay management, with the primary
method of delay prevention being additional investment into
tracks, sidings, control systems, and communication systems;
but he does not mention adjusting locomotive maintenance
practices as a way to reduce the risk of delays.

As Dekker et al. (1997) identified, a lot of research and opti-
mization has been conducted solely to explore the challenges
of mathematical analysis, without trying to make the results
valuable for real maintenance practitioners. Scarf (1997) recog-
nised this as well, and recommended a shift towards applied
research, involving collaboration between researchers and the
industry personnel who have the capacity to apply the out-
come.

3. APPROACH

The creation of a configurable end-to-end optimization pro-
cess for estimating optimal PM intervals for a mobile equip-
ment fleet operating in remote locations can be divided into
four phases.

Phase 1 involves describing the context of the problem and
formulating the fitness function which describes what is
to be optimized. In maintenance, commonly used factors
in fitness functions are cost, availability, and reliability.

Phase 2 involves the conceptualization of a functional tax-
onomy for the mobile asset and estimation of relevant
maintenance, reliability and operational performance pa-
rameters at system and sub-system levels. It is not prac-
tical to model every element and operational and main-
tenance context, so an appropriate level of abstraction is
required.

Phase 3 involves the abstraction of the operational context
to build a representative simulation of the movement of
the asset through the logistics and maintenance systems.

Part 4 involves the development and validation of the ge-
netic algorithm optimization engine, coupled to the sim-
ulation.

The decisions involved in each phase are described in more
detail below.
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3.1. Problem statement and context

The initial stage involves the development of a use case that
describes the context of the problem and the objective(s) of
the analysis. Common options for the optimization fitness
function are cost, availability, or reliability, each of which
must be described explicitly. For example, does ’cost’ include
maintenance activities and the cost of failure? Is ’availabil-
ity’ relevant to the problem of ensuring assets arrive without
failure, or should we be interested in ’reliability’ for a specific
journey. Discussions with the participating organization are
necessary to understand the number and configuration of the
assets, the logistics and maintenance systems, and how key
decisions are made. At this stage an assessment should be
made of the quality of the maintenance records and the iden-
tification of subject matter experts to support the analysis.

3.2. Conceptualizing the asset

Each mobile asset is modelled as a set of sub-systems, for
example sub-systems X , Y and Z. The number and compo-
sition of the sub-systems depends on the application. Consid-
erations include the physical and functional structure of the
asset, how sub-systems are currently defined and grouped for
maintenance, and the reliability of components in the sub-
systems. Each subsystem is maintained at a PM interval.
These sub-system groupings and associated intervals are set
out in the scheduled PM strategy. This strategy may be devel-
oped by the equipment operator but is often specified by the
Original Equipment Manufacturer (OEM) . For example the
OEM might suggest that sub-system X undergoes PM every
100 km, Y every 200 km, and Z every 300 km. Interval units
used for mobile assets include distance, calendar time, and
utilized time.

Estimation of relevant maintenance, reliability and operational
performance parameters at system and sub-system levels re-
quires access to data on the asset, its maintenance schedule,
and data from which failure and repair history can be esti-
mated. The preferred approach is to represent actual asset
time-to-event and time-to-repair performance as distributions
by failure mode at the selected sub-system level. This re-
quires access to historical maintenance records and an abil-
ity to interpret the structured and unstructured data they con-
tain. With large data sets this necessitates the use of syntactic
analysis skills. In the absence of suitable maintenance data,
assumptions can be made based on expert knowledge. The
estimated parameters for time-to-event and time-to-repair dis-
tributions are usually fit to a Weibull distribution.

Conceptualizing the logistics and maintenance system

We assume mobile assets move along prescribed routes be-
tween source(s) and destination(s). This movement is repre-
sented using a discrete event simulation model. Typically we
require knowledge of a map or schematic of the routes with

distances and travel times, factors that might need to be rep-
resented such as scheduled stops for refueling and breaks, the
location of maintenance shops, maintenance strategies and
schedules, and manpower resources.

There are different ways of conceptualizing asset states in the
simulation. For example an asset can be assigned one of three
states at any given time: 0, completing a journey; 1, in main-
tenance; or 2, waiting out a rest period. The control flow of
the simulation first identifies which asset is closest to its next
change of system state by finding the lowest value in the Dis-
tance/Time Remaining column. All assets are then progressed
forward this distance by decreasing their Distance/Time Re-
maining and increasing the age of each of their subsystems.
The state of the asset that has reached the state change is
then changed depending on a series of checks as shown in
Figure 1. If the asset has failed or exceeded its scheduled PM
age, maintenance is conducted when it completes its journey.
The simulation continues until each asset in the fleet has trav-
eled past a pre-determined test distance.

Alternatively one can consider each asset as having multi-
ple states and moving between states using actions which
are scheduled in the simulation environment. Once all assets
have scheduled their actions, the environment progresses to
the next action to simulate the progression of time. Failures
can interrupt this schedule forcing affected assets to re-assess
their own state and change their next action. The decision on
the number of states and how to transition between them is an
important decision for the modeler.

The simulation needs to include provision for PM events at
the repair shop and unplanned events (failures) requiring CM
in the field. In operating systems there are often undocu-
mented rules that say, for instance, that if one scheduled task
is within a certain time of another scheduled task, then they
can be done at the same time. These rules need to be elicited
and represented in the model. A number of decisions need to
be made in developing the simulation such as how to manage
component time evolution, how to trigger failure events, how
to penalize failure events in the field, and assumptions about
the quality of repair. In the case studies described in this paper
the virtual age of components is recorded in kilometres in one
case, and in hours of operation in the other. The decision of
which to use is problem specific. In both cases we schedule a
PM task if a subsystem’s virtual age has a) passed the planned
interval (e.g. traveled 200 km) since the previous planned in-
tervention, or b) if the subsystem’s virtual age will exceed
the failure age before returning from its next journey and the
maintenance workshop is available. The aim of the PM task
is to enable the sub-system to function without failure until
the next scheduled PM task; however as reliability is stochas-
tic, the sub-system can fail and this is explored through the
simulation by sampling from the sub-system’s failure distri-
bution. If the sub-system fails during a journey then CM is
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Figure 1. Simulation control flow logic.

conducted. This incurs a cost penalty in the model to capture
the issues associated with in-field failures, such as the costs
to get maintainers to the remote area, time-delays to receive
the product the mobile asset is carrying, fleet schedule dis-
ruptions, and the potential for increased safety exposure of
the maintainer.

3.3. Optimization, verification and validation

GAs are inspired by the concept of natural selection in bio-
logical evolution: they perform an intelligent exploration of
a search space of potential solutions by using known good
solutions to identify promising new solutions using selection
and inheritance. Over some number of iterations, solutions
share and accumulate good features, and the performance of
the best solutions improves towards the best available. The
system terminates usually either when improvement ceases,
or when a specific performance level is attained.

The asset fleet is modeled as a multi-objective set of mobile
assets which completes a range of journeys under a usage-
based PM schedule generated by the GA. The simulation per-
forms trials sending the assets to perform their function exe-
cuting PM maintenance as per the schedule generated by the
GA and dealing with any CM needs that arise.

Outputs from the simulation may include the number of jour-
neys completed successfully, availability and/or cost, and CM
or PM conducted per subsystem for each trial schedule. Se-
lected outputs are used by fitness function to calculate a fit-
ness score that represents the success of each schedule. The
schedules are ranked and the most successful schedules are
sent to the GA to create the next generation of trials as shown
in Figures 2 and 3. Over some large number of iterations,
the GA will develop new solutions that improve on their pre-
decessors by sharing good features and exploring the search
space.

The simulation was developed as a simple state-changing sim-
ulation initially before extra functions such as stochastic fail-

ure, maintenance checking and the GA were implemented.
The GA and simulation are written in Python for one case
study and in Java for the other. The first steps to develop-
ing the GA are defining how solutions will be represented
and how they will be ranked. Each chromosome can be rep-
resented as a set of numbers representing the maintenance
interval of each subsystem. The fitness of each set of mainte-
nance interval is based on the availability of the system found
by the simulation. The crossover and mutation algorithms
evolving the population are also defined. Crossover is the
process of combining two parent chromosomes to make child
chromosomes for the next generation. This is done by choos-
ing a random proportion of each parent maintenance inter-
val and adding them together. Mutation of the children is
done by sampling a normal distribution to randomly change
the maintenance intervals adding randomness and diversity
to the algorithm. Informal static and dynamic VV&T tech-
niques were applied between each development to ensure that
the functionality was maintained between updates. A combi-
nation of the credibility assessment techniques recommended
by Balci (1995) and Kleijnen (1995) were used to verify, val-
idate and test (VV&T) the simulation model. Formal VV&T
techniques were not considered viable due to the large con-
fidence intervals of the reliability analysis. With such uncer-
tainty between the true and measured values, comparing the
performance of the simulation to that of the real fleet is unable
to provide significant support for the credibility of the sim-
ulation model. Instead, informal, static, and dynamic (sen-
sitivity analysis) VV&T techniques are used to support the
credibility of the simulation. Informal techniques are com-
mon in VV&T practices (Balci 1990). While they rely more
on human judgment rather than mathematical analysis (Balci
1997), they still have a structure and can be effective.

4. RESULTS AND DISCUSSION

Two case studies are provided. The first is on five long dis-
tance trucks. These trucks haul supplies between a city and
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Figure 2. Simulation and optimization process.

Figure 3. Genetic algorithm process.

a set of ten remote towns, which are between 390 km and
1400 km away. The second is for the locomotives on a heavy
haulage railway, the travel time between source and destina-
tion is between 32 and 45 hours. In both cases there is almost
no maintenance support between the source and destination
and the environment is hostile in that temperatures frequently
exceed 40◦C and there are no power or mobile network ser-
vices and few towns.

4.1. Long distance trucks

4.1.1. Model development

A company operates five long-distance haulage trucks, also
known as prime-movers or road trains. The aim is to mini-
mize the sum of the PM and CM costs through setting appro-
priate intervals for PM on the truck sub-systems. The costs of
PM and CM events for each subsystem are assumed for the

purposes of this model to be fixed values, though in practice
there are a number of factors that can influence these costs.
The number of PM and CM events are determined by the sim-
ulation and the intervals for the PM determined by the GA.

The simulation model simulates the operation of the trucks
and their associated subsystems. It includes a model for dif-
ferent journey options and a single maintenance workshop.
The workshop is treated as the central node from which each
truck begins and ends journeys. It is only capable of con-
ducting maintenance on one truck at a time. A good-as-new
maintenance quality model was used for the baseline simula-
tion. In this model, the maintenance quality is considered to
be ‘perfect’ and each PM and CM action returned the age of
the subsystem to a ‘good-as-new’ state.

A taxonomy of the trucks was developed in consultation with
experts and the current maintenance practices documented.
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Component Name Subsystem β η (km)
Pneumatic System A 1.36 65,681
Hydraulic System A 2.22 69,058
Lights A 1.11 71,618
Hoses A 1.28 99,513
Sensors A 1.37 103,399
Tyres B 1.12 138,047
Cabin B 1.31 150,691
Wiring B 1.65 181,044
Exhaust B 1.67 281,213
Turbocharger C 1.33 640,924
Shaft C 1.07 792,508
Engine C 1.28 1,146,408
Radiator C 1.05 2,396,505

Table 1. Failure probability Weibull parameter estimates for
truck components.

Service reports listed what PM had been conducted, what
components had failed and whether they were repaired or
replaced. Historical service reports for an 18-month period
were available in two formats (Excel spreadsheet and .pdf
files). These files were collated in a single dataset listing
the time-to-event (in kilometres) and parts replaced for each
maintenance (planned or failure) event. Only a small num-
ber of failures were observed in the data due to the the short
time on test. When a component was repaired or replaced, it
was treated as a failure event that caused the truck to break
down in the field. When the beginning or end of life did
not occur during in the 18-month test window this censor-
ing was reflected in the estimation of parameters for the re-
liability distribution. Reliability analysis was performed in
R using the open source code at (Marriott (2016)) based on
the method proposed by (Meeker & Escobar (1998)). This
analysis provided lifetime and shape parameter estimates for
a two-parameter Weibull distribution to represent the relia-
bility of each component. Three sub-systems (A, B and C)
were created by grouping the components based on similar
Weibull scale parameter values (η). The resulting reliability
block diagram in a series configuration is shown in Figure 4.
The subsystems produced by this approach are different to
the maintenance subsystem grouping used by the owner of
the prime mover fleet based on recommendations of the orig-
inal equipment manufacturer.

The reliability data used in the model is shown in Table 1.
The simulation begins by initializing each vehicle subsystem
with a random age up to its projected failure age. Each mobile
asset is assigned a journey randomly selected from a prede-
fined set of journeys based off the fleet’s real operation and a
new maintenance schedule generated by the optimization en-
gine described below. A two-dimensional array records the
progress and state of each prime mover in the fleet through-
out the simulation (Table 2). The simulation is distance-based
(km); time-based events such as maintenance are converted to
distances using an estimate for average truck speed.

4.1.2. Results

The results from the simulation-optimization model for each
sub-system A, B and C are shown in Figure 5. For each sub-
system there is a distribution of high-scoring schedules. A
high-scoring schedule has maximized the fitness score. From
these results a suitable maintenance schedule is to repair sub-
system A every 12,000 km, B every 34,000 km, and C ev-
ery 180,000 km. An additional consideration is the poten-
tial to extend the maintenance interval for subsystem B to
36,000 km so that it lines up with every third time mainte-
nance A is conducted. Maintenance on subsystem C would
then be conducted along with A and B every 15th time main-
tenance A is conducted.

To explore the behaviour of the model we reduced a) the
lengths of journeys, b) the cost value of a failure, and c)
failure duration. This would be the case if the trucks were
operated in a less-remote environment. Five trials were con-
ducted using this adjusted simulation, which all converged
to a similar range of optimal schedules to the original result.
Across these trials,the optimal preventive maintenance sched-
ule identified by the GA increased slightly. Both the changes
to the cost of a failure and the shorter journey length are ex-
pected to be contributors to this phenomena. Since the cost of
a failure has been decreased relative to the cost of conducting
preventive maintenance, the GA began favouring schedules
that allows the subsystems to reach a slightly higher age be-
fore being repaired. The shorter maintenance duration due to
a reduced maintenance response time also allows the vehicle
to begin conducting journeys again for profit sooner than in
the original simulation.

The change to conducting shorter journeys was also expected
to cause a small increase in the optimal maintenance sched-
ules. For example, if a truck in the original simulation was
due for preventive maintenance in 1,000 km and would need
to conduct a 1,300 km journey, it would conduct the main-
tenance at that age before completing the journey. However,
if that same truck was due for maintenance in 1,000 km in
this adjusted simulation with shorter journey’s, it would still
be able to conduct many shorter (e.g. 20–40 km) journeys
before being due for maintenance.

The PM intervals suggested by the truck model compare fa-
vorably to the current strategy used in the real fleet where
maintenance A, B, and C is conducted every 10,000 km,
20,000 km, and 100,000 km respectively. It is interesting to
note that although the sub-systems were grouped into A, B,
and C based on the mean time between failure determined
from maintenance data and expert that the intervals suggested
by this analysis are very close to those recommended by the
truck’s Original Equipment Manufacturer. We would expect
some differences in interval predictions due to the assump-
tions and simplifications in the model. The value of the model
lies in the suggestion that maintenance intervals could be ex-
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Figure 4. Subsystem grouping based on reliability analysis.

Truck Current Dist./Time Subsystem A Subsystem B Subsystem C
ID Sys State Rem. (km) Age Fail Age Fail Age Fail
1 0 1,234 17,000 30,574 89,375 160,734 178,263 320,593
2 1 39 3,882 23,718 20,407 124,693 40,703 248,707
3 0 688 6,862 23,703 74,301 192,613 49,492 169,394
4 0 184 7,798 26,403 40,996 138,805 81,769 276,854
5 2 322 2,426 22,573 12,752 118,671 25,435 236,696

Table 2. Representation of instantaneous truck fleet data in the simulation at different states: 0, completing a journey; 1, in
maintenance; or 2, waiting out a rest period.

tended and the opportunity, through the model, to identify
which areas to improve on and the scale of the improvement
that could be expected.

4.2. Heavy haulage locomotive

4.2.1. Model development

This asset system contains 118 locomotives operating in a
train network. Each train comprises four locomotives and
more than 100 wagons. The aim of the project is to maxi-
mize the availability of the system through setting appropri-
ate intervals for PM for sub-systems on each of the 118 lo-
comotives. The same PM interval is used for each identical
sub-system. The reliability of the wagons is not included.

In this case study we adopted the sub-system structure pro-
vided by the company. Each locomotive is modelled as six
subsystems: engine, electrical (low voltage), electrical (high
voltage), drive, pneumatics, and structure. Data about the lo-
comotives was received in the form of two years worth of
maintenance work orders. These 21,076 work-orders contain
a description of the work, the time of occurrence, how long
the action took, what component/sub-system of the locomo-
tive was maintained, and how much each action cost. The
data needed considerable cleaning using syntactic analysis to
identify the component/sub-system, date of maintenance ac-
tivity, type of activity, age of component at removal and if the
end of life constituted a failure or a suspension. Parameters
for the failure distributions for the locomotive sub-systems
are shown in Table 3.

The times to conduct PM and CM on the subsystems are de-
termined from the historical work order data and their distri-
butions shown in Figures 6 and 7. In addition to data for the
model, these graphs shows which subsystems take the longest
time to maintain. PM repair time distributions are represented
by normal or log normal distributions while CM repair time
distributions usually need a mixed Weibull fit. On average, a
corrective repair on a locomotive subsystem takes more than
six times as long as planned repair. This highlights the cost of
failures to assets and reinforces why maintenance optimiza-
tion is important to minimize the unplanned failure of assets.

The model simulates the movement of the 118 trains (each
requiring four locomotives) traveling between several sources
and a single destination. The maintenance shop is at the des-
tination. Cycle times are assumed to follow a triangular dis-
tribution. Failures on the sub-systems are assumed to be inde-
pendent of other sub-systems and a sub-system is considered
as good-as-new after a repair event. The simulation control
logic is quite complicated because of multiple sources, single
tracks with limited passing options and the number of loco-
motives involved. The fitness function of availability is de-
termined as the useful simulation time the locomotives were
operating normalized by the total simulation time. The simu-
lation is run for 50,000 hours, or about six years. This allows
maintenance to occur at least twice and still allows a simu-
lation to execute quite quickly, although multiple simulations
can take days. Verification of the modelling was done through
sensitivity analysis. Tests completed included increasing the
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Subsystem Distribution Population Shape Scale MTTF (hrs)proportion

Engine Mixed 0.58 0.84 858 938
Weibull 0.42 0.67 1.6× 1013 2× 1013

Electrical (low voltage) Mixed 0.52 0.92 666 691
Weibull 0.48 0.79 30,703 35,126

Drive Lognormal 1.00 2.52 7 34,803

Electrical (high voltage) Lognormal 1.00 2.30 7 15,321

Pneumatics Mixed 0.61 0.86 716 774
Weibull 0.39 0.37 1.32× 1059 5.65× 1059

Structure Lognormal 1.00 2.79 8 216,710

Table 3. Calculated failure distributions of locomotive subsystems.

Subsystem Existing GA

M
ai

nt
en

an
ce

In
te

rv
al

(h
rs

) Engine 4,842 34,866
Low voltage 7,635 38,479
Drive 8,471 29,261
High voltage 8,166 21,017
Structure 5,304 35,292
Pneumatic 8,177 34,558
Availability 35.5% 62.0%

Table 4. GA-determined maintenance intervals for each
maintenance scheduling algorithm.

number of locomotives from 20 to 200, and observing the
impact on system availability, locomotive idle time, and the
number of trips completed. In each case we look at the be-
haviour of the system. For example, as the number of lo-
comotives is increased, Idle Time decreases initially as the
system utilizes these extra assets; it then increases slightly as
there are not enough trains to utilize the number of locomo-
tives; and finally it decreases further as the queues for main-
tenance and repair become very long. All of this accords with
our intuition of the system.

4.2.2. Results

A baseline for the model is established by running the GA
over maintenance intervals between 6 and 12 months reflect-
ing the existing maintenance program and also up to 36 months
with the option for the GA to mutate intervals above this
value. Using the GA to set intervals for each of the six sub-
systems as shown in Table 4 results in a 75% better availabil-
ity when compared to the baseline model.

The model suggests a run-to-failure strategy because the shape
factor on the reliability distributions for most of the subsys-
tems (determined from the work order data) are less than 1.
As a result the model does not try to reduce the risk of in-
transit failures. Since the data suggest the subsystems suffer
from infant mortality the model allows them to fail as this

affects the availability fitness function less than the mainte-
nance required to prevent these in-transit failures. A different
fitness function, e.g. one based on cost, would produce a dif-
ferent result; this will be explored in future work.

The model’s results suggest that maintenance intervals for the
locomotives can be extended, as the simulations in Table 4
suggest that availability is higher with longer maintenance in-
tervals. However more work is required to confirm the data
on which the model is built. There were no trustworthy pa-
rameters concerning the reliability distributions of the sub-
systems used in the model. We used data from the work or-
der system which required considerable syntactic analysis by
the researchers. A shape factor of less than one for some of
the reliability distributions is an unwelcome result, Table 3,
and is now being investigated by the organization. The orga-
nization had not previously calculated reliability parameters
for the sub-systems taking suspensions into account and there
was no ground truth available on the actual locomotive avail-
ability, unplanned downtime or time to repair or maintain es-
timations. We also suspect that some of sub-systems have
maintenance intervals of more than two years. This was dif-
ficult to determine given that we had only two years of work
order data.

While the locomotive system analysed conducts regular sched-
uled maintenance, condition monitoring of the locomotive
subsystems also takes place. This is done through inspections
during stops, during maintenance of other subsystems and by
observations of the operators. This means failures can some-
times be pre-empted and parts can be replaced before they
fail. The effect of this is less failures and thus, increased avail-
ability and production. The effect of the frequency of inspec-
tions would have an influence over the optimal PM schedul-
ing. However, the simulation does not take this into account.
Optimization done using a combination of both maintenance
strategies would further reflect the actual operation of the real
system.
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(a) Subsystem A.
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(b) Subsystem B.

200 300 400 500
Interval

(1000's km)

0

5

10

15

20

25

30

Qu
an

tit
y 

of
 H

ig
h-

Sc
or

in
g 

Sc
he

du
le

s

(c) Subsystem C.

Figure 5. Top performing maintenance intervals in the truck
simulation
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Figure 6. Comparison of probability distribution functions of
PM repair times of the locomotive subsystems
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Figure 7. Comparison of probability distribution functions of
CM repair times of the locomotive subsystems

4.3. Discussion

The approach has been applied to two cases in different busi-
ness contexts and on different scales. The heavy-haulage
truck case is a relatively simple five truck, three sub-systems
per truck case, with very little actual maintenance work order
data available and a high reliance of expert knowledge. There
is little complexity in the logistics model. The results of the
simulation-optimization compare well with actual practice.

The locomotive case is much more complex, 118 locomotives
each with six sub-systems, and code which takes 3-4 days
to run. This case is much less easy to validate because the
logistics simulation is an abstraction of the real, and more
complex, rail network, and because there is no ground truth
from the operator on the actual reliability or availability of the
locomotives. However models like this that highlight where
problems exist and provide a mechanism to quantify the value
of improved infrastructure and data collection to support this
sort of modeling for decision support.

Maintenance and operational data necessary for building the
simulation came as extracts of .csv fies from internal corpo-
rate systems and discussions with experts. Open source soft-
ware was used for both the cases. For the long-distance truck
case the simulation and GA were developed in Python, and
reliability analysis was done in R. For the locomotive case
study the maintenance data processing and syntactic analysis
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was done in Python, and the simulation and GA were writ-
ten in Java. The point being made here is that building and
maintaining these models usually requires capability with dif-
ferent software; in our case Python, R, Java, Weibull++ were
all used, as well as an ability to work with industry experts
and their systems.

5. CONCLUSIONS

This paper has presented an approach based on coupled sim-
ulation and GA models to identify fixed-interval maintenance
periods for mobile assets operating in remote locations. The
approach has been demonstrated on two case studies, one rel-
atively simple case of five trucks each with three sub-systems,
and the other more complex case of 118 locomotives each
with six sub-systems. Maintenance records are used to de-
velop distributions for the time-to-event and time-to-repair
variables. Both models suggest improvement in fleet avail-
ability are possible with alternate interval selection.
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